金纳米粒子增强光纤生物传感器重复性及特异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的十年中生物传感技术发展迅速,各种高灵敏度传感方法和器件不断涌现,然而高灵敏度也导致其易受非特异性因素干扰,从而影响了生物传感的实用化进程。本文针对双锥型光纤生物传感器的原理、制作工艺、灵敏度增强、金纳米粒子标记等技术开展了深入细致的理论和实验研究,揭示了双锥光纤无标生物传感器重复性差的内在原因,提出了可同时获得该传感器高灵敏度、重复性和特异性的方法。
     (1)通过研究微纳光纤的传导特性,特别是纳米粒子在光纤消逝场中的散射和吸收特性,建立了微纳米粒子对微纳光纤消逝场功率损耗的理论模型,证明了采用纳米光纤可实现单个金、银纳米粒子以及细菌的检测,并通过50nm的金纳米粒子的单粒子探测实验对其进行了验证;
     (2)通过系列实验和仿真分析研究,揭示了双锥型光纤无标生物传感器高灵敏度和高重复性之间的矛盾。研究表明,其高灵敏度得益于锥腰中的模式干涉,但模式干涉所引起的光纤对折射率的不规则震荡又导致了传感器的重复性较差;该发现对从根本上解决高灵敏光纤消逝场生物传感的实用化问题有重要意义;
     (3)研究了金纳米粒子对微纳光纤消逝场传感器的折射率探测及其生物探测灵敏度增强效应;相比传统光纤LSPR传感器,本文构造的金纳米粒子修饰的微纳光纤LSPR传感器,具有单模传输和表面场增强特性,对折射率灵敏度达到20A/RIU,对亲和素检出限达到1pg/mL;由于该传感器在测试范围内具有较好的线性,因此也具有较好重复性;该方法较成功地解决了光纤传感器灵敏度和重复性间的矛盾;
     (4)采用金纳米粒子标记方法对双锥型光纤生物传感器的特异性、灵敏度及重复使用特性进行了研究,实现了对癌症标志物AFP血清样品的高灵敏度检测,检出限达到2ng/mL,最小解离再生次数可达9次。
Biosensing technology has advanced rapidly and dramatically in the last decadeand various highly sensitive sensing methods and devices are constantly emerging.However, high sensitivity also makes these devices vulnerable to nonspecificinterferences, which hindered the application process for biosensors. In thisdissertation, biconical optical fiber sensors were systematically studied in the aspectof sensing mechanism, manufacturing technology, sensitive enhancement, andlabeling technique. The underlying mechanism of poor reproducibility for biconicaloptical fiber sensors was revealed and several methods to enhance the sensitivity,reproducibility and specificity were proposed.
     (1) By combining the optical guiding property of optical micro/nanofibers andthe scattering and absorbance property of nanospheres, a model for calculating theoptical losses caused by nano spheres in the evanescent field of an optical fiber wasbuilt. Theoretical calculations suggested the possibility of single particle detection forgold nanoparticles, silver nanoparticles and bacterial using optical nanofibers. Singlegold nanoparticles of40were detected using a500nm thick nanofiber in experiments,which demonstrated the reliability of the model.
     (2) The underlying contradiction between sensitivity and reproducibility wererevealed through systematically experimental and simulation studies. The study shows that the high sensitivity is mainly caused by the modes coupling and this in turncaused the poor reusability of biconical fiber biosensors. This finding is of greatimportance for promoting the application process of highly sensitive optical fiberbiosensors.
     (3) The enhanced sensitivity of optical micro/nanofiber sensors modified withgold nanoparticles for refractive index detection and biodetection was carefullystudied both theoretically and experimentally. By introducing gold nanoparticles tothe surface of optical micro/nanofibers, the sensitivity and reproducibility can begreatly improved. A RI sensitivity of20A/RIU and detection limit of1pg/mL wasarchived in the experiments.
