基于AFM的微纳尺度模板加工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微纳米技术的飞速发展,微型化、集成化已成为了发展趋势。为了实现产品微小型化、降低成本、扩大生产效率的目标,需要不断研究探索微纳制造技术,推动其发展。原子力显微镜(Atomic Force Microscope, AFM)是一种纳米精度的表面形貌测量仪器,利用其纳米尺度的针尖对样品表面进行刻划,可以实现微细的切削加工,将图形转移到样品表面。为此,本文结合国家自然科学基金“具有气体检测功能的仿蝴蝶翅膀三维微纳结构制备技术研究”的需求,提出了一种基于AFM的微纳尺度模板加工技术,采用带有金刚石针尖的AFM切削加工铝薄膜材料,并结合感应耦合等离子刻蚀工艺制备出具有一定深宽比的微纳尺度模板结构,具体研究内容如下:
     1、微纳加工机理研究。建立了AFM金刚石针尖及薄膜衬底结构模型,采用分子动力学方法分别对纳米压入过程以及切削过程进行了仿真。分析了薄膜在被压入过程中载荷力变化,研究了衬底对载荷力及薄膜材料变形造成的影响。采用不同的载荷速度进行了纳米压入的仿真,得出了材料变形及材料硬度随载荷速度的变化规律。此外,还对AFM针尖不同的切削方向进行了仿真,分析了不同的前端面形状对切削结构及碎屑形成造成的影响,以及不同切削深度、切削速度对材料去除状态的影响,为加工实验提供了理论指导。
     2、详细讨论了基于AFM的微纳刻划加工系统的参数控制方法。研究了AFM加工沟槽过程中悬臂梁形变的测量方法,分析了AFM针尖的受力情况与探针悬臂梁的变形关系。在实验中采用横向位移补偿的方法消除了AFM弹性悬臂机械切削加工时产生的横向形变误差。实时测量了AFM针尖在加工过程中各方向受力的变化,为实施反馈控制提供了条件。
     3、提出了AFM探针加工单晶硅衬底上的光刻胶薄膜和铝薄膜的工艺步骤。实验研究了刻划力与加工深度之间的关系。研究了AFM切削加工时,加工深度、加工速度、沟槽间距对加工结果的影响。通过优化加工参数在薄膜衬底结构上制作了平行沟槽结构,结合感应耦合等离子刻蚀工艺制作了具有一定深宽比的亚微米结构模板。
     AFM加工是一项非常有前景的微纳制造方法。基于AFM的精密测量、微纳加工、纳米操纵、微纳结构修饰等都还在不断地研究和发展之中。本文针对AFM机械刻划加工和制作模板的应用进行了探索,基于AFM的应用研究更有待于进一步的深入和完善。
Nanotechnology has become a rapidly growing field today. There is a tendency for product to become minimal and integrated. To achieve the goal of miniaturization, cost effect, and high yield of fabrication, constant progress and development of nanotechnology is needed. Finding novel fabrication methods with more efficient and lower cost is becoming a research hotspot. The invention of atomic force microscope (AFM) has provided a new method for micro/nano fabrication. AFM is an instrument to make a height image of a very small part of a surface by scanning the surface with a nano tip. AFM can also be a tool for sequential manufacture. In order to investigate the mechanism of micro/nano machining, based on the practical application of AFM fabrication, a new combined method of sub-micron high aspect ratio structure fabrication is developed which can be used for production of micro/nano template. The process includes AFM scratch nano-machining and inductively coupled plasma (ICP) fabrication. The main contents of this thesis are shown in the following.
     1. The mechanism of micro/nano fabrication is investigated. AFM diamond tip and film/substrate system is modeled; nano-indentation and nano-scratch processes are simulated using molecular dynamics simulation. The deformation of the film and substrate during the indentation process is analyzed. By using different loading speeds, the relationship between the hardness of the film and the loading speeds is studied. The scratch simulation is also carried out in different orientation. The effect of the front end face of AFM tip on the fabricated structure and the cutting chip is analyzed. The material removal affected by cutting depth is also studied. The study results provide guidance for AFM fabrication.
     2. The relationship between the deformation of the cantilever and the load force is investigated. The method for measuring the deformation of the cantilever during the AFM fabrication is studied. The real time forces on the AFM tip during the fabrication process are got by reading the output of the photo detector which provides condition for feedback control of the AFM fabrication process.
