基于倏逝场特性的微纳光纤器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与电子器件相似,微型化也是光子器件的发展趋势之一。微纳光子器件通过在波长和亚波长尺度上对光的操控,实现各种各样的功能。微纳光波导是微纳光子器件的基本结构单元,是目前光子学领域的研究热点之一。微纳光纤是一种典型的微纳光波导,因制备简单、损耗低而受到越来越多的关注。
     微纳光纤的突出特点之一是周围的倏逝场可以很强,本文首先研究了微纳光纤的模场特性。本文用氧化硅徼纳光纤模场的解析解,在线偏振和圆偏振输入光情况下分别讨论了微纳光纤内部及周围的电场和能量的分布,以及氧化硅微纳光纤的色散特性。两根微纳光纤通过倏逝波耦合可形成微型耦合器,这是研制微纳光纤器件非常有用的一个特性。文中用微扰理论模型从物理上探讨了微纳光纤间的倏逝波耦合机理,并通过3D-FDTD方法用数值计算实例分析了微纳光纤倏逝波耦合器的特性。
     本文的工作以氧化硅微纳光纤和玻璃微纳光纤的制备方法为基础,研究重点为基于倏逝场的微纳光纤器件,包括共振型和干涉型两种。共振型器件以微纳光纤结型谐振腔和环形激光器为代表,其中对微纳光纤环形激光器的理论建模分析是共振型器件的重点内容。基于耦合区的耦合波方程和激光工作物质的速率方程,文中给出了三能级系统和四能级系统的激射条件、阈值泵浦功率和量子效率的解析表达式。研究表明,若能实现泵浦光的谐振,则能大大降低泵浦的阈值功率,增加泵浦吸收,从而增加激光器的量子效率。此外,还研究了泵浦光谐振时的耦合损耗和微环直径对泵浦闽值和量子效率的影响。研究发现,采用大吸收截面和高掺杂材料制作微纳光纤环形激光器,可以实现直径约几十微米的低阈值、高效率的微型激光器。这些理论分析对微纳光纤环形激光器和其他微激光器的制作和特性分析具有一定的指导意义。
     在干涉型器件部分,详细研究了基于微纳光纤耦合器的微型Mach-Zehnder干涉仪的实验制作过程和光学特性表征。通过在光学显微镜下的微纳操作,我们可以方便地在低折射率衬底上制作不同分束比的耦合器。基于3 dB耦合器,可以方便的制作氧化硅和玻璃微纳光纤Mach-Zehnder干涉仪,器件尺寸在几十微米到几百微米。通过仔细调节耦合器的长度,干涉对比度可以达到10 dB,通过微纳操作,还可以自由调节干涉仪两臂的程差,从而改变干涉仪的自由光谱区。制作方便、结构紧凑,程差可调,且便于与光纤系统相连,这些特性使得微纳光纤Mach-zehnder干涉仪有可能用在传感器,光调制器等微光子学器件中。
Similar to their electronic counterparts, photonic devices also show the trend for miniaturization. Micro- or nanophotonic devices, which manipulate light on the wavelength or subwavelength scale, demonstrate various impressive functions. Micro-or nanoscale waveguides are one of the fundamental building blocks for micro- or nanophotonic devices, and are hot topics in current photonics research. Being one of the typical micro or nanoscale waveguides, micro- or nanofiber (MNF), featured with simple fabrication and low loss, is attracting more and more attentions.
     One of the outstanding properties of MNFs is their possibilities to offer high fraction of evanescent fields. In the thesis, we first investigate the mode field properties of MNFs. Using analytical expressions of the mode fields of silica MNFs, we study the electric field and energy distribution, both inside and outside the silica MNFs with linear and circular polarization. Besides, we also investigate the diameter-dependent waveguide dispersions in MNFs.
     Two MNFs can form a micro coupler by means of side-by-side evanescent coupling, which is very helpful for building MNF devices. The mechanism of evanescent coupling of MNFs are investigated using perturbation model, and the behavior of an evanescent coupler is numerically investigated using a 3D-FDTD method.
     Started with the taper-drawing fabrication of MNFs from silica fibers and bulk glasses, the thesis puts its emphasis on resonance and interference MNF devices based on evanescent coupling. In resonance devices, MNF knot resonators and microring lasers are investigated. The main efforts are made on the theoretical modeling of MNF ring lasers, which is based on ring resonator equations at the coupling region and rate equations for active materials. Analytical expressions are given for lasing condition, pump threshold and quantum efficiency for three-level and four-level transitions in Er~(3+) and Yb~(3+) doped glasses. It shows that pump resonance can significantly reduce the threshold, increase the pump absorption, and thus greatly increase the quantum efficiency. Besides, we also study the effect of the coupling loss and the ring size at the pump resonance. It is found that highly doped MNFs with large absorption cross sections will facilitate low-threshold, high quantum efficiency microring lasers with ring diameters down to tens of micrometers. These results may offer valuable reference to the realization of MNF-based ring lasers or other kind of microlasers.
     In the section of interference MNF devices, we present the fabrication and optical characterization of MNF Mach-Zehnder interferometers in detail. By means of micromanipulation under an optical microscope, miniature MNF couplers with different splitting ratios can be easily constructed. Based on two MNF couplers, silica and glass MNF Mach-Zehnder interferometers are assembled, with typical dimensions of tens to hundreds of micrometers. The extinction ratio can reach 10 dB by finely adjusting the coupler length. Besides, the path-length differences can be tuned by micromanipulation, and thus the free spectrum range can be easily adjusted. By virtue of its easy fabrication, compact size, tunability and convenient integration with fiber system, MNF Mach-Zehnder interferometers are promising to find applications in sensors, optical modulators and other miniature photonic devices.
引文
1. P. Kirchain and L. Kimerling, "A roadmap for nanophotonics," Nature Photon. 1, 303-305 (2007).
    
