基于微纳光纤的石墨烯超快全光调制器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子层厚度的二维石墨烯晶体具有线性色散的能带结构以及极强的载流子带间跃迁,能实现超快的宽带光与物质相互作用,可以自由贴附于光学表面实现光子结构的功能化,已经在激光锁模、超快光调制、偏振控制、光电探测等方面显示出良好的应用前景,其中石墨烯超快光调制是最具挑战和器件应用前景的前沿研究方向之一。最近,通过外加电场改变石墨烯中的费米能级,Liu等人首次在实验上演示了光学波段的石墨烯光调制器,但是,受限于器件电子回路的寄生电容等效应,最高调制速率为1GHz量级。如果能使用全光调制方式,将可以绕开电子回路的寄生响应,显著提高调制速率。
     双锥形的氧化硅微纳光纤是从标准光通信单模光纤中直接拉伸而得,通过严格控制光纤拉锥形状和拉伸参数,可以制备出具有具有亚波长直径、超低单模传输损耗的微纳光纤。利用这种双锥形微纳光纤,可以将光从标准单模光纤端以极低的额外损耗经拉锥过渡区耦合进入并以基模(HE11模)沿着微纳光纤传导,再经拉锥过渡区传导回另一端标准单模光纤。这种形式的光传输,不仅能增强微纳光纤表面光与物质的相互作用,同时也能实现微纳结构中的光信号与标准光纤系统的高效衔接。
     基于上述考虑,本论文提出基于微纳光纤的石墨烯超快全光调制器研究设想。利用微纳光纤的强倏逝场和导波效应来增强光与石墨烯相互作用,首次在光通信波段获得2.2ps(计算得到的等效带宽约为450GHz;考虑到飞秒脉冲为高斯光束,其时间-带宽常数为0.44,则通过计算得到的对应带宽大约是200GHz)的石墨烯超快光调制实验结果,调制深度达到38%。同时,该调制器结构紧凑、与光纤系统兼容,在光通信、光计算、光逻辑等方面均具有潜在的应用前景。全文共分为以下五个章节:
     本论文第一章为绪论,简要介绍本课题的目的与意义,以及微纳光纤和石墨烯的研究背景,并概述本论文的主要工作。
     本论文的第二章主要研究微纳光纤的光传输特性及实验制备。首先,研究微纳光纤的模场分布、单模传输条件以及色散等特性。其次,研究了本文中所使用的双锥形氧化硅微纳光纤的制备,并基于微光纤中多模干涉效应用于应变传感、激光加热熔接微纳光纤用于激光发射等工作研究了微纳光纤的功能化方法。
     本论文的第三章主要介绍光学质量的石墨烯包层微纳光纤的研制及光传输特性表征。在此,我们首次提出石墨烯与低损耗微纳光纤复合结构,用于全光纤饱和吸收及全光调制。我们通过撕胶带法制备出寡层石墨烯薄膜,将其转移并包裹在微纳光纤表面,获得光学质量的石墨烯包层微纳光纤样品。同时,我们对石墨烯包层的光场功率密度和模场分布进行了理论建模和计算,对石墨烯包层微纳光纤的线性及非线性(饱和吸收)传输特性进行了实验测量,结果显示,石墨烯包层微纳光纤具有很好的饱和吸收效应。
     在本论文的第四章中,我们首次从实验上演示了石墨烯的超快全光调制器。利用纳秒脉冲对石墨烯包层微纳光纤的饱和吸收效应,实现了对1.5微米波段连续光的全光调制。为测试该调制器的超快时间响应,我们搭建了一套基于光纤传输系统的泵浦-探测实验系统,实验测得石墨烯包层微纳光纤的响应时间为2.2ps(对高斯脉冲而言,其对应的调制速率为200GHz),调制深度达到38%,较此前的自由空间实验的光透过率变化率提高了近2个数量级。
     本文第五章为本工作的总结与展望。简要概括了本文主要研究成果,同时,提出了在本文基础上可以进一步开展的工作。
     总的来说,本文提出并实现的基于微纳光纤的石墨烯超快全光调制器,是石墨烯光子学和光纤光学结合的一个成功范例,不仅拓展了光纤光学和石墨烯光子学在超快光子技术领域的应用潜力,也为未来超快光信息处理开辟了一条新的途径。
Owing to its linearly dispersive conduction and valence bands and the strong interband transitions, the atomic-thickness two-dimensional graphene film allows broadband light-matter interactions with ultrafast responses, and can be readily pasted to surfaces of functional structures for a variety of photonic and optoelectronic applications including mode-locked lasers, ultrafast optical modulators, broadband polarizers and ultrafast photodetectors. Among the above-mentioned possibilities, graphene ultrafast optical modulation is one of the most promising and challenging techniques for device applications. Recently, by electrically tuning the Fermi level of a graphene film to modify the interband transitions of graphene, Liu et al. successfully demonstrated a high-speed graphene-based optical modulator. The modulation bandwidth was however limited to~1GHz by the response time of the bias circuit. Obviously, the "electrical bottleneck" on the modulation rate can be circumvented by an all-optical scheme.