     3. The relationship between the scratch depth and the loading force is investigated by the experimental study. With optimized parameters, the structure of parallel grooves is fabricated on the Al film deposited on the single crystal Si wafer by AFM fabrication. Combined the AFM nano machining and the ICP etching process, a high aspect ratio structure of sub-micron template is fabricated.
     AFM micro/nano fabrication is a process with broad prospect. The study of precision measurement, micro/nano fabrication, nano manipulation and nano modification based on AFM are still in progress. The mechanical machining and micro/nano template fabrication based on AFM are studied in this dissertation, some other applications based on AFM fabrication need further study and improvement.
引文
[1]. "Intel's transistor technology breakthrough represents biggest change to computer chips in 40 years," Business Wire, January 27,2007.
    [2]. 姚达,刘欣,岳世忠,半导体光刻技术及设备的发展趋势,Semiconductor Technology 33, (3) (2008), pp.4.
    [3]. 姜军,周芳,曾俊英,光刻技术的现状和发展,红外技术24,(6)(2002),pp.6.
    [4]. Watts R.K., A review of fine-line lithographic techniques:Present and future, Solid State Technol. (1981).
    [5]. Jung G., Halperin E.J. and Wu W., Circuit fabrication at 17 nm half-pitch by nanoimprint lithography, Nano Letters 6, (3) (2006), pp.4.
    [6]. Ng W.N., Leung C.H., Lai P.T. and Choi H.W., Photonic crystal light-emitting diodes fabricated by microsphere lithography, Nanotechnology 19, (25) (2008).
    [7]. Noach S., Faraggi E.Z., Cohen G. et al., Microfabrication of an electroluminescent polymer light emitting diode pixel array, Applied Physics Letters 69, (24) (1996), pp.3650-3652.
    [8]. Okada I., Ohkubo T., Saitoh Y. et al., Approach to fabricating defect-free x-ray masks, Society of Photo-Optical Instrumentation Engineers,1995, pp.253-263.
    [9]. Xiao S.Y., Che L.F., Li X.X. and Wang Y.L., A novel fabrication process of mems devices on polyimide flexible substrates, Microelectronic Engineering 85, (2) (2008), pp.452-457.
    [10]. Ohta A., Bhansali S., Kishimoto I. and Umeda A., Novel fabrication technique of tini shape memory alloy film using separate ti and ni targets, Sensors and Actuators A (Physical) A86, (3) (2000), pp.165-170.
    [11]. Sang Jun M. and Seung S.L., A novel fabrication method of a microneedle array using inclined deep x-ray exposure, Journal of Micromechanics and Microengineering 15, (5) (2005), pp.903-911.
    [12]. Wang X., Chen X., Yu Z. and Wang L., A novel fabrication approach for microneedles using silicon micromaching technology, Inst. of Elec. and Elec. Eng. Computer Society,2006, pp.545-549.
    [13]. Nan Chyuan T. and Chung Yang S., Dynamic simulation and novel fabrication technique on icpf-based micro-actuators for flexible micro dosing systems, Microsystem Technologies 14, (2) (2008), pp.267-275.
    [14]. Nordstrom M., Calleja M., Hiibner J. and Boisen A., A novel fabrication technique for free-hanging homogeneous polymeric cantilever waveguides, Journal of Micromechanics and Microengineering 18, (1) (2008), pp.015017-015011.
    [15]. Harrer S., Yang J.K.W. and Berggren K.K., Pattern generation by using multi-step room-temperature nanoimprint lithography,6th IEEE Conference on Nanotechnology,2006, pp.576-579.
    [16]. Hatzakis M., Electron beam processing systems:State-of-the-art review, (1973), pp.102-105.
    [17]. Garvin H.L., Garmire E., Somekh S. et al., Ion beam micromachining of integrated optics components, Applied Optics 12, (3) (1973), pp.455-459.
    [18]. Binnig G., Quate C.F. and Gerber C., Atomic force microscope, Physical Review Letters 56, (9) (1986), pp.930.
    [19]. Binnig G. and Rohrer H., Scanning tunneling microscopy—from birth to adolescence, Reviews of Modern Physics 59, (3) (1987), pp.615.
    [20]. Yamanaka K., Saito M., Shichiri M. et al., Afin picking-up manipulation of the metaphase chromosome fragment by using the tweezers-type probe, Ultramicroscopy 108, (9) (2008), pp. 847-854.