    2. K. K. Lee, D. R. Lim, and L. C. Kimerling, "Fabrication of Si/SiO waveguide by roughness reduction," Opt. Lett., 26, 1888-1890 (2001).
    
    3. S. L. Lin, E. Chow, V. Hietala,, P. R. Villeneuve, and J. D. Joannopoulos,"Experimental Demonstration of Guiding and Bending of electromagnetic Waves in a Photonic Crystal," Science 282, 274-276 (1998).
    
    4. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311,189-193 (2006).
    
    5. D. J. Sirbuly, M. Law, H. Yan, and P. Yang "Semiconductor nanowires for subwavelength photonics integration," J. Phys. Chem. B 109, 15190-15213(2005).
    
    6. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21,1729-1731 (1996).
    
    7. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell,and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    
    8. E. C. Magi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J.Eggleton, "Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Express 15, 10324-10329 (2007).
    
    9. C. V. Boys, "On the production, properties, and some suggested uses of the finest threads," Phil. Mag. 23,489-499 (1887).
    
    10. R. B. Dyott and G A. Clark, "Improvements in or relating to the coupling of optical waveguides," US patent 3579316 (1967).
    
    11. T. A. Birks and Y. W. Li, "The shape of fiber tapers," IEEE J. Lightwave Technol. 10,432-438 (1992).
    
    12. K. K. Caswell, Christopher M. Bender, and Catherine J. Murphy "Seedless,surfactantless eet chemical synthesis of silver nanowires," Nano Lett. 3,667-669 (2003).
    
    13. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, "Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires," J. Am. Chem.Soc. 124,1817-1822(2002).
    
    14. Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout, "Silica nanotubes and nanofiber arrays," Adv. Mater. 12, 1938-1940 (2000).
    
    15. L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
    
    16. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye,"Photonic nanowires directly drawn from bulk glasses," Optics Express 14,82-87 (2006).
    