     Biconical silica optical micro-/nanofibers (MNFs) tapered down from standard telecom single-mode fibers, have been used for launching light into and collecting signal out from micro/-nano scale components or devices. With proper taper geometries, light from the standard single-mode fiber can be guided through the taper region and propagation along the subwavelength-diameter microfiber in single-mode (fundamental HE11mode) with low transmission loss, which does not only enhance the light-matter interaction on the MNF surface, but also realize highly efficient optical connection between micro/nanostructures and standard optical fibers.
     In this work, we propose, for the first time to our knowledge, an ultrafast all-optical modulator based on a graphene-cladded MNF. Relying on significantly enhanced evanescent light-graphene interaction in a tightly confined MNF waveguiding structure, we experimentally demonstrated a graphene optical modulation with modulation time down to2.2-ps (corresponding to a calculated bandwidth of450GHz; for Gaussian pulses with a time-bandwidth product of0.44, the calculated bandwidth is~200GHz.) in a single-mode optical fiber around1.5-μm wavelength (the C-band of optical communication). The maximum modulation depth is about38%, which is two orders of magnitude larger than that in free-space measurement. This compact modulator is compatible with fiber-optic communication networks, and may find applications in optical communications, optical computing and optical logic devices. The thesis consists of five chapters, as introduced below:
     The first part is an introductory chapter, which briefly introduces the motivation and aims of this study, followed by the research background of optical MNFs and graphene.
     The second chapter investigates optical properties and fabrication of MNFs. Firstly, we introduce optical properties of MNFs, including mode distribution, surface power density, single-mode condition and waveguide dispersion. Secondly, we study the flame-heated taper drawing fabrication and optical characterization of biconical MNFs with low optical loss. Then, based on the multimode-interference effect in single microfiber and fusion spliced MNFs via CO2laser heating, we demonstrate the approaches to structural functionalization of MNFs for strain sensing and closed-loop ring lasing.
     The third chapter focuses on the fabrication and optical characterization of graphene-clad-microfiber (GCM). Here, we propose, for the first time, an ultrafast all-optical graphene modulator based on the hybrid GCM structure. We first prepare a few layer graphene flake by micromechanical exfoliation of highly oriented pyrolytic graphite, and then transfer and wrap a graphene flake around the microfibers via micromanipulation. Besides, we model the surface power density of GCM, and experimentally measure the linear and nonlinear transmission of the GCM, which shows excellent saturable absorption properties of GCMs.
     In the fourth chapter, we experimentally demonstrate graphene ultrafast all-optical modulation. Firstly, by co-propagating a train of1064-nm5-ns nanosecond laser pulses and a1550-nm CW light in a GCM, we show graphene all-optical modulation around1550-nm wavelength. Secondly, by employing an in-fiber optical pump-probe technique, we measure the ultrafast dynamic response of the GCM modulator. We obtain a measured response time down to2.2ps, corresponding to a calculated modulation rate of~200GHz for Gaussian pulses. The maximum modulation depth is~38%, which is about2orders of magnitude higher than previous free-space normal incident optical differential transmission measurements.
     Finally, in the last chapter, we give a brief summary and outlook of our work.
     Overall, the graphene-clad-microfiber ultrafast all-optical modulator demonstrated in this work, represents a successful example of merging graphene photonics and fiber optics, which does not only extend the reach of fiber optics and graphene photonics for ultrafast optical technology, but also opens a new opportunity for future ultrafast optical signal processing.
引文
1. Prasad P. N., Nanophotonics, John Wiley & Sons, New Jersey.
    2. Shen Y. Z. et al, Nanophotonics:Interactions, materials, and applications. J. Phys. Chem. B., 2000,104:7577-7587
    3. Kirchain P, Kimerling L. A roadmap for nanophotonics. Nature Photon, 2007,1:303-305
    4. Alduino A, Paniccia M. Interconnects: Wiring electronics with light. Nature Photon, 2007,1: 153-155
    5. Jalali B, Yegnanarayanan S, Yoon T, et al. Advances in silicon-on-insulator optoelectronics. IEEE J Quantum Electron, 1998,4:938-947
    6. Celler G K, Cristoloveanu S. Frontiers of silicon-on-insulator. J Appl Phys,2003,93: 4955-4978
    7. Bogaerts W, Baets R, Dumon P, et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J Lightwave Technol, 2005,23:401-412
    8. Xia F N, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nature Photon, 2007,1:65-71
    9. Tong L M, Gattass R R, Ashcom J B, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature,2003,426:816-819
    10. Brambilla G, et al, Ultra-low-loss optical fiber nanotapers. Opt. Express,2004,12,2258-2263
    11. Brambilla G Next generation fibers:Optical fibers go nano. Laser Focus World,2007,43: 85-88
    12. Tong L M, Sumetsky M. Subwavelength and Nanometer Diameter Optical Fibers. Hangzhou, Zhejiang University Press and Springer-Verlag,2009