    [21]. Passeri D., Bettucci A., Biagioni A. et al., Quantitative measurement of indentation hardness and modulus of compliant materials by atomic force microscopy, Review of Scientific Instruments 79, (6) (2008), pp.066105-066103.
    [22]. Bhushan B. and Kasai T., A surface topography-independent friction measurement technique using torsional resonance mode in an afm, Nanotechnology 15, (8) (2004), pp.923-935.
    [23]. Lin D.C., Dimitriadis E.K. and Horkay F., Robust strategies for automated afm force curve analysis i. Non-adhesive indentation of soft, inhomogeneous materials, Journal of Biomechanical Engineering 129, (3) (2007), pp.430-440.
    [24]. 徐晓东,汪辉亚,65 nm及以下节点的光刻技术,Semiconductor Technology 32 (2007), pp.921-925.
    [25]. Medeiros D.R., Aviram A., Guarnieri C.R. et al., Recent progress in electron-beam resists for advanced mask-making, IBM Journal of Research and Development 45, (5) (2001), pp.639-650.
    [26]. 石高正俊,电子束光刻的发展趋势,半导体IC技术5(1976)),pp.26-32.
    [27]. Iguchi Y.M., Yoshinori, Fabrication of micro lens array by uv-led lithography, IEEJ Transactions on Sensors and Micromachines 129, (10) (2009), pp.2.
    [28]. Robinson T., Dinsdale A., Bozak R. et al., Nanomachining processes for 45,32 nm node mask repair-and beyond, SPIE,2008, pp. Photomask Japan (PMJ); BACUS; The International Society for Optical Engineering (SPIE).
    [29]. Suzuki S. and Matsumoto Y., Lithography with uv-led array for curved surface structure, Microsystem Technologies 14, (9-11) (2008), pp.1291-1297.
    [30]. Wong T.K.S., Gao S., Hu X. et al., Patterning of poly(3-alkylthiophene) thin films by direct-write ultraviolet laser lithography, Materials Science and Engineering B 55, (1-2) (1998), pp.71-78.
    [31]. 李凤有,”激光直写光刻技术研究,”中国科学院研究生院,vol.博士,中国科学院长春光学精密机械与物理研究所,2002.
    [32]. 田文彦,曾传湘,潘大任,周业为,准分子激光光刻的发展状况,激光杂志13,(3)(1992),pp.113-116.
    [33]. Dovidenko K., Le T.L. and Potyrailo R., Focused ion beam techniques for butterfly wing scales analysis and 3-d reconstruction, Materials Research Society Symposium Proceedings 983 (2007), pp.103-106.
    [34]. Chelnokov A., Wang K., Rowson S. et al., Near-infrared yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon, Applied Physics Letters 77, (19) (2000), pp. 2943-2945.
    [35]. Shinji M. and Yukinori O., Focused ion beam applications to solid state devices, Nanotechnology 7, (3) (1996), pp.247.
    [36]. Watanabe K., Hoshino T., Kanda K. et al., Brilliant blue observation from a morpho-butterfly-scale quasi-structure, Japanese Journal of Applied Physics, Part 1:Regular Papers and Short Notes and Review Papers, (2004).
    [37]. Nakamae K., Sakamoto H. and Fujioka H., An analysis of the economics of the vlsi development including test cost, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences E77-A, (4) (1994), pp.698-705.
    [38]. Vasile M.J., Nassar R. and Xie J., Focused ion beam technology applied to microstructure fabrication, Papers from the Japan/U.S. workshop on formation of ion nanobeams, AVS,1998, pp. 2499-2505.
    [39]. Becker E.W., Ehrfeld W., Hagmann P. et al., Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (liga process), Microelectronic Engineering 4, (1) (1986), pp.35-56.
    [40]. Zhang W., Zhang D., Fan T. et al., Novel photoanode structure templated from butterfly wing scales, Chemistry of Materials 21, (1) (2008), pp.33-40.
    [41]. Miao J.Y., Cai Y., Chan Y.F. et al., A novel carbon nanotube structure formed in ultra-long nanochannels of anodic aluminum oxide templates, The Journal of Physical Chemistry B 110, (5) (2006), pp.2080-2083.
    [42]. Hiroyuki S. and Nobuyuki N., Afm lithography in constant current mode, Nanotechnology 8, (3A) (1997),pp.A15.