    17. G. Brambilla, V. Finazzi, and D. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004).
    
    18. G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41,400-402, (2005).
    
    19. A. M. Clohessy, N. Healy, D. F. Murphy and C. D. Hussey, "Short low-loss nanowire tapers on single mode fibres," Electron. Lett. 41,27-29 (2005).
    
    20. G. Brambilla, F. Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterization," Electron. Lett. 42,517-519(2006).
    
    21. J. M. Ward, D. G. O'Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G.N. Chormaic, "Heat-and-pull rig for fiber taper fabrication," Rev. Sci.Instrum. 77,083105(2006).
    
    22. L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, "Fabrication of submicron-diameter silica fibers using electric strip heater," Opt. Express 14,5055-5060 (2006).
    
    23. E. C. C. M. Silva, L. Tong, S. Yip, and K. J. V. Vliet, "Size effects on the stiffness of silica nanowires," Small 2,239-243 (2006).
    
    24. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason,"Supercontinuum generation in submicron fibre waveguides," Opt. Express 12,2864-2869 (2004).
    
    25. M. Sumetsky, "Radiation loss of a nanotaper: singular Gaussian beam model," Opt. Express 15,1480-1490 (2007).
    
    26. G. Zhai and L. Tong, "Roughness-induced radiation losses in optical micro or nanofibers," Opt. Express 15,13805-13816 (2007).
    
    27. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and J. W. Nicholson,"Probing optical microfiber nonuniformities at nanoscale," Opt. Lett. 31,2393-2395 (2006).
    
    28. M. Sumetsky, "How thin can a microfiber be and still guide light?" Opt.Lett. 31,870-872(2006).
    
    29. H. W. Chen, J. Y. Lu, L. J. Chen, Y. T. Li, C. L. Pan, and C. K. Sun,"Investigation on spectral loss characteristics of subwavelength THz fibers," Opt. Lett. 32, 1017-1019 (2007).
    
    30. M. Sumetsky, Y. Dulashko, P. Domachuk, and B. J. Eggleton, "Thinnest optical waveguide: experimental test," Opt. Lett. 32, 754-756 (2007).
    
    31. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12,1025-1035 (2004).
    
    32. V. I. Balykin, K. Hakuta, F. L. Kien, J. Q. Liang, and M. Morinaga, "Atom trapping and guiding with a subwavelength-diameter optical fiber," Phys.Rev.A70,011401 (2004).
    
    33. F. L. Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004).
    
    34. F. L. Kien, J. Q. Liang, K. Hakuta, and J. I. Balykin, "Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber," Opt. Commun. 242,445-455 (2004).
    
    35. A. M. Zheltikov, "Birefringence of guided modes in photonic wires: Gaussian-mode analysis," Opt. Commun. 252, 78-83 (2005).
    
    36. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M.V.Alfimov, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu.N. Kondrat'ev, and A. M. Zheltikov, "High-order modes of photonic wires excited by the Cherenkov emission of solitons," Laser Phys. Lett. 2,258-261 (2005).
    
    37. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78,1135-1184 (2006).
    
    38. J. Lou, L. Tong, and Z. Ye, "Dispersion shifts in optical nanowires with thin dielectric coatings," Opt. Express 14, 6993-6998 (2006).
    
    39. S. Wang, X. Pan, and L. Tong, "Modeling of nanoparticle induced Rayleigh-Gans scattering for nanofiber optical sensing," Opt.Commun. 276,293-297 (2007).
    
    40. I. D. Chremmos and N. K. Uzunoglu, "Integral equation analysis of scattering by a spherical microparticle coupled to a subwavelength-diameter wire waveguide," J. Opt. Soc. Am. A 23,461-467 (2006).
    
    41. Fam Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of cesium atom near a subwavelength-diameter fiber," Phys. Rev.A72,032509 (2005).
    