    13. Tong L M, Lou J Y, Ye Z Z, et al. Self-modulated taper drawing of silica nanowires. Nanotechnology,2005,16:1445-1448
    14. G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterization," Electron. Lett.,2006,42,517-519.
    15. Tong L M, Hu L L, Zhang J J, et al. Photonic nanowires directly drawn from bulk glasses. Opt Express,2006,14:82-87
    16. L. M.Tong, F. Zi, X. Guo. et al, Optical microfibers and nanofibers:A tutorial. Opt. Com. 2012
    17. Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures:Synthesis, characterization, and applications. Adv Mater,2003,15:353-389
    18. Lieber C M, Wang Z L. Functional nanowires. MRS Bull 2007,32:99-108
    19. Yan R X, Gargas D, Yang P D. Nanowire photonics. Nature Photon,2009,3:569-576
    20. Liu H, Edel J B, Bellan L M, et al. Electrospun Polymer Nanofibers as Subwavelength Optical Waveguides Incorporating Quantum Dots. Small,2006,2:495-499
    21. Yang Q, Jiang X S, Gu F X, et al. Polymer micro or nanofibers for optical device applications. J Appl Polym Sci,2008,110:1080-1084
    22. Gu F X, Zhang L, Yin X F, et al. Polymer Single-Nanowire Optical Sensors. Nano Lett,2008, 8:2757-2761
    23. Sun Y G, Xia Y N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater,2002,14:833-837
    24. Wiley B J, Sun Y G, Xia Y, N. Polyol synthesis of silver nanostructures: control of product morphology with Fe(Ⅱ) or Fe(Ⅲ) species. Langmuir,2005,21:8077-8080
    25. Xu Q B, Bao J M, Capasso F, et al. Surface plasmon resonances of free-standing gold nanowires fabricated by nanoskiving. Angew Chem Int Ed,2006,45:3631-3635
    26. Wiley B J, Lipomi D J, Bao J M, et al. Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates. Nano Lett,2008,8:3023-3028
    27. Bures J, Ghosh R, Power density of the evanescent field in the vicinity of a taperd fiber. J. Opt. Soc. Am. A 199916:1992-1996
    28. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express,2004,12,1025-1035.
    29. J. Y. Lou, L. M. Tong, Z. Z. Ye, et al., Modeling of silica nanowires for optical sensing. Opt. Express 2005,13:2135-2140
    30. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett.86,161108(2005).
    31. X. Jiang, L. Tong, G. Vienne, and Xin Guo, "Demonstration of optical microfiber knot resonators," Appl. Phys. Lett.88,223501 (2006).
    32. X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, "Demonstration of microfiber knot laser," Appl. Phys. Lett 89,143513 (2006).
    33. X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett.90,233501 (2007).
    34. X. Jiang, Y. Chen, G. Vienne, and L. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett.32,1710-1712 (2007).
    35. Chen Y, Ma Z, Yang Q, et al, Compact optical short-pass filters based on microfibers. Opt. Lett.,2008,33:2565-2567
    36. Y. H. Li and L. M. Tong, "Mach-Zehnder interferometers assembled with optical microfibers or nanofibers," Opt. Lett.33,303-305 (2008).
    37. F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15,7888-7893 (2007).
    38. X. Guo and L. M. Tong, "Supported microfiber loops for optical sensing", Opt. Express 16, 14429-14434 (2008).
    39. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, All-optical control of light on a silicon chip, Nature 431,1081-1084 (2004)
    40. A. M. C. Dawes, L. Illing, S. M. Clark, D. J. Gauthier, All-optical switching in Rubidium vapor, Science 308,672-674 (2005)
    41. D. Pacifici, H. J. Lezec and H. A. Atwater, All-optical modulation by plasmonic excitation of CdSe quantum dots, Nature Photon.1,402-406 (2007)
    42. X. Y. Hu, P. Jiang, C. Ding, H. Yang and Q. H. Gong, Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity, Nature Photon.2,185-189 (2007)
    43. C. Koos, et al. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides, Nature Photon.3,216-219 (2009)
    44. Mynbaev D K, Scheiner L L, Fiber-optic communications technology, Prentice Hall, New York,2001.
    45. DeCusatis C, Handbook of fiber optics data communication, Academic Press, Boston,不2008.
    46. Dakin J, Culshaw B, Optical Fiber Sensors:Principles and Components, Artech House city, 1998.
    47. E. Udd, Fiber optic sensors:an introduction for engineers and scientists, John Wiley and Sons, Inc., New York, 1991.
    48. A. Katzir, Lasers and optical fibers in medicine, Academic Press city,1993.
    49. G. P. Agrawal, Nonlinear fiber optics, Academic Press, Boston,2007
    50. J. Hecht, City of light: the story of fiber optics, Oxford University Press, New York,1999
    51. G. Kakarantzas, T. E. Dimmick, T. A. Birks, et al., Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers, Opt. Lett.2001,26:1137-1139.