     (4) The selectivity enchantment of using gold nanoparticles as labels for opticalmicrofiber biosensors was evaluated. This sensor utilizes both the unique opticalproperty of ultrathin optical microfibers and the strong optical absorption property ofgold nanoparticles. Bio-functionalized gold nanoparticles are used as signal amplifiersin a sandwich assay to enhance both sensitivity and selectivity. In immunoassay, AFPwas detected in bovine serum with limits of detection of2ng/mL. This biosensor canbe regenerated for9times.
引文
[1]张先恩,王志通,简浩然.生物传感器[M].1-3
    [2]张先恩,王志通,简浩然.生物传感器[M].7-8
    [3] Optical biosensors: today and tomorrow [M]. Elsevier,2008.14-15
    [4] Handbook of surface plasmon resonance [M]. Royal Society of Chemistry,2008.50-78
    [5] Wolfbeis O S. Fiber-optic chemical sensors and biosensors [J]. AnalyticalChemistry,2004,76(12):3269-3284.
    [6]孙恩杰,熊燕飞,谢浩.纳米生物学[M].1-8
    [7] Fan X, White I M, Shopova S I, et al. Sensitive optical biosensors for unlabeledtargets: A review [J]. analytica chimica acta,2008,620(1):8-26.
    [8] Mayer K M, Hafner J H. Localized surface plasmon resonance sensors [J].Chemical reviews,2011,111(6):3828-3857
    [9] Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogatebiomolecular interactions in real time on a surface [J]. Analytical Chemistry,2002,74(3):504-509.
    [10]Jensen T R, Malinsky M D, Haynes C L, et al. Nanosphere lithography: tunablelocalized surface plasmon resonance spectra of silver nanoparticles [J]. TheJournal of Physical Chemistry B,2000,104(45):10549-10556.
    [11]Mayer K M, Lee S, Liao H, et al. A label-free immunoassay based upon localizedsurface plasmon resonance of gold nanorods [J]. Acs Nano,2008,2(4):687-692.
    [12]Lin Y, Zou Y, Mo Y, et al. E-Beam patterned gold nanodot arrays on optical fibertips for localized surface plasmon resonance biochemical sensing [J]. Sensors,2010,10(10):9397-9406.
    [13]Lezec H, Thio T. Diffracted evanescent wave model for enhanced and suppressedoptical transmission through subwavelength hole arrays [J]. Optics express,2004,12(16):3629-3651.
    [14]Huang C, Ye J, Wang S, et al. Gold nanoring as a sensitive plasmonic biosensorfor on-chip DNA detection [J]. Applied Physics Letters,2012,100(17):173114-173114-4.
    [15]Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopyand sensing [J]. Annu. Rev. Phys. Chem.,2007,58:267-297.
    [16]Hoa X D, Kirk A G, Tabrizian M. Towards integrated and sensitive surfaceplasmon resonance biosensors: a review of recent progress [J]. Biosensors andBioelectronics,2007,23(2):151-160.
    [17]Haes A J, Van Duyne R P. A nanoscale optical biosensor: sensitivity andselectivity of an approach based on the localized surface plasmon resonancespectroscopy of triangular silver nanoparticles [J]. Journal of the AmericanChemical Society,2002,124(35):10596-10604.
    [18]Frank V, Stephen A. Whispering-gallery-mode biosensing: label-free detectiondown to single molecules [J]. Nature Methods,2008,5(7):591-596.
    [19]Zhu J, Ozdemir S K, Xiao Y F, et al. On-chip single nanoparticle detection andsizing by mode splitting in an ultrahigh-Q microresonator [J]. Nature Photonics,2010,4(1):46-49.
    [20]Armani A M, Kulkarni R P, Fraser S E, et al. Label-free, single-moleculedetection with optical microcavities [J]. Science,2007,317(5839):783-787.
    [21]Washburn A L, Gunn L C, Bailey R C. Label-free quantitation of a cancerbiomarker in complex media using silicon photonic microring resonators [J].Analytical chemistry,2009,81(22):9499-9506.