    42. Fam Le Kien, V. I. Balykin, and K. Hakuta, "Scattering of an evanescent light field by a single cesium atom near a nanofiber," Phys. Rev. A 73,013819(2006).
    
    43. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett. 86, 151122(2005).
    
    44. C. J. Barrelet, J. Bao, M. Lon(?)ar, H. Park, F. Capasso, and Charles M.Lieber, "Hybrid single-nanowire Photonic Crystal and microresonator structures," Nano Lett., 6,11 -15 (2006).
    
    45. V. Grubsky, and J. Feinberg, "Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber," Opt. Commun. 274,447-450 (2007).
    
    46. P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P. G. J. Wigley,and G. I. Stegeman, "Enhanced self-phase modulation in tapered fibers,"Opt. Lett. 18,1996-(1993).
    
    47. M. Foster, A. Gaeta, Q. Cao, and R. Trebino, "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires," Opt.Express 13, 6848-6855 (2005).
    
    48. John M. Dudley and Stephane Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
    
    49. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    
    50. J. M. Harbold, F. O. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, "Long-wavelength continuum generation about the second dispersion zero of a tapered fiber," Opt. Lett. 27,1558-1560 (2002).
    
    51. A. Zheltikov, "Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlinearity of optical fibers and photonic wires," J. Opt. Soc. Am. B 22,1100-1104(2005).
    
    52. M. Foster, K. Moll, and A. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12,2880-2887 (2004).
    
    53. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C.Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88,173901 (2002).
    
    54. A. V. Husakouj and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett.87,203901(2001).
    
    55. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J.Wadsworth, and P. S. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19,753-764 (2002).
    
    56. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D.Moss, and B. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Opt. Express 14,1070-1078 (2006).
    
    57. F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes," Phys. Rev. A 72, 032509 (2005).
    
    58. F. L. Kien, S. D. Gupta, K. P. Nayak, and K. Hakuta, "Nanofiber-mediateed radiative transfer between two distant atoms," Phys. Rev. A 72 063815(2005).
    
    59. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, "Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence," Opt. Express 15, 5431-5438 (2007).
    
    60. D. E. Chang,1 A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, "Quantum optics with surface plasmon," Phys. Rev. Lett. 97, 053002 (2006).
    
    61. Ziyang Zhang, Min Qiu, Ulf Andersson, and Limin Tong,"Subwavelength-diameter silica wire for light in-coupling to silicon-based waveguide," Chin. Opt. Lett. 5, 577-579 (2007).
    
    62. C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S.Frederick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers and R. L. Williams,"Nanowire coupling to photonic crystal nanocavities for single photon sources," Opt. Express 15,1267-1276 (2007).
    
    63. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation o f whispering gallery mode resonances using a fiber taper," Opt.Lett. 22,1129-1131(1997).
    
    64. M. Cai and K. Vahala, "Highly efficient hybrid fiber taper coupled microsphere laser," Opt. Lett. 26, 884-886 (2001).
    65. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur,"Assembly of Silica Nanowires on Silica Aerogels for Microphotonic Devices," Nano Lett. 5,259-262 (2005).
    
    66. K. Huang, S. Yang, and L. Tong, "Modeling of evanescent coupling between two parallel optical nanowires," Appl. Opt. 46,1429-1434 (2007).
    
    67. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett. 86,161108 (2005).
    
    68. X. Guo, Y. Li, X. Jiang, and L. Tong, "Demonstration of critical coupling in microfiber loops wrapped around a copper rod," Appl. Phys. Lett. 91,073512(2007).
    
    69. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Di Giovanni, "The microfiber loop resonator: theory, experiment, and application," IEEE J.Lightwave Technol. 24,242-250 (2006).
    
    70. X. Jiang, L. Tong, G. Vienne, and Xin Guo, "Demonstration of optical microfiber knot resonators," Appl. Phys. Lett. 88, 223501 (2006).
    