    52. P. Domachuk, B. J. Eggleton, Photonics: Shrinking optical fibers, Nature Mater.2004,3: 85-86.
    53. C. V. Boys, On the production, properties, and some suggested uses of the finest threads, Phil. Mag.1887,23:489-499
    54. N. S. Kapany, High-resolution fiber optics using sub-micron multiple fibres, Nature 1959, 184:881-883
    55. T. Maiman, Stimulated optical emission in Ruby, Nature 1960,187:493-494
    56. K. C. Kao, G. A. Hochham, Dielectric-fibre surface waveguides for optical frequencies, Proc. IEE 1966,113:1151-1158
    57. J. D. Love, W. M. Henry, Quantifying loss minimization in single-mode fibre tapers, Electron. Lett.1986,22:912-914.
    58. W. K. Burns, M. Abebe, C. A. Villarruel, et al., Loss mechanisms in single-mode fiber tapers, J. Lightwavve Technol.1986,4:608-613.
    59. R. J. Black, F. Gonthier, S. Lacroix, et al., Tapered fibers:an overview, Proc. SPIE,1987,839: 2-19.
    60. J. D. Love, W. M. Henry, W. J. Stewart, et al., Tapered single-mode fibres and devices-part 1:Adiabaticity criteria, IEE Proc.,1991,138:343-354.
    61. R. J. Black, S. Lacroix, F. Gonthier, et al., Tapered single-mode fibres and devices -part 2: Experimental and theoretical quantification, IEE Proc.,1991,138:355-364.
    62. T. A. Birks, Y. W. Li, The shape of fiber tapers, J. Lightwave Technol.,1992,10:432-438.
    63. Ward J M, O'Shea D G, Shortt B J, et al. Heat-and-pull rig for fiber taper fabrication. Rev Sci Instrum, 2006,77:083105
    64. Shi L, Chen X F, Liu H, et al. Fabrication of submicron-diameter silica fibers using electric strip heater. Opt Express,2006,14:5055-5060
    65. M. Sumetsky, Optics Letters 31 (2006) 3420.
    66. M. Sumetsky, Optics Express 15 (2007) 1480.
    67. F. Le Kien, J.Q. Liang, K. Hakuta, V.I. Balykin, Optics Communications 242 (2004) 445.
    68. A.M. Zheltikov, Optics communications 252 (2005) 78.
    69. M.A. Foster, K.D. Moll, Alexander L. Gaeta, Optics Express 12 (2004) 2880.
    70. C.J. Zhao, Z.X. Tang, Y.X. Ye, D.Y. Fan, L.J. Qian, S.C. Wen, G.H. Chen, Optics Express 15 (2007) 6629.
    71. W. Guo, J.L. Kou, F. Xu, Y.Q. Lu, Optics Express 19 (2011) 15229.
    72. H.K. Yu, S.S. Wang, J. Fu, M. Qiu, Y.H. Li, E.X. Gu, L.M. Tong, Applied Optics 48 (2009) 4365.
    73. A.M. Clohessy, N. Healy, D.F. Murphy, C.D. Hussey, Electronics Letters 41 (2005) 954.
    74. M. Sumetsky, Y. Dulashko, P. Domachuk, B.J. Eggleton, Optics Letters 32 (2007) 754.
    75. G.Y. Zhai, L.M. Tong, Optics Express 15 (2007) 13805.
    76. A.V. Kovalenko, V.N. Kurashov, A.V. Kisil, Optics Express 16 (2008) 5797.
    77. M. Kolesik, E.M. Wright, J.V. Moloney, Applied Physics B 79 (2004) 293.
    78. M. Kolesik, J.V. Moloney, Physical Review E 70 (2004) 036604.
    79. M.A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A.L. Gaeta, Applied Physics B 81 (2005) 363.
    80. M.A. Foster, A.L. Gaeta, Q. Cao, R. Trebino, Optics Express 13 (2005) 6848.
    81. A. Zheltikov, Journal of the Optical Society of America B 22 (2005) 1100.
    82. Z. Ma, S.S. Wang, Q. Yang, L.M. Tong, Chinese Physics Letters 24 (2007) 3006.
    83. K.J. Huang, S.Y. Yang, L.M. Tong, Applied Optics 46 (2007) 1429.
    84. L.M. Tong, J.Y. Lou, R.R. Gattass, S.L. He, X.W. Chen, L. Liu, E. Mazur, Nano Letters 5 (2005) 259.
    85. N.A. Wolchover, F. Luan, A.K. George, J.C. Knight, F.G. Omenetto, Optics Express 15 (2007) 829.
    86. D.I. Yeom, E.C. M agi, M.R. Lamont, M.A. Roelens, L. Fu, B.J. Eggleton, Optics Letters 33 (2008) 660.
    87. W.Q. Zhang, V.S. Afshar, H. Ebendorff-Heidepriem, T.M. Monro, S. Afshar, V.H. Ebendorff-Heidepriem, T.M. Monro, Electronics Letters 44 (2008) 1453.