    [22]Biosensor Nanomaterials [M]. John Wiley&Sons,2011.70-75
    [23]Selvan S T, Tan T T Y, Yi D K, et al. Functional and multifunctional nanoparticlesfor bioimaging and biosensing [J]. Langmuir,2009,26(14):11631-11641.
    [24]Zeng S, Yong K T, Roy I, et al. A review on functionalized gold nanoparticles forbiosensing applications [J]. Plasmonics,2011,6(3):491-506.
    [25]Kawamura G, Nogami M, Matsuda A. Shape-controlled metal nanoparticles andtheir assemblies with optical functionalities [J]. Journal of Nanomaterials,2013,2013:2..
    [26]Lyon L A, Musick M D, Natan M J. Colloidal Au-enhanced surface plasmonresonance immunosensing[J]. Analytical Chemistry,1998,70(24):5177-5183.
    [27]He L, Musick M D, Nicewarner S R, et al. Colloidal Au-enhanced surfaceplasmon resonance for ultrasensitive detection of DNA hybridization [J]. Journalof the American Chemical Society,2000,122(38):9071-9077.
    [28]Law W C, Yong K T, Baev A, et al. Nanoparticle enhanced surface plasmonresonance biosensing: application of gold nanorods [J]. Optics express,2009,17(21):19041-19046.
    [29]Kwon M J, Lee J, Wark A W, et al. Nanoparticle-enhanced surface plasmonresonance detection of proteins at attomolar concentrations: comparing differentnanoparticle shapes and sizes [J]. Analytical chemistry,2012,84(3):1702-1707.
    [30] pringer T, Homola J. Biofunctionalized gold nanoparticles forSPR-biosensor-based detection of CEA in blood plasma [J]. Analytical andbioanalytical chemistry,2012,404(10):2869-2875.
    [31]Tartaj P, del Puerto Morales M, Veintemillas-Verdaguer S, et al. The preparationof magnetic nanoparticles for applications in biomedicine [J]. Journal of PhysicsD: Applied Physics,2003,36(13): R182.
    [32]Li D, Wang J, Wang R, et al. A nanobeads amplified QCM immunosensor for thedetection of avian influenza virus H5N1[J]. Biosensors and Bioelectronics,2011,26(10):4146-4154.
    [33]Zhang Y, Wang H, Yan B, et al. A reusable piezoelectric immunosensor usingantibody-adsorbed magnetic nanocomposite [J]. Journal of immunologicalmethods,2008,332(1):103-111.
    [34]Pang L L, Li J S, Jiang J H, et al. A novel detection method for DNA pointmutation using QCM based on Fe3O4/Au core/shell nanoparticle and DNA ligasereaction [J]. Sensors and Actuators B: Chemical,2007,127(2):311-316.
    [35]Teramura Y, Arima Y, Iwata H. Surface plasmon resonance-based highly sensitiveimmunosensing for brain natriuretic peptide using nanobeads for signalamplification [J]. Analytical biochemistry,2006,357(2):208-215.
    [36]Krishnan S, Mani V, Wasalathanthri D, et al. Attomolar detection of a cancerbiomarker protein in serum by surface plasmon resonance usingsuperparamagnetic particle labels [J]. Angewandte Chemie International Edition,2011,50(5):1175-1178.
    [37]Wang Y, Knoll W, Dostalek J. Bacterial pathogen surface plasmon resonancebiosensor advanced by long range surface plasmons and magnetic nanoparticleassays [J]. Analytical chemistry,2012,84(19):8345-8350.
    [38]Bailey R E, Smith A M, Nie S. Quantum dots in biology and medicine [J].Physica E: Low-dimensional Systems and Nanostructures,2004,25(1):1-12.
    [39]Zayats M, Willner I. Photoelectrochemical and optical applications ofsemiconductor quantum dots for bioanalysis [M] Biosensing for the21stCentury. Springer Berlin Heidelberg,2008:255-283.