    [43]. Hu S., Hamidi A., Altmeyer S. et al., Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16, (5) (1998), pp.2822-2824.
    [44]. Lee W.B., Oh Y, Kim E.R. and Lee H., Nanopatterning of self-assembled monolayers on si-surfaces with afm lithography, Synthetic Metals 117, (1-3) (2001), pp.305-306.
    [45]. Davis Z.J., Abadal G., Hansen O., et al., Afm lithography of aluminum for fabrication of nanomechanical systems, Ultramicroscopy 97 (2003), pp.6.
    [46]. Gao W., Hocken R.J. and Patten J.A., Construction and testing of a nonomachining instrument, Precision Engineering 24, (4) (2004).
    [47]. Abadal G., Perez-Murano F., Barniol N. and Aymerich X., Field induced oxidation of silicon by spm:Study of the mechanism at negative sample voltage by stm, estm and afm, Applied Physics A: Materials Science & Processing 66, (0) (1998), pp. S791-S795.
    [48]. Li M.Q., Scanning probe microscopy (stm/afm) and applications in biology, Applied Physics A: Materials Science & Processing 68, (2) (1999), pp.255-258.
    [49]. Eigler D.M. and Schweizer E.K., Positioning single atoms with a scanning tunnelling microscope, Nature 344, (5) (1990), pp.524-526.
    [50]. Roschier L., Tarkiainen R., Ahlskog M. et al., Manufacture of single electron transistors using afm manipulation on multiwalled carbon nanotubes, Microelectronic Engineering 61 (2002), pp. 687-691.
    [51]. Dimitrievski K., Zach M., Zhdanov V.P. and Kasemo B., Imaging and manipulation of adsorbed lipid vesicles by an afm tip:Experiment and monte carlo simulations, Colloids and Surfaces B: Biointerfaces 47 (2006), pp.115-125.
    [52]. Trevethan T., Kantorovich L., Polesel-Maris J. et al., Multiscale model of the manipulation of single atoms on insulating surfaces using an atomic force microscope tip, Physical Review B 76, (8) (2007), pp.085414.
    [53]. Yamanakaa K., Saitoa M., Shichirib M. et al., Afm picking-up manipulation of the metaphase chromosome fragment by using the tweezers-type probe, Ultramicroscopy 108 (2008), pp. 847-854.
    [54]. Miao L., Zhou L., Zhu L. et al., Design the nano manipulation system based on afm:A system view with force feedback research, Inst. of Elec. and Elec. Eng. Computer Society,2008, pp.82-86.
    [55]. Mo Y., Wang Y. and Bai M., Fabrication of nanopatterns on h-passivated si surface by afm local anodic oxidation, Physica E 41 (2008), pp.146-149.
    [56]. Sasa S., Nakashima A., Yodogawa S. et al., Magnetotransport properties of inas nanostructure devices produced by afm oxidation, Physica B 314 (2002), pp.95-98.
    [57]. Lin J.F., Wei P.J., Tai C.K. and Chung J.C., Numerical and experimental studies for the anisotropic etching of silicon with the afm oxide lines as masks, Microelectronic Engineering 85 (2008), pp. 143-150.
    [58]. Chiu C.-C., Yoshimura M. and Ueda K., Patterned growth of carbon nanotubes through afm nano-oxidation, Ultramicroscopy 108 (2008), pp.1334-1337.
    [59]. Li Z., Wu M., Liu T. et al., Preparation of tio2 nanowire gas nanosensor by afm anode oxidation, Ultramicroscopy 108 (2008), pp.1334-1337.
    [60]. Takemura Y. and Shirakashi J.-i., Afm lithography for fabrication of magnetic nanostructures and devices, Journal of Magnetism and Magnetic Materials 304, (1) (2006), pp.19-22.
    [61]. Fernandez-Cuesta I., Borrise X. and Perez-Murano F., Atomic force microscopy local oxidation of silicon nitride thin films for mask fabrication, Nanotechnology 16, (11) (2005), pp.2731-2737.
    [62]. Rogge M.C., Fiihner C., Keyser U.F. et al., Fabrication of double quantum dots by combining afm and e-beam lithography, Elsevier,2004, pp.483-486.
    [63]. Rogge M.C., Fuhner C., Keyser U.F. et al., Combined atomic force microscope and electron-beam lithography used for the fabrication of variable-coupling quantum dots, Applied Physics Letters 83, (6) (2003), pp.1163-1165.