    88. S.S. Wang, J. Fu, M. Qiu, K.J. Huang, Z. Ma, L.M. Tong, Optics Express 16 (2008) 8887.
    89. S.S. Wang, Z.F. Hu, H.K. Yu, W. Fang, M. Qiu, L.M. Tong, Optics Express 17 (2009) 10881.
    90. G. Brambilla, G.S. Murugan, J.S. Wilkinson, D.J. Richardson, Optics Letters 32 (2007) 3041.
    91. L.H. Zhao, Y.D. Li, J.W. Qi, J.J. Xu, Q. Sun, Optics Express 18 (2010) 5724.
    92. H.Y. Li, YD. Zhang, J. Li, L.S. Qiang, Optics Letters 36 (2011) 1996.
    93. F.L. Kien, V.I. Balykin, K. Hakuta, Physical Review A 73 (2006) 053823.
    94. W.L. She, J.H. Yu, R.H. Feng, Physical Review Letters 101 (2008) 243601.
    95. M. Mansuripur, A.R. Zakharian, Physical Review A 80 (2009) 023823.
    96. J.H. Yu, C.Y. Chen, Y.F. Zhai, Z. Chen, J. Zhang, L.J. Wu, F.R. Huang, Y. Xiao, Optics Express 19 (2011)25263.
    97. J.H. Yu, R.H. Feng, W.L. She, Optics Express 17 (2009) 4640.
    98. X.W. Chen, V. Sandoghdar, M. Agio, Nano Letters 9 (2009) 3756.
    99. X. Guo, M. Qiu, J.M. Bao, B.J. Wiley, Q. Yang, X.N. Zhang, Y.G Ma, H.K. Yu, L.M. Tong, Nano Letters 9 (2009) 4515.
    100. C.H. Dong, X.F. Ren, R. Yang, J.Y. Duan, J.G. Guan, G.C. Guo, GP. Guo, Applied Physics Letters 95 (2009) 221109.
    101. Y.G. Ma, X.Y. Li, H.K. Yu, L.M. Tong, Y. Gu, Q.H. Gong, Optics Letters 35 (2010) 1160.
    102. B. Ung, M. Skorobogatiy, Optics Letters 36 (2011) 2527.
    103. F. Le Kien, S.D. Gupta, K.P. Nayak, K. Hakuta, Physical Review A 72 (2005) 063815.
    104. E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S.T. Dawkins, A. Rauschenbeutel, Physical Review Letters 104 (2010) 203603.