    [40]Jokerst J V, Raamanathan A, Christodoulides N, et al. Nano-bio-chips for highperformance multiplexed protein detection: determinations of cancer biomarkersin serum and saliva using quantum dot bioconjugate labels [J]. Biosensors andBioelectronics,2009,24(12):3622-3629.
    [41]Zhang Y, Zeng Q, Sun Y, et al. Multi-targeting single fiber-optic biosensor basedon evanescent wave and quantum dots [J]. Biosensors and Bioelectronics,2010,26(1):149-154.1992Fiber-optic Chemical Sensors.
    [42]Leung A, Shankar P M, Mutharasan R. A review of fiber-optic biosensors [J].Sensors and actuators B: Chemical,2007,125(2):688-703.
    [43]Long F, He M, Zhu A N, et al. Portable optical immunosensor for highly sensitivedetection of microcystin-LR in water samples [J]. Biosensors and Bioelectronics,2009,24(8):2346-2351.
    [44]Slav k R, Homola J, tyroky J, et al. Novel spectral fiber optic sensor based onsurface plasmon resonance [J]. Sensors and Actuators B: Chemical,2001,74(1):106-111.
    [45]Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review [J].Sensors and Actuators B: Chemical,1999,54(1):3-15.
    [46]Slav k R, Homola J, tyroky J, et al. Novel spectral fiber optic sensor based onsurface plasmon resonance [J]. Sensors and Actuators B: Chemical,2001,74(1):106-111.
    [47]Cheng S F, Chau L K. Colloidal gold-modified optical fiber for chemical andbiochemical sensing [J]. Analytical chemistry,2003,75(1):16-21.
    [48]Mitsui K, Handa Y, Kajikawa K. Optical fiber affinity biosensor based onlocalized surface plasmon resonance [J]. Applied Physics Letters,2004,85(18):4231-4233.
    [49]Chau L K, Lin Y F, Cheng S F, et al. Fiber-optic chemical and biochemicalprobes based on localized surface plasmon resonance [J]. Sensors and ActuatorsB: Chemical,2006,113(1):100-105.
    [50]Hsu W T, Hsieh W H, Cheng S F, et al. Integration of fiber optic-particle plasmonresonance biosensor with microfluidic chip [J]. Analytica chimica acta,2011,697(1):75-82.
    [51]Ni W, Chen H, Kou X, et al. Optical fiber-excited surface plasmon resonancespectroscopy of single and ensemble gold nanorods [J]. The Journal of PhysicalChemistry C,2008,112(22):8105-8109.
    [52]Meriaudeau F, Downey T R, Passian A, et al. Environment effects onsurface-plasmon spectra in gold-island films potential for sensing applications [J].Applied optics,1998,37(34):8030-8037.
    [53]Chiang C Y, Hsieh M L, Huang K W, et al. Fiber-optic particle plasmonresonance sensor for detection of interleukin-1β in synovial fluids [J]. Biosensorsand Bioelectronics,2010,26(3):1036-1042.
    [54]Huang K T, Lin T J, Hsu M H. Determination of cyclic GMP concentration usinga gold nanoparticle-modified optical fiber[J]. Biosensors and Bioelectronics,2010,26(1):11-15.
    [55]Sai V V R, Kundu T, Mukherji S. Novel U-bent fiber optic probe for localizedsurface plasmon resonance based biosensor [J]. Biosensors and Bioelectronics,2009,24(9):2804-2809.
    [56]Ni W, Chen H, Kou X, et al. Optical fiber-excited surface plasmon resonancespectroscopy of single and ensemble gold nanorods [J]. The Journal of PhysicalChemistry C,2008,112(22):8105-8109.
    [57]Tu M H, Sun T, Grattan K T V. Optimization of gold-nanoparticle-based opticalfibre surface plasmon resonance (SPR)-based sensors [J]. Sensors and ActuatorsB: Chemical,2012,164(1):43-53.
    [58]Lin H Y, Huang C H, Cheng G L, et al. Tapered optical fiber sensor based onlocalized surface plasmon resonance [J]. Optics express,2012,20(19):21693-21701.