    [64]. Legrand B. and Stievenard D., Nanooxidation of silicon with an atomic force microscope:A pulsed voltage technique, Applied Physics Letters 74, (26) (1999), pp.4049-4051.
    [65]. Park J.W., Kawasegi N., Morita N. and Lee D.W., Mechanical approach to nanomachining of silicon using oxide characteristics based on tribo nanolithography (tnl) in koh solution, Journal of Manufacturing Science and Engineering, Transactions of the ASME 126, (4) (2004), pp.801-806.
    [66]. Schumachera H.W., Keysera U.F., Zeitlera U. et al., Controlled mechanicalafmmachining of two-dimensional electron systems:Fabrication of a single-electron transistor, Physica E 6 (2000), pp.860-863.
    [67]. Pingue P., Lazzarino M., Beltram F. et al., Fabrication of hybrid superconductor-semiconductor nanostructures by integrated ultraviolet-atomic force microscope lithography, Journal of Vacuum Science and Technology B:Microelectronics and Nanometer Structures 15, (4) (1997), pp. 1398-1401.
    [68]. Yan Y., Sun T., Liang Y. and Dong S., Investigation on afm-based micro/nano-cnc machining system, International Journal of Machine Tools & Manufacture 47 (2007), pp.1651-1659.
    [69]. Minne S.C., Flueckiger P., Soh H.T. and Quate C.F., Atomic force microscope lithography using amorphous silicon as a resist and advances in parallel operation, Journal of Vacuum Science and Technology B:Microelectronics and Nanometer Structures 13, (3) (1995), pp.1380-1385.
    [70]. Bhushan B., Kwak K.J. and Palacio M., Nanotribology and nanomechanics of afm probe-based data recording technology, Journal of Physics Condensed Matter 20, (36) (2008).
    [71]. Hosaka S. and Koyanagi H., Field evaporation of metal atoms onto insulator/conducting substrate using atomic force microscope, Japanese Journal of Applied Physics, Part 2:Letters 33, (9 B) (1994), pp. L1358-L1361.
    [72]. King W., Materials progress:Heated afm tip enables printing nanometer patterns, Advanced Materials and Processes 163, (4) (2005), pp.24.
    [73]. Xie X.N., Chung H.J., Bandyopadhyay D. et al., Two coexisting modes in field-assisted afm nanopatterning of thin polymer films, Macromolecular Chemistry and Physics 209, (13) (2008), pp. 1358-1366.
    [74]. Kim K.H., Moldovan N., Ke C. and Espinosa H.D., A novel afm chip for fountain pen nanolithography-design and microfabrication, Materials Research Society,2003, pp.267-272.
    [75]. Myhra S. and Muhl T., Surface patterning of a-c dlc films:Aqueous electrochemistry and thermal activation, Journal of Physics D:Applied Physics 42, (3) (2009).
    [76]. Piner R.D., Zhu J., Xu F. et al.,'dip-pen' nanolithography, Science 283, (5402) (1999), pp.661-663.
    [77]. Hong S. and Mirkin C.A., A nanoplotter with both parallel and serial writing capabilities, Science 288, (5472) (2000), pp.1808-1811.
    [78]. Sumomogi T., Endo T., Kuwahara K. and Kaneko R., Nanoscale layer removal of metal surfaces by scanning probe microscope scratching, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures 13, (3) (1995), pp.1257-1260.
    [79]. Zhao Q.L., Chen M.J., Liang Y.C. et al., Measurement and analysis of afm-based nano-indentation on micro-machined silicon surface, Key Engineering Materials 257-258 (2004), pp.39-44.
    [80]. Francius G., Hemmerle J., Ball V. et al., Stiffening of soft polyelectrolyte architectures by multilayer capping evidenced by viscoelastic analysis of afm indentation measurements, Journal of Physical Chemistry C 111, (23) (2007), pp.8299-8306.
    [81]. Lin D.C., Dimitriadis E.K. and Horkay F.K., Adhesive and nonadhesive, large strain afm indentation of rubber-like materials, Materials Research Society,2007, pp.10-15.
    [82]. Rajesh J.J. and Bijwe J., Investigations on scratch behaviour of various polyamides, Wear 259 (2005), pp.661-668.
    [83]. Song J.Q., Liu Z.F. and C. Z.Li e.a., Spm-based nanofabrication using a synchronization technique, Appl:Phys. A66, (S715) (1998), pp.1247-1251.