    105. K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, M.S. Shahriar, Optics Express 19 (2011)22874.
    106. L. Russell, K. Deasy, M.J. Daly, M.J. Morrissey, S.N. Chormaic, Measurement Science and Technology 23 (2012)015201.
    107. X.Y. He, Z.B. Liu, D.N. Wang, M.W. Yang, C.R. Liao, X. Zhao, Journal of Lightwave Technology 30 (2012) 984.
    108. Q. Yang, X.S. Jiang, X. Guo, Y. Chen, L.M. Tong, Applied Physics Letters 94 (2009) 101108.
    109. Y. Ding, Q. Yang, X. Guo, S.S. Wang, EX. Gu, J. Fu, Q. Wan, J.P. Cheng, L.M. Tong, Optics Express 17 (2009) 21813.
    110. K. Kieu, M. Mansuripur, Optics Letters 32 (2007) 2242.
    111. Y.W. Song, K. Morimune, S.Y. Set, S. Yamashita, Applied Physics Letters 90 (2007) 021101.
    112. K. Kashiwagi, S. Yamashita, Optics Express 17 (2009) 18364.
    113. F. Le Kien, K. Hakuta, Physical Review A 83 (2011) 043801.
    114. F. Le Kien, K. Hakuta, Physical Review A 84 (2011) 053801.
    115. M. Fujiwara, K. Toubaru, T. Noda, H.Q. Zhao, S. Takeuchi, Nano Letters 11 (2011) 4362.
    116. I.D. Chremmos, N.K. Uzunoglu, Journal of the Optical Society of America A 23 (2006) 461.
    117. S.S. Wang, X.Y. Pan, L.M. Tong, Optics Communications 276 (2007) 293.
    118. F. Xu, P. Horak, G. Brambilla, Optics Express 15 (2007) 7888.
    119. F. Xu, G. Brambilla, Applied Physics Letters 92 (2008) 101126.
    120. Y. Wu, T.H. Zhang, Y.J. Rao, Y. Gong, Sensors and Actuators B:Chemical 155 (2011) 258.
    121. H.F. Xuan, W. Jin, M. Zhang, Optics Express 17 (2009) 21882.
    122. H.F. Xuan, W. Jin, S.J. Liu, Optics Letters 35 (2010) 85.
    123. X. Fang, C.R. Liao, D.N. Wang, Optics Letters 35 (2010) 1007.
    124. Y. Zhang, B. Lin, S.C. Tjin, H. Zhang, G.H. Wang, P. Shum, X.L. Zhang, Optics Express 18 (2010)26345.
    125. Y.X. Liu, C. Meng, A.P. Zhang, Y. Xiao, H.K. Yu, L.M. Tong, Optics Letters 36 (2011) 3115.
    126. R. Ahmad, M. Rochette, C. Baker, Optics Express 19 (2011) 2886.
    127. M. Ding, N.M. Zervas, G. Brambilla, Optics Express 19 (2011) 15621.
    128. Y. Ran, Y.N. Tan, L.P. Sun, S. Gao, J. Li, L. Jin, B.O. Guan, Optics Express 19 (2011) 18577.
    129. J.L. Kou, S.J. Qiu, F. Xu, Y.Q. Lu, Optics Express 19 (2011) 18452.
    130. Y. Ran, L. Jin, Y.N. Tan, L.P. Sun, J. Li, B.O. Guan, Photonics Journal 4 (2012) 181.
    131. F. Xu, G. Brambilla, J. Feng, Y.Q. Lu, Photonics Technology Letters 22 (2010) 218.
    132. J. Bures and R. Ghosh, Power density of the evanescent field in the vicinity of a tapered fiber, J. Opt. Soc. Am. A 16,1002-1996 (1999)
    133. Vahala K J. Optical microcavities. Nature,2003,424: 839-846
    134. A. B. Matsko, and V. S. Ilchenko, Optical resonators with whispering-gallery modes-Part Ⅰ: Basics, IEEE J. Sel. Top. Quantum Electron.,2006,12:3-14
    135. V. S. Ilchenko, and A. B. Matsko, Optical resonators with whispering-gallery modes-Part Ⅱ: Applications, IEEE J. Sel. Top. Quantum Electron.,2006,12:15-22
    136. T. J. Kippenberg, and K. J. Vahala, Cavity Opto-Mechanics, Opt. Express 2007,15: 17172-17205
    137. T. J. Kippenberg, and K. J. Vahala, Cavity Optomechanics: Back-action at the mesoscale, Science 2008,321:1172-1176
    138. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Ultimate Q of optical microsphere resonators, Opt. Lett.,1996,21:453-455.
    139. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, et al., High-Q measurements of fused-silica microspheres in the near infrared, Opt. Lett.,1998,23:247-249.
    140. D. K. Armani, T. J. Kippenberg, S. M. Spillane, et al., Ultra-high-Q toroid microcavity on a chip, Nature 2003,421:925-928.
    141. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip, Appl. Phys. Lett.,2004,85:6113.
    142. T. J. Kippenberg, S. M. Spillane, D. K. Armani, et al., Fabrication and coupling to planar high-Q silica disk microcavities, Appl. Phys. Lett.,2003,83:797-799.
    143. T. J. Kippenberg, J. Kalkman, A. Polman, et al., Demonstration of an erbium-doped microdisk laser on a silicon chip, Phys. Rev. A, 2006,74:051802.
    144. L. Yang, D. K. Armani, and K. J. Vahala, Fiber-coupled erbium microlasers on a chip, Appl. Phys. Lett.,2003,83:825.
    145. A. Polman, B. Min, J. Kalkman, et al., Ultralow-threshold erbium-implanted toroidal microlaser on silicon, Appl. Phys. Lett.,2004,84:1037.
    146. P. Pal and W. H. Knox, "Low loss fusion splicing of micron scale silica fibers," Opt. Express, vol.16, pp.11568-11573, Aug.2008.
    147. P. Pal and W. H. Knox, "Fabrication and characterization of fused microfiber resonators," IEEE Photon. Technol. Lett., vol.21, no.12, pp.766-768, Jun.15,2009.
    148. P. Wang, L. Zhang, Z. Y. Yang, F. X. Gu, S. S. Wang, Q. Yang, and L. M. Tong, "Fusion spliced microfiber closed-loop resonators," IEEE Photon. Technol. Lett., vol.22, no.15, pp. 1075-1077, Aug.1,2010.
    149. L. Zhang, P. Wang, L. M. Tong, Ultra-sensitive microfibre absorption detection in a microfluidic chip, Lab Chip,2011,11:3720-3724.
    150. Q. Yang, X. S. Jiang, X. Guo, et al., Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity, Appl. Phys. Lett.,2009,94:101109.
    151. A. K. Geim, K. S. Novoselov, The rise of graphene, Nature Materials,2007,6:183-191.
    152. R. E. Peierls, "Quelques proprietes typiques des corpses solides", Ann. I. H. Poincare 5, 177-222(1935).
    153. L. D. Landau, "Zur Theorie der phasenumwandlungen II", Phys. Z. Sowjetunion 11,26-35 (1937).
    154. L. D. Landau, and E. M. Lifshitz, Statistical Physics, Part I (Oxford, Pergamon,1980).
    155. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Electric Field Effect in Atomically Thin Carbon Films, Science,2004,22:306.