    71. Guillaume Vienne, Yuhang Li, and Limin Tong, "Effect of Host Polymer on Microfiber Resonator," IEEE Photon. Technol. Lett. 19, 1386-1388 (2007).
    
    72. M. Sumetsky, "Optical fiber microcoil resonators," Opt. Express 12,2303-2316(2004).
    
    73. M. Sumetsky, "Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation," Opt. Express 13,4331-4340(2005).
    
    74. F. Xu, P. Horak, and G. Brambilla, "Optical microfiber coil resonator refractometric sensor," Opt. Express 15, 7888-7893 (2007).
    
    75. X. Jiang, Y. Chen, G. Vienne, and L. Tong, "All-fiber add-drop filters based on microfiber knot resonators," Opt. Lett. 32, 1710-1712 (2007).
    
    76. X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu,"Demonstration of microfiber knot laser," Appl. Phys. Lett 89, 143513(2006).
    
    77. X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501(2007).
    
    78. M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004).
    
    79. Y. Li and L. Tong, "Mach-Zehnder interferometers assembled with optical microfibers or nanofibers," Opt. Lett. 33, 303-305 (2008).
    
    80. J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).
    
    81. J. Villatoro and D. Monzon-Hernandez, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 13,5087-5092 (2005).
    
    82. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur,"Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels," Opt. Lett. 30,1273-1275 (2005).
    
    83. S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia "Fiber-optic evanescent field modulator using a magnetic fluid as the cladding," J. Appl.Phys. 99,093516 (2006).
    
    84. S. Pu, X. Chen, Z. Di, and Y. Xia, "Relaxation property of the magnetic-fluid-based fiber-optic evanescent field modulator," J. Appl. Phys.101,053532(2007).
    
    85. G. Sague, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel,"Cold-Atom Physics Using Ultrathin Optical Fibers: Light-Induced Dipole Forces and Surface Interactions," Phys. Rev. Lett. 99,163602 (2007).
    1. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall,New York, 1983).
    
    2. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
    
    3. F. L. Kien, J. Q. Liang, K. HaKuta, and V. I. Balykin, "Field intensity distributions and polarization orientations in a vacuum subwavelength-diameter optical fiber," Opt. Commu. 242,445-455 (2004).
    
    4. C. Manolatou, S. G Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D.Joannopoulos, "High-density integrated optics, " J. Lightwave Technol. 17,1682-1692 (1999).
    
    5. G. Vienne, P. Grelu, X. Pan, Y. Li, and L Tong, "Theoretical study of microfiber resonator devices exploiting a phase shift," J. Opt. A: Pure Appl.Opt. 10, 025303 (2008).
    
    6. F. L. Kien, V. I. Balykin, and K. Hakuta, "Angular momentum of light in an optical fiber," Phy. Rev. A. 73, 053823 (2006).
    
    7. M. Foster, A. Gaeta, Q. Cao, and R. Trebino, "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires," Opt.Express 13, 6848-6855 (2005).
    
    8. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J.Wadsworth, and P. S. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002).
    
    9. V. Grubsky and J. Feinberg, "Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber," Opt. Commun. 274,447-450 (2007)
    
    10. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    
    11. J. M. Harbold, F. O. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, "Long-wavelength continuum generation about the second dispersion zero of a tapered fiber," Opt. Lett. 27, 1558-1560 (2002).P. P.Bishnu, Fundamentals of Fibre Optics in Telecommunication and Sensor Systems (John Wiley &Sons, New York, NY 1993).
    
    12. L. F. Mollenauer, "Nonlinear optics in fibers," Science 302, 996-997 (2003).
    
    13. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell,and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    
    14. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur,"Assembly of Silica Nanowires on Silica Aerogels for Microphotonic Devices," Nano Lett. 5, 259-262 (2005).
    