    [59]Pennington C, Jones M, Evans M, et al. Fiber optic based biosensors utilizinglong period grating (LPG) technology [C] Proceedings of SPIE-The InternationalSociety for Optical Engineering.2001,4255:53-62.
    [60]Liang W, Huang Y, Xu Y, et al. Highly sensitive fiber Bragg grating refractiveindex sensors [J]. Applied Physics Letters,2005,86(15):151122.
    [61]Iadicicco A, Campopiano S, Cutolo A, et al. Nonuniform thinned fiber Bragggratings for simultaneous refractive index and temperature measurements [J].Photonics Technology Letters, IEEE,2005,17(7):1495-1497.
    [62]Psaltis D, Quake S R, Yang C. Developing optofluidic technology through thefusion of microfluidics and optics [J]. Nature,2006,442(7101):381-386.
    [63]Guan B O, Li J, Jin L, et al. Fiber Bragg gratings in optical microfibers [J].Optical Fiber Technology,2013,19(6):793-801.
    [64]Villatoro J, Finazzi V, Badenes G, et al. Highly sensitive sensors based onphotonic crystal fiber modal interferometers [J]. Journal of Sensors,2009,2009.
    [65]Hu D J J, Lim J L, Park M K, et al. Photonic crystal fiber-based interferometricbiosensor for streptavidin and biotin detection [J]. Selected Topics in QuantumElectronics, IEEE Journal of,2012,18(4):1293-1297.
    [66]Khetani A. Photonic crystal fiber as a biosensor [J]. Ottawa, ON, Canada: Univ.Ottawa,2008.
    [67]He Z, Tian F, Zhu Y, et al. Long-period gratings in photonic crystal fiber as anoptofluidic label-free biosensor [J]. Biosensors and Bioelectronics,2011,26(12):4774-4778.
    [68]Shambat G, Kothapalli S R, Khurana A, et al. A photonic crystal cavity-opticalfiber tip nanoparticle sensor for biomedical applications [J]. Applied PhysicsLetters,2012,100(21):213702.
    [69]US D, Fu C Y, Soh K S, et al. Highly sensitive SERS detection of cancer proteinsin low sample volume using hollow core photonic crystal fiber [J]. Biosensorsand Bioelectronics,2012,33(1):293-298.
    [70]Lamont R G, Hill K O, Johnson D C. Tuned-port twin biconical-taper fibersplitters: fabrication from dissimilar low-mode-number fibers [J]. Optics letters,1985,10(1):46-48.
    [71]Cassidy D T, Johnson D C, Hill K O. Wavelength-dependent transmission ofmonomode optical fiber tapers [J]. Applied optics,1985,24(7):945-950.
    [72]Snyder A. Surface mode coupling along a tapered dielectric rod [J]. Antennas andPropagation, IEEE Transactions on,1965,13(5):821-822.
    [73]Black R J, Lacroix S, Gonthier F, et al. Tapered single-mode fibres and devices.Part2: experimental and theoretical quantification [J]. IEE Proceedings J(Optoelectronics),1991,138(5):355-364.
    [74]Falciai R, Scheggi A M. Biconical fibers as mode and wavelength filters [J].Applied optics,1989,28(7):1309-1311.
    [75]Lloyd C. Bobb, P. M. Shankar, and Howard D. Krumboltz. Bending effects inbiconically tapered single-mode fibers [J]. J. Lightwave Technol.,1990,8(7):1084-1090.
    [76]L. C. Bobb, H. D. Krumboltz, and P. M. Shankar. Pressure sensor that uses bentbiconically tapered single-mode fibers [J]. Opt. Lett.,1991,16(2):112-114.
    [77]Love J D, Henry W M, Stewart W J, et al. Tapered single-mode fibres anddevices. Part1: Adiabaticity criteria [J]. IEE Proceedings J (Optoelectronics),1991,138(5):343-354.
    [78]Villatoro J, Monzón-Hernández D, Luna-Moreno D. In-line optical fiber sensorsbased on cladded multimode tapered fibers [J]. Applied optics,2004,43(32):5933-5938.