    156. G. Brumfiel, Graphene speeds pair to Stockholm win AWARDS, Nature,2010,467:642.
    157. E. S, Reich, Nobel document triggers debate, Nature,2010,468:486.
    158. Nobel physics prize honors achievements in graphene, PhysicsToday,2010,14.
    159. It's still all about graphene, Nature Material,2011,10:1.
    160. C. Lee, X. D. Wei, J. W. Kysar, et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science,2008,321:385-388.
    161. A. H. Castro Neto, et al., The electronic properties of graphene, Rev. Mod. Phys.,2009,81: 109-162.
    162. A. K. Geim, Graphene Status and Prospects, Science,2009,324:1530-1534.
    163. Phaedon Avouris, Graphene electronic and photonic properties and devices, Nano Lett.,2010, 10:4285-4294.
    164. F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, Graphene photonics and optoelectronics, Nature photon.,2010,4:611-622.
    165. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature, 2005,438:197-200.
    166. Y. B. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature,2005,438:201-204.
    167. X. I. Du, et al., Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature 2009,462:192-195.
    168. M. I. Katsnelson, K. S. Novoselov, A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nature Phys.,2006,2:620-625.
    169. R. R. Nair, P. Blake, A. N. Grigorenko, et al., Fine Structure Constant Defines Visual Transparency of Graphene, Science,2008,320:1308.
    170. A. B. Kuzmenko, E. van Heumen, F. Carbone, et al, Universal Optical Conductance of Graphite, Phys. Rev. Lett.,2008,100:117401.
    171. T. Stauber, N. M. R. Peres, and A. K. Geim, Optical conductivity of graphene in the visible region of the spectrum, Phys. Rev. B,2008,78:085432.
    172. K. F. Mak, M. Y. Sfeir, Y. Wu, et al., Measurement of the Optical Conductivity of Graphene, Phys. Rev. Lett.,2008,101:196405.
    173. C. Casiraghi, A. Hartschuh, E. Lidorikis, et al., Rayleigh Imaging of Graphene and Graphene Layers, Nano Lett.,2007,7:2711-2717.
    174. Q. L. Bao, H. Zhang, Y. Wu, et al., Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers, Adv. Fun. Mat.,2009,19:3077-3083.
    175. Q. L. Bao, H. Zhang, J. X. Yang, et al., Graphene-Polymer Nanofiber Membrane for Ultrafast Photonics, Adv. Fun. Mat.,2010,20:782-791.
    176. Z. P. Sun, T. F. Hasan, F. Torrisi, et al., Graphene Mode-Locked Ultrafast Laser, ACS Nano, 2010,4:803-810.
    177. G. C. Xin, H. C. Guo, X. H. Zhang, The physics of ultrafast saturable absorption in graphene, Opt. Express,18:4564-4573.
    178. T. Kampfrath, L. Perfetti, F. Schapper, et al., Strongly Coupled Optical Phonons in the Ultrafast Dynamics of the Electronic Energy and Current Relaxation in Graphite, Phys. Rev. Lett.,2005,95:187403.
    179. A. Bostwick, T. Ohta, T. Seyller, et al., Quasiparticle dynamics in graphene, Nature Phys.,3: 36-40.
    180. Z. Q. Li, E. A. Henriksen, Z. Jiang, et al., Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys.,2008,4:532-535.
    181. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, Measurement of ultrafast carrier dynamics in epitaxial graphene, Appl. Phys. Lett.,2008,92:042116.
    182. M. Breusing, C. Ropers, T. Elsaesser, Ultrafast Carrier Dynamics in Graphite, Phys. Rev. Lett.,2009,102:086809.
    183. L. Huang, G. V. Hartland, L. Q. Chu, et al., Ultrafast Transient Absorption Microscopy Studies of Carrier Dynamics in Epitaxial Graphene, Nano Lett.,2010,10:1308-1313.
    184. J. Z. Shang, Z. Q. Luo, C. X. Cong, et al., Femtosecond UV-pump-visible-probe measurements of carrier dynamics in stacked graphene films, Appl. Phys. Lett.,2010,97: 163103.
    185. M. Breusing, S. Kuehn, T. Winzer, et al., Ultrafast nonequilibrium carrier dynamics in a single graphene layer, Phys. Rev. B, 2011,83:153410.
    186. S. Winnerl, M. Orlita, P. Plochocka, et al., Carrier Relaxation in Epitaxial Graphene Photoexcited Near the Dirac Point, Phys. Rev. Lett.,2011,107:237401.
    187.X. Wang, L. Zhi, and K. Muellen, "Transparent, conductive graphene electrodes for dye-sensitized solar cells", Nano Lett.8,323-327 (2008).
    188. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparentelectrodes", Nature 457,706-710 (2009).
    189. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science 324,1312-1314 (2009).
    190. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of large-area graphene films for high-performance transparent conductive electrodes", Nano Lett. 9,4359-4363 (2009).
    191. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nat. Nanotechnol.5, 574-578 (2010).