    [84]. Jiang Z., Lu C.J., Bogy D.B. and Miyamoto T., Investigation of the experimental conditions and characteristics of a nano-wear test, Wear 181-183, (2) (1995), pp.777-783.
    [85]. Sung I.H., Yang J.C., Kim D.E. and Shin B.S., Micro/nano-tribological characteristics of self-assembled monolayer and its application in nano-structure fabrication, Wear 255, (7-12) (2003), pp.808-818.
    [86]. Blach J.A., Watson G.S., Brown C.L. et al., A mechanistic approach to tip-induced nano-lithography
    of polymer surfaces, Elsevier,2004, pp.95-99.
    [87]. Headrick J.E., Armstrong M., Cratty J. et al., Nanoscale patterning of alkyl monolayers on silicon using the atomic force microscope, Langmuir 21, (9) (2005), pp.4117-4122.
    [88]. 刘庆纲,何博涛,张超艳等.,Afm诱导氧化脉冲宽度与si纳米加工,传感技术学报19,(5)(2006).
    [89]. 张宇军,李鹏,胡元中等,Afm纳米操纵中测向推动力的测量方法,清华大学学报44,(8)(2004),pp.1025-1028.
    [90]. 张鸣,张伟,华心,等,Afm制作纳米光栅技术研究,光学技术32,(3)(2006),pp.330-333.
    [91]. Yan Y.D., Dong S. and Sun T.,3d force components measurement in afm scratching tests, Ultramicroscopy 105, (1-4) (2005), pp.62-71.
    [92]. 孙涛,闫永达,夏加飞等,基于原子力显微镜(afm)的微小结构加工工艺研究,微纳电子技术7,(8)(2003),pp.154-158.
    [93]. Komiyama M., Ohkubo S.y., Tazawa K. et al., Effects of atomic arrangement at tip apex and tip-sample distance on atomic force microscopy images:A simulation study, Japanese Journal of Applied Physics, Part 1:Regular Papers & amp; Short Notes & amp; Review Papers 35, (4 A) (1996), pp.2318-2325.
    [94]. Huang X. and Pelegri A.A., Finite element analysis on nanoindentation with friction contact at the film/substrate interface, Composites Science and Technology 67, (7-8) (2007), pp.1311-1319.
    [95]. Iizuka T., Onoda A. and Hoshide T., Md simulation of hardness property of al thin film sputtered on si substrate and its related to porosity, JSME 44, (3) (2001), pp.346-353.
    [96]. Vvedensky D.D., Multiscale modelling of nanostructures, Journal of Physics Condensed Matter 16, (50) (2004), pp.1537-1576.
    [97]. Lin Y, Chen T., Yang P. et al., Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon, Applied Surface Science 254 (2007), pp.1415-1422.
    [98]. Liu C.L., Fang T.H. and Lin J.F., Atomistic simulations of hard and soft films under nanoindentation, Materials Science and Engineering A (2007), pp.135-141.
    [99]. Szlufarska I., Kalia R.K., Nakano A. and Vashishta P., A molecular dynamics study of nanoindentation of amorphous silicon carbide, Journal of Applied Physics 102, (2) (2007).
    [100]. Fang T. and Wu J., Molecular dynamics simulations on nanoindentation mechanisms of multilayered films, Computational Materials Science 43 (2008), pp.785-790.
    [101]. Gonzalez M., Vanstreels K. and Urbanowicz A.M., Modeling the substrate effects on nanoindentation mechanical property measurement, Inst. of Elec. and Elec. Eng. Computer Society, 2009, pp.
    [102]. Li J. and Beres W., Three-dimensional finite element modelling of the scratch test for a tin coated titanium alloy substrate, Wear 260, (11-12) (2006), pp.1232-1242.
    [103]. Komiyama M., Tsujimichi K., Tazawa K. et al., Simulation of afm/lfm by molecular dynamics: Role of lateral force in contact-mode afm imaging, Surface Science 357-358, (1-3) (1996), pp. 222-227.
    [104]. Kim Y.S., Na K.H., Choi S.O. and Yang S.H., Atomic force microscopy-based nano-lithography for nano-patterning:A molecular dynamic study, Journal of Materials Processing Technology 155-156 (2004), pp.1847-1854.