    15. X. Jiang, L. Tong, G. Vienne, and X. Guo, "Demonstration of optical microfiber knot resonators," Appl. Phys. Lett. 88,223501 (2006).
    16.X.Jiang,Q.Yang,G.Vienne,Y.Li,L.Tong,J.Zhang,and L.Hu,"Demonstration of microfiber knot laser," Appl.Phys.Lett 89,143513(2006).
    17.X.Jiang,Y.Chen,G.Vienne,and L.Tong,"All-fiber add-drop filters based on mierofiber knot resonators," Opt.Lett.32,1710-1712(2007).
    18.Y.Li and L.Tong,"Mach-Zehnder interferometers assembled with optical microfibers or nanofibers," Opt.Lett.33,303-305(2005).
    19.A.W.Snyder and W.R.Young,"Modes of optical waveguides," J.Opt.Soc.A 68 297-309(1975).
    20.A.Ankiewicz,A.W.Snyder,and X.H.Zheng,"Coupling between parallel optical fiber cores-Critical examination," IEEE J.Lightwave Technol.4,1317-1323(1986).
    21.J.D.Love and A.Ankiewicz,"Cutoff in single-mode optical fibre couplers," Electron.Lett.20,362-363(1984).
    22.K.Huang,S.Yang,and L.Tong,"Modeling of evanescent coupling between two parallel optical nanowires," Appl.Opt.46,1429-1434(2007).
    1. K. K. Lee, D. R. Lim, and L. C. Kimerling, "Fabrication of Si/SiO waveguide by roughness reduction," Opt. Lett., 26,1888-1890 (2001)
    
    2. S. L. Lin, E. Chow, V. Hietala,, P. R. Villeneuve, and J. D. Joannopoulos,"Experimental demonstration of guiding and bending of electromagnetic waves in a Photonic Crystal," Science 282, 274-276 (1998)
    
    3. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311,189-193 (2006)
    
    4. D. J. Sirbuly, M. Law, H. Yan, and P. Yang "Semiconductor nanowires for subwavelength photonics integration," J. Phys. Chem. B 109, 15190-15213(2005)
    
    5. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell,and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding", Nature 426, 816-819(2003)
    
    6. J. Hecht, "A new nano-twist for unclad optical fibers," Opt. Photon. News April, 21-23 (2004)
    
    7. G. Brambilla, "Optical fibers go nano," Laser Focus World, Oct. 85-88(2007)
    
    8. Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout, "Silica nanotubes and nanofiber arrays," Adv. Mater. 12,1938-1940 (2000)
    
    9. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, "Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires," J. Am. Chem.Soc. 124, 1817-1822(2002)
    
    10. J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, "Fabrication of germanium-filled silicananotubes and aligned silica nanofibers," Adv. Mater.15, 70-73 (2003).
    
    11. A. M. Morales and C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowire," Science 279, 208-211 (1998)
    
    12. Y. Xia, J. A. Rogers, K. E. Paul, and G M. Whitesides, "Unconventional methods for fabricating and patterning nanostructures," Chem Rev. 99,1823-1848 (1999).
    
    13. T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406,1027-1031 (2000).
    
    14. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "F.Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,"Opt. Lett. 26,1888-1890 (2001)
    
    15. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi,"Guiding of a one-dimensional optical beam with nanometer diameter," Opt.Lett. 22,475-477 (1997).
    
    16. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polarization modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81,1714-1716(2002).
    17. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A.G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,"Nature Mater. 2,229-232 (2003).
    
    18. G Brambilla, V. Finazzi, and D. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12,2258-2263 (2004).
    
    19. J. M. Ward, D. G. O'Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G.N. Chormaic, "Heat-and-pull rig for fiber taper fabrication," Rev. Sci.Instrum. 77,083105(2006).
    
    20. L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, "Fabrication of submicron-diameter silica fibers using electric strip heater," Opt. Express 14,5055-5060 (2006).
    