    192. G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material", Nat. Nanotechnol.3,270-274 (2008).
    193. Gilje, S., Han, S., Wang, M., Wang, K. L. & Kaner, R. B. A chemical route to graphene for device applications. Nano Lett.7, 3394-3398 (2007).
    194. Becerril, H. A. et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2,463-470 (2008).
    195. Wu, J. et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4,43-48 (2009).
    196. Blake, P. et al. Graphene-based liquid crystal device. Nano Lett.8,1704-1708 (2008).
    197. F. N. Xia, T. Mueller, Y.-M. Lin, et al., Ultrafast graphene photodetector, Nature Nanotechnology, 2009,4:839-843.
    198. T. Mueller, F. N. Xia and P. Avouris, Graphene photodetectors for high-speed optical communications, Nature Photon.,2010,4:297-301.
    199. M. Liu, X. B. Yin, U.-A. Erick, et al., A graphene-based broadband optical modulator, Nature, 2011,474:64-67.
    200. M. Liu, X. B. Yin, X. Zhang, Double-layer graphene optical modulator, Nano Lett.2012,3: 1482-1485.
    201. Z. B. Liu, Y. Wang, X. L. Zhang, Y. F. Xu, Y. S. Chen, and J. G Tian, "Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes", Appl. Phys. Lett.94 (2009).
    202. M. Feng, H. B. Zhan, and Y. Chen, "Nonlinear optical and optical limiting properties of graphene families", Appl. Phys. Lett.96 (2010).
    203. G K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, "Giant broadband nonlinear optical absorption response in dispersed graphene single sheets", Nat. Photon.5,554-560 (2011).
    204. K. S. Novoselov, V. I. Fal'ko, L. Colombo, et al, A roadmap for graphene, Nature,2012,490: 192-200.
    205. W. Li, H. Z. Fang, X. Y. Li, et al., High-sensitivity Microfiber Strain and Force Sensors, submitted to Optics Communications.
    206. W. Li, B. G. Chen, C. Meng, W. Fang, H. Z. Fang, X. Y. Li, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, Y. R. Shen, In-fiber graphene ultrafast all-optical modulation, submitted to Nature Photonics.
    207. D. T. Cassidy, D. C. Johnson, and K. O. Hill, Wavelength-dependent transmission of monomode optical fiber tapers, Applied Optics 24 (1985) 945.
    208. S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, Tapered monomode optical fibers: understanding large power transfer, Applied Optics 25 (1986) 4421.
    209. S. Lacroix, F. Gonthier, R. J. Black, and J. Bures, Tapered-fiber interferometric wavelength response_the achromatic fringe, Applied Optics 13 (1988) 395.
    210. Z. F. Hu, W. Li, Y. G. Ma and L. M. Tong, General approach to splicing optical micro fibers via polymer nanowires, Opt. Lett.,2012,37:4383-4385.
    211. W. Li, P. Wang, Z. F. Hu and L. M. Tong, Fusion Splicing Soft Glass Micro fibers for Photonic Devices, IEEE Photon. Tech. Lett.,2011,23:831-833.
    212. Q. L. Bao, H. Zhang, B. Wang, et al., Broadband graphene polarizer, Nature Photon.,2011,5: 411-415.
    213. Gu, T. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photon.6,554-559 (2012).
    214. Kim, K., Choi, J.-Y., Kim, T., Cho, S.-H. & Chung, H.J. A role for graphene in silicon-based semiconductor devices. Nature 479,338-344 (2011).
    215.Dawlaty, J. M., Shivaraman, S., Chandrashekhar, M., Rana, F. & Spencer, M. G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett. 92, 042116(2008).
    216. Sun, D. et al. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett.101,157402 (2008).
    217. Huang, L. B. et al. Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene. Nano Lett.10,1308-1313 (2010).
    218. Y. X. Zhou, X. L. Xu, H. M. Fan, et al., Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene, Phys. Chem. Chem. Phys.,2013,15: 5084-5090.
    219. U. Keller, et al., Recent developments in compact ultrafast lasers, Nature, 2003,424:831.
    220. P. Avouris, M. Freitag, V. Perebeinos, Carbon-nanotube photonics and optoelectronics, Nature Photon.,2008,2:341-350.
    221. G T. Reed, G. Mashanovich, F. Y. Gardes, et al., Silicon optical modulators, Nature Photon., 2010,4:518-527.
    222. F. Wang, Y. B. Zhang, C. S. Tian, et al., Gate-variable Optical Transitions in Graphene, Science,2008,320:206-209.
    223. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett.2006, 97:187401.
    224. Graf, D., et al. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett.7,238-242 (2007).
    225. Hao, Y., et al. Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 6,195-200 (2010).
    226. Gupta, A., Chen, G., Joshi, P., Tadigadapa, S., Eklund, P. C. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett.6,2667-2673 (2006).
    227. Koh, Y. K., Bae, M. -H., Cahill, D. G., and Pop, E. Reliably counting atomic planes of few-layer graphene. ACS Nano,2010,5:269-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700