    [105]. Tang Q. and Chen F., Md simulation of phase transformations due to nanoscale cutting on silicon monocrystals with diamond tip, J. Phys. D:Appl. Phys.39 (2006), pp.3674-3679.
    [106]. Cheng K., Luo X., Ward R. and Holt R., Modeling and simulation of the tool wear in nanometric cutting, Wear 255 (2003), pp.1427-1432.
    [107]. Jenga Y.R., Investigation into the nanoindentation size effect using static atomistic simulations, Applied Physics Letters 89 (2006), pp.251-259.
    [108]. Lin Z.C., Huang J.C. and Jeng Y.R.,3d nano-scale cutting model for nickel material, Journal of Materials Processing Technology 192-193 (2007), pp.27-36.
    [109]. Lin Z.C., Chen Z.D. and Huang J.C., Establishment of a cutting force model and study of the stress-strain distribution in nano-scale copper material orthogonal cutting, International Journal of Advanced Manufacturing Technology 33, (5-6) (2007), pp.425-435.
    [110]. Wu C.D., Lin J.F. and Fang T.H., Coarse particle dynamics applied to the nanocontact:The multiscale method is making it possible to treat larger systems, IEEE Nanotechnology Magazine 3, (1) (2009), pp.9-15.
    [111]. Lu C., Gao Y., Deng G.Y. et al., Atomic-scale anisotropy of nanoscratch behavior of single crystal iron, Wear 267, (11) (2009), pp.1961-1966.
    [112]. Gao Y., Lu C., Huynh N.N. et al., Molecular dynamics simulation of effect of indenter shape on nanoscratch of ni, Wear 267, (11) (2009), pp.1998-2002.
    [113]. Yan Y., Sun T., Dong S. and Liang Y, Study on effects of the feed on afm-based nano-scratching process using md simulation, Computational Materials Science 40, (1) (2007), pp.1-5.
    [114]. Yan YD., Sun T., Dong S. et al., Molecular dynamics simulation of processing using afm pin tool, Applied Surface Science 252, (20) (2006), pp.7523-7531.
    [115]. Fang T.H., Weng C.I. and Chang J.G., Molecular dynamics simulation of nano-lithography process using atomic force microscopy, Surface Science 501, (1-2) (2002), pp.138-147.
    [116]. Lin Z.C. and Huang J.C., A nano-orthogonal cutting model based on a modified molecular dynamics technique, Nanotechnology 15, (5) (2004), pp.510-519.
    [117]. Tanaka H., Sano M. and Shimada S., Brittle-ductile transition in nano bending of monocrystalline silicon carbide analyzed by molecular dynamics simulation, Key Engineering Materials 257-258 (2004), pp.15-20.
    [118]. Liang Y, Li D., Bai Q. and Tang Y, Research on nano-cutting processes based on parallel molecular dynamics, Trans Tech Publications Ltd,2006, pp.357-360.
    [119]. Zhang Z.G., Fang F.Z. and Sun C.K., Nano-scale cutting mechanism by molecular dynamics simulation, SPIE,2007, pp. The Chinese Optical Society (COS); The Institute of Optics and Electronics (IOE), CAS; The International Society for Optical Engineering (SPIE); State Key Laboratory of Optical Technology for Microfabrication; Sichuan Optical Society (SOS).
    [120]. Bai Q.S., Liang Y.C., Li D.G and Yang C.L., Molecular dynamics simulation of nanometric machining, Weixi Jiagong Jishu/Microfabrication Technology, (4) (2006), pp.57-62.
    [121]. Karakasidis T.E. and Charitidis C.A., Multiscale modeling in nanomaterials science, Materials Science and Engineering C 27, (5-8 SPEC. ISS.) (2007), pp.1082-1089.
    [122]. Henshell R.D., Neale B.K. and Warburton G.B., New hybrid cylindrical shell finite element, Journal of Sound and Vibration 16, (4) (1971), pp.519-531.
    [123]. Roters F., Eisenlohr P., Hantcherli L. et al., Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling:Theory, experiments, applications, Acta Materialia 58, (4), pp.1152-1211.
    [124]. Hsiao G.C., Boundary element methods-an overview, Applied Numerical Mathematics 56, (10-11 SPEC. ISS.) (2006), pp.1356-1369.
    [125]. Kohn W., Overview of density functional theory, Plenum Publ Corp,1995, pp.3-3.
    [126]. Orkoulas G., Computer simulations:An overview of monte carlo methods for fluid simulation, Computing in Science and Engineering 11, (5) (2009), pp.76-87.