    [79]Kieu K Q, Mansuripur M. Biconical fiber taper sensors [J]. IEEE PhotonicsTechnology Letters,2006,18(21/24):2239.
    [80]G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A.Cardenas-Sevilla, and J. Villatoro. Optical microfiber mode interferometer fortemperature-independent refractometric sensing [J]. Opt. Lett.,2012,37(11):1974-1976.
    [81]Leung A, Shankar P M, Mutharasan R. Real-time monitoring of bovine serumalbumin at femtogram/mL levels on antibody-immobilized tapered fibers [J].Sensors and Actuators B: Chemical,2007,123(2):888-895..
    [82]Hong S. Haddock, P. M. Shankar, and R. Mutharasan. Evanescent sensing ofbiomolecules and cells [J]. Sens. Actuators B,2003,88:67-74.
    [83]Angela Leung, P. Mohana Shankar, and Raj Mutharasan. Model protein detectionusing antibody-immobilized tapered fiber optic biosensors (TFOBS) in a flowcell at1310nm and1550nm [J]. Sens. Actuators B,2008,129:716-725.
    [84]Kishan Rijal, Angela Leung, P. Mohana Shankar, and Raj Mutharasan. Detectionof pathogen Escherichia coli0157:H7at7cells/mL using antibody-immobilizedbioconical tapered fiber sensors [J]. Biosens. Bioelectron.,2005,21:871-880.
    [85]Angela Leung, Kishan Rijal, P. M. Shankar, and R. Mutharasan. Effects ofgeometry on transmission and sensing potential of tapered fiber sensors [J].Biosens. Bioelectron.,2006,21:2202-2210.
    [86]Dhruv H D. Controlling Nonspecific Adsorption of Proteins at Bio-Interfaces forBiosensor and Biomedical Applications [J].2009.
    [87]Chiang C Y, Hsieh M L, Huang K W, et al. Fiber-optic particle plasmonresonance sensor for detection of interleukin-1β in synovial fluids [J]. Biosensorsand Bioelectronics,2010,26(3):1036-1042.
    [88]Hsieh B Y, Chang Y F, Ng M Y, et al. Localized surface plasmon coupledfluorescence fiber-optic biosensor with gold nanoparticles [J]. Analyticalchemistry,2007,79(9):3487-3493.
    [89]庄须叶.高灵敏度光纤消逝场传感器制作方法的研究[D]:[博士学位论文].北京:中国科学院研究生院,2009.
    [90]刘桂根.光纤生物传感的动态范围及灵敏度增强效应研究[D].中国科学院研究生院(长春光学精密机械与物理研究所),2013.
    [91]李玉权,崔敏.光波导理论与技术[M].北京:人民邮电出版社,2002.
    [92]Wiedemann U. Control of photochromic molecules adsorbed to opticalmicrofibers [D]. Bonn, Rheinische Friedrich-Wilhelms-Universit t Bonn, Diss.,2011,2012.
    [93]Gloge D. Weakly guiding fibers [J]. Applied Optics,1971,10(10):2252-2258.
    [94]Tong L, Gattass R R, Ashcom J B, et al. Subwavelength-diameter silica wires forlow-loss optical wave guiding [J]. Nature,2003,426(6968):816-819.
    [95]Handbook of infrared optical materials [M]. CRC Press,1991.
    [96]Schiebener P, Straub J, Levelt Sengers J M H, et al. Erratum: Refractive index ofwater and steam as function of wavelength, temperature and density [J]. Journalof Physical and Chemical Reference Data,1990,19:1617.
    [97]邓小红.光纤消逝波吸收传感器的参数设计与分析[D].中国科学院研究生院(长春光学精密机械与物理研究所),2005.
    [98]Chremmos I D, Uzunoglu N K. Integral equation analysis of scattering by aspherical microparticle coupled to a subwavelength-diameter wire waveguide [J].JOSA A,2006,23(2):461-467.