    21. L. Tong, J. Lou, Z. Ye, G. T. Svacha, E. Mazur, "Self-modulated taper drawing of silica nanowires", Nanotechnology 16, 1445-1448 (2005).
    
    22. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye,"Photonic nanowires directly drawn from bulk glasses," Optics Express 14,82-87 (2006)
    1. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
    
    2. B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, "Filter synthesis for periodically coupled microring resonators," Opt. Lett. 25, 344-346 (2000).
    
    3. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala,"Label-Free, Single-Molecule Detection with Optical Microcavities,"Science 317, 783-787 (2007).
    
    4. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultralow-threshold Raman laser using a spherical dielectric microcavity," Nature 415, 621-623(2002).
    
    5. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.T. Ho,"Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Select. Top. Quant. Electron. 8, 705-713 (2002).
    
    6. M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83,2739-2741 (2003).
    
    7. J. R. Tischler, M. S. Bradley, and V. Bulovic, "Strong Coupling in a Microcavity LED," Phys. Rev. Lett. 95, 036401 (2005).
    
    8. A. Mundt, B. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler,and R. Blatt, "Coupling a single atomic quantum bit to a high finesse optical cavity," Physical Review Letters 89, 103001 (2002).
    
    9. T. Yoshie, A. Scherer, J. Hendrickson, G Khitrova, H. M. Gibbs, G. Rupper,C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203(2004).
    
    10. M. Bienert, J. M. Torres, S. Zippilli, and G Morigi , "Resonance fluorescence of a cold atom in a high-finesse resonator," Phys. Rev. A 76,013410(2007).
    
    11. E. Udd, Fiber Optic Sensors (Wiley, New York, 1991).
    
    12. C. K. Madsen, and J. H. Zhao, Optical filter design and analysis: A signal processing approach (Wiley, New York, 1999).
    
    13. P. Hariharan, Opital Interferometry, 2nd ed. (Academic, New York, 2003).
    
    14. F. Vollmer, D. Braun, A. Libchaber, S. M. Khoshsima, I. Teraoka, and S.Arnold, "Protein detection by optical shift of a resonant microcavity," Appl.Phys. Lett. 80,4057-4059 (2002).
    
    15. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus,and E. P. Ippen, "Ultra-compact Si-SiO_2 microring resonator optical channel dropping filters," IEEE Photonics Tech. Lett. 10, 549-551 (1998).
    
    16. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl,"Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
    
    17. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, "Fiber-coupled microsphere laser," Opt. Lett. 25, 1430-1432 (2000).
    18. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan,"Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291(1992).
    
    19. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg and K. J. Vahala,"Ultralow-threshold erbium-implanted toroidal microlaser on silicon," Appl.Phys. Lett. 84,1037-1039 (2004).
    
    20. C. Caspar and E. J. Bachus, "Fiber-optic micro-ring-resonator with 2 mm diameter," Electron. Lett. 25,1506-1508 (1989)
    
    21. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microflber loop resonator," Appl. Phys. Lett. 86,161108 (2005).
    
    22. M. Sumetsky, "Optical fiber microcoil resonator," Opt. Express 12,2303-2316(2004).
    
    23. X. Jiang, L. Tong, G. Vienne, and X. Guo, "Demonstration of optical microflber knot resonators," Appl. Phys. Lett. 88,223501 (2006).
    
    24. G. Vienne, Y. Li, and L. Tong, "Microfiber knot resonator in polymer matrix," (Invited) IEICE Trans. Electron. E90-C, 415-421 (2007).
    
    25. G. Vienne, Y. Li, and L. Tong, "Effect of host polymer on microfiber resonator," IEEE Photon. Technol. Lett. 19, 1386-1388 (2007).
    
    26. X. Jiang, Q. Yang, G Vienne, Y. Li, L. Tong, J. Zhang and L. Hu,"Demonstration of microfiber knot laser," Appl. Phys. Lett. 89, 143513(2006).
    