    [127]Frenkel D., Smit B.,[译]汪文川,分子模拟-从算法到应用understanding molecular simulation,化学工业出版社,北京San Diago, California, USA,2002.
    [128]. Chen Z., Yu Z., Lu P. and Liu Y., Molecular dynamics simulations of atomic assembly in the process of gan film growth, Physica B:Condensed Matter 404, (21) (2009), pp.4211-4215.
    [129]. Galindo Torres S.A., Alonso Marroquin F., Wang Y.C. et al., Molecular dynamics simulation of complex particles in three dimensions and the study of friction due to nonconvexity, Physical Review E-Statistical, Nonlinear, and Soft Matter Physics 79, (6) (2009).
    [130]. Lin S., He X., Li Y. et al., Brownian molecular dynamics simulation on self-assembly behavior of diblock copolymers:Influence of chain conformation, Journal of Physical Chemistry B 113, (42) (2009), pp.13926-13934.
    [131]. Nadler W., Diebner H.H. and Roessler O.E., Space-discretized verlet-algorithm from a variational principle, Zeitschrift fuer Naturforschung. Section A:Physical Sciences 52, (8-9) (1997), pp. 585-585.
    [132]. Martys N.S. and Mountain R.D., Velocity verlet algorithm for dissipative-particle-dynamics-based models of suspensions, Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 59, (3 pt B) (1999), pp.3733-3733.
    [133]. Masella M., The multiple time step r-respa procedure and polarizable potentials based on induced dipole moments, Molecular Physics 104, (3) (2006), pp.415-428.
    [134]. Entacher K., Schell T., Schmid W.C. and Uhl A., Defects in parallel monte carlo and quasi-monte carlo integration using the leap-frog technique, Parallel Algorithms and Applications 18, (1-2) (2003), pp.13-26.
    [135]. Satoh A., Stability of various molecular dynamics algorithms, Journal of Fluids Engineering, Transactions of the ASME 119, (2) (1997), pp.476-480.
    [136]. Wei J.X., Liew K.M. and He X.Q., Mechanical properties of carbon nanocones, Applied Physics Letters 91, (261906) (2007).
    [137]. Greathouse J.A., Durkin J.S., Larentzos J.P. and Cygan R.T., Implementation of a morse potential to model hydroxyl behavior in phyllosilicates, Journal of Chemical Physics 130, (13) (2009), pp. 134713 (134717 pp.).
    [138]. Daw M.S. and Baskes M.I., Embedded-atom method:Derivation and application to impurities, surfaces, and other defects in metals, Physical Review B (Condensed Matter) 29, (12) (1984), pp.
    6443-6453.
    [139]. Tersoff J., Modeling solid-state chemistry:Interatomic potentials for multicomponent systems, Physical Review B 39, (8) (1989), pp.5566.
    [140]. Plimpton S., Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics 117,(1) (1995), pp.1-19.
    [141]. Lee I.H., Kim S.Y. and Jun S., An introductory overview of action-derived molecular dynamics for multiple time-scale simulations, Computer Methods in Applied Mechanics and Engineering 193, (17-20) (2004), pp.1633-1644.
    [142]. Humphrey W., Dalke A. and Schulten K., Vmd:Visual molecular dynamics, Journal of Molecular Graphics 14 (1996), pp.33-38.
    [143]. Subramaniyan A.K. and Sun C.T., Continuum interpretation of virial stress in molecular simulations, International Journal of Solids and Structures 45, (14-15) (2008), pp.4340-4346.
    [144]. Daw M.S., Foiles S.M. and Baskes M.I., The embedded-atom method:A review of theory and applications, Mater. Sci. Rep 9, (251) (1993).
    [145]. Cheong W.C.D. and Zhang L.C., Molecular dynamics simulation of phase transformations in silicon, Nanotechnology 11 (2000), pp.173-180.
    [146]. Song H. and Zha X., Si-coated single-walled carbon nanotubes under axial loads:An atomistic simulation study, Physica B 393 (2007), pp.217-222.
    [147]. Mehrez H., Ciraci S., Buldum A. and Batra I.P., Conductance through a single atom, Physical Review B:Condensed Matter 55, (4/PT2) (1997), pp. R1981-R1981.
    [148]. Saha R. and Nix W.D., Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Materialia 50, (1) (2002), pp.23-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700