    [99]Wang S, Pan X, Tong L. Modeling of nanoparticle-induced Rayleigh–Gansscattering for nanofiber optical sensing [J]. Optics communications,2007,276(2):293-297.
    [100] Liu G, Wu Y, Li K, et al. Mie scattering-enhanced fiber-optic refractometer[J]. Photonics Technology Letters, IEEE,2012,24(8):658-660.
    [101] C. F. Bohren and D. R. Huffman. Absorption and scattering of light by smallparticles [M]. New York: John wiley&sons,1983.
    [102] Johnson P B, Christy R W. Optical constants of the noble metals [J]. PhysicalReview B,1972,6(12):4370.
    [103] Hutter E, Fendler J H, Roy D. Surface plasmon resonance studies of gold andsilver nanoparticles linked to gold and silver substrates by2-aminoethanethioland1,6-hexanedithiol [J]. The Journal of Physical Chemistry B,2001,105(45):11159-11168.
    [104] Block O, Mitra A, Novotny L, et al. A rapid label-free method forquantitation of human immunodeficiency virus type-1particles bynanospectroscopy [J]. Journal of virological methods,2012,182(1):70-75.
    [105] Enoki S, Iino R, Morone N, et al. Label-Free Single-Particle Imaging of theInfluenza Virus by Objective-Type Total Internal Reflection Dark-FieldMicroscopy [J]. PloS one,2012,7(11): e49208.
    [106] Balaev A E, Dvoretski K N, Doubrovski V A. Determination of refractiveindex of rod-shaped bacteria from spectral extinction measurements [C] SaratovFall Meeting2002: Optical Technologies in Biophysics and Medicine IV.International Society for Optics and Photonics,2003:375-380.
    [107] Balaev A E, Dvoretski K N, Doubrovski V A. Refractive index of Escherichiacoli cells[C] Saratov Fall Meeting2001. International Society for Optics andPhotonics,2002:253-260.
    [108] Liu Y, Chin L K, Ser W, et al. A SINGLE LIVING BACTERIUM’SREFRACTIVE INDEX MEASUREMENT BY USING OPTOFLUIDICIMMERSION REFRACTOMETRY [J].
    [109] Grazia A, Riccardo M, Ciaccheri F L. Evanescent wave absorptionspectroscopy by means of bi-tapered multimode optical fibers [J]. Appliedspectroscopy,1998,52(4):546-551.
    [110] M. Malmsten, Ellipsometry studies of the effects of surface hydrophobicityon protein adsorption [J]. Colloids Surf. B: Biointerfaces,1995,3; p.297-308.
    [111] Haiss W, Thanh N T K, Aveyard J, et al. Determination of size andconcentration of gold nanoparticles from UV-vis spectra [J]. Analytical chemistry,2007,79(11):4215-4221.
    [112] Hermanson G T. Bioconjugate techniques[M]. Academic press,2013.7-9
    [113] Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scatteringproperties of gold nanoparticles of different size, shape, and composition:applications in biological imaging and biomedicine [J]. The Journal of PhysicalChemistry B,2006,110(14):7238-7248.
    [114]殷正丰.甲胎蛋白异质体作为肝癌标志物的临床应用[J].实用肿瘤杂志,2004,19(1):1-4.
    [115] Kandimalla V B, Neeta N S, Karanth N G, et al. Regeneration of ethylparathion antibodies for repeated use in immunosensor: a study on dissociation ofantigens from antibodies[J]. Biosensors and Bioelectronics,2004,20(4):903-906.
    [116] He L. Whispering Gallery Mode Microresonators for Lasing and SingleNanoparticle Detection [M].2012.
    [117] Zhu J, Ozdemir S K, Yang L. Optical Detection of Single Nanoparticles Witha Subwavelength Fiber-Taper [J]. Photonics Technology Letters, IEEE,2011,23(18):1346-1348.
    [118] Wei Z, Song Z, Zhang X, et al. Microparticle Detection With OpticalMicrofibers[J]. IEEE Photonics Technology Letters,2013,25:568-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700