    27. K. Hsu, C. M. Miller, J. T. Kringlebotn, and D. N. Payne, "Continuous and discrete wavelength tuning in Er: Yb fiber Fabry-Perot lasers," Opt. Lett. 20,377-379 (1995).
    
    28. L. F. Stokes, M. Chodorow, and H. J. Shaw, "All-single-mode fiber resonator," Opt. Lett. 7, 288-290 (1982).
    
    29. M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microshpere whisper-gallery mode system," Phys. Rev.Lett. 85, 74-77 (2000).
    
    30. Y. Li, G. Vienne, X. Jiang, X. Pan, X. Liu, P. Gu, and L. Tong, "Modeling rare-earth doped microfiber ring lasers," Opt. Express 14, 7073-7086(2006).
    
    31. A. E.Siegman, Laser (Mill Valley, California, 1986).
    
    32. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12,1025-1035 (2004).
    
    33. B. E. A. Saleh, and M. C. Teich, Fundamental of photonics (John Wiley &Sons, New York, 1991).
    
    34. E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, New York, 1994).
    
    35. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous- wave output power," Opt. Express 12,6088-6092 (2004).
    
    36. G. G. Vienne, W. S. Brocklesby, R. S. Brown, J. E. Caplen, Z. J. Chen, Z. E.Harutjunian, J. D. Minelly, J. E. Roman, D. N. Payne, "Role of aluminum in Er~(3+):Yb3+ codoped aluminiphosphosilicate optical fibres," Opt.Fiber Technol.2,387-393(1996).
    37.W.L.Barnes,R.L.Laming,E.J.Tarbox,and P.R.Morkel,"Absorption and emission cross section of Er3+ doped silica fibers," IEEE J.Quantum Electron.27,1004-1010(1991).
    38.X.Zou and H.Toratani,"Evaluation of spectroscopic properties of Yb3+-doped glasses," Phys.Rev.B 52,15889-15897(1995).
    39.S.G.Leon-Saval,T.A.Birks,W.J.Wadsworth,P.St.J.Russell,and M.W.Mason,"Supercontinuum generation in submicron fiber waveguides," Opt.Express 12,2864-2869(2004).
    40.J.R.Buck,and H.J.Kimble,"Optimal sizes of dielectric microspheres for cavity QED with strong coupling," Phys.Rev.A 67,033806(2003).
    41.G.G.Vierme,J.E.Caplen,L.Dong,J.D.Minelly,J.Nilsson,and D.N.Payne,"Fabrication and Characterization of Yb3+:Er3+ Phosphosilicate Fibers for Lasers," J.Lightwave Technol.16,1990-2001(1998).
    1. G. B. Hocker, "Fiber-optic sensing of pressure and temperature," Appl. Opt.18,1445-1448(1979).
    
    2. S. J. Spammer, P. L. Swart, and A. Booysen, "Interferometric distributed optical-fiber sensor," Appl. Opt. 35,4522-4525 (1996).
    
    3. M. Kuznetsov, "Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems," J. Lightwave.Technol. 12,226-230 (1994).
    
    4. M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yuhawa, S. J. Choi, J. D.O'Brien, and P. D. Dapkus, "Two-dimensional photonic crystal Mach-Zehnder interferometers," Appl. Phys. Lett. 84,460-462 (2004).
    
    5. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, "Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings," Opt. Lett. 29, 346-348 (2004).
    
    6. B. Wang and G. P. Wang, "Simulations of nanoscale interferometer and array focusing by metal heterowaveguides," Opt. Express 13, 10558-10563(2005).
    
    7. P. Domachuk, C. Grillet, V. Ta'eed, E. Magi, J. Bolger, B. J. Eggleton, L. E.Rodd, and J. Cooper-White, "Microfluid interferometer," Appl. Phys. Lett.86, 024103 (2005).
    
    8. M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004).
    
    9. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12,1025-1035 (2004).
    
    10. J. Lou, L. Ton, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700