球面光栅干涉式表面测量仪若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量程、高分辨率、高精度表面测量技术是计量测试领域的重要研究内容。特别是随着纳米科学与技术的发展,将表面量仪的分辨力提高到纳米级已成为现实的需求。同时,面向工程表面的测量要求量仪具有更大的量程,这些都对现有的传感技术和测量方法提出了新的挑战。
     本文在分析近年来国内外这一领域技术发展的基础上,提出了球面光栅干涉测量方法,为表面轮廓测量提供了一个新的思路和方法。并针对球面光栅干涉式传感器原理、光栅干涉仪的光路结构、高分辨率的电子系统、传感器非线性特性的校准方法、表面的分离技术等这几个关键问题展开研究,为建立一种新型的表面测量与分析系统做好理论和技术方面的准备。
     (1)给出了球面光栅的复振幅透过率函数,用标量衍射理论,对球面正弦相位光栅的菲涅耳衍射和夫琅禾费衍射的复振幅分布和光强分布进行了分析,并与平面正弦相位光栅进行了比较。通过Matlab仿真给出了二者的光强分布,仿真结果与实验结果相吻合。
     (2)为降低干涉条纹对光栅偏摆的敏感性,提出了一种新的光栅干涉仪光路结构。利用非标准的猫眼逆反射器将一次衍射光逆反射回光栅上,产生二次衍射,利用二次衍射光产生干涉条纹。该光路结构对光栅偏摆不敏感。对这种光路结构进行了理论分析,通过实验证实该光路结构能够在一定程度上提高干涉条纹的质量。
     (3)基于只读存储器细分方法研制出一种具有高细分倍数和高频响特性的细分电路。该电路基于高速A/D和CPLD实现,具有防误计数的功能。对其细分误差进行分析,分别研究了直流漂移、两路信号不等幅、两路信号不正交、奇次谐波和偶次谐波对细分精度的影响。在此基础上,提出一种实时的细分误差补偿算法,该算法可以补偿由直流漂移、两路信号不等幅和非正交导致的细分误差。最多只需要3个光栅信号周期,就能对上述三种误差依次实现补偿。算法计算简单,所需存储空间小,适合于实时处理。通过实验证实了算法的有效性。
     (4)触针式大量程传感器存在由杠杆结构和触针针尖半径不为零所导致的非线性问题,会引起表面测量信号的畸变。在分析了不同校准方法的优缺点之后,采用标准球对传感器进行校准。建立了传感器传输特性的校准模型,用最小二乘拟合的方法得到了模型系数的解。实验结果表明当标准球半径为80.029mm时校准后残余轮廓误差不超过2μm,相对偏差不超过0.0025%;当标准球半径为12.5086mm时校准后残余轮廓误差不超过0.5μm,相对偏差不超过0.004%。
     (5)基于中心极限定理,提出了一种新的高斯滤波器逼近数学模型,在8级级联的条件下,幅度偏差只有0.25%。给出了快速分离表面粗糙度、波纹度、形状的递归计算方法。将这种方法推广到三维表面测量的情形,利用二维高斯滤波器的可分离性,将二维高斯滤波器分解成两个一维高斯滤波器并分别实现,提高了三维表面的滤波效率。
     实验结果验证了上述理论、技术、方法的正确性,为发展新型的表面测量仪奠定了良好的基础。
Large range, high resolution and high precision surface measurement technique is an important research field of metrology. Especially with development of nano-science and technology, the resolution of instruments raised to nano-scale has bacome a reality demand. At the same time, measurement for engineering surface requires instruments with greater range. Those are challenge to existing sensor technique and measurement methods.
     After analyzing the development in this field in the recent years, a new kind of grating interferometer called spherical grating interferometer is proposed, which is a new technique for surface measurement. These key problems, such as theory of the spherical grating interferometric sensor, optical path configuration of the grating interferometer, high resolution electronic system, calibration method on the non-liner characteristics of the sensor, surface separation technologies, were researched. Solving these problems can help to build a new system of surface measurement and analysis.
     (1) The complex amplitude transmissivity function of spherical grating is given. In Fresnel diffraction and Fraunhofer diffraction using spherical sinusoidal phase grating, the distribution of the complex amplitude and light intensity of diffraction light are analyzed and compared with that using plane sinusoidal phase grating based on the theory of scalar diffraction. The result of the distributions of the light intensity using the two instruments in the Matlab simulation is the same as that in experiment.
     (2) A new optical path configuration used in grating interferometer is proposed in order to reduce the sensitivity of the interference fringe to the disturbing shifts and tilts of scale due to additional motion of the grating. Use the cat’s-eye retroreflector to reflect the first diffraction light to the grating to generate the second diffraction light, then the interference fringe can be generated using the second diffraction light. This new method is not much less sensitive to the additional movement of the grating. This new method is analyzed in theory and it has been proved to be able to improve the quality of the interfere fringe in the experiment.
     (3) The ROM subdivision circuit system is developed which has high subdivision multiple and high frequency response. This circuit is based on high-speed A/D and CPLD and also has the function of preventing counting error. Then the subdivision error is analyzed. The influence of the zero offset, unequal amplitude of two channels, quadrature phase shift, odd harmonics and even harmonics on subdivision precision are also investigated. A real-time subdivision error compensation algorithm is developed, this algorithm can compensate on the subdivision error caused by zero offset, unequal amplitude of two channels and quadrature phase shift. The three above errors can be totally compensated in no more than three grating signal periods. The influence on the algorithm from harmonics is analyzed and developed. Through experiments the effect of this algorithm is proved. The advantage of this algorithm is simple, requiring little memory, easy to be real time processed.
     (4) The large-range surface measuring sensor has a problem of non-liner which leads signal distortion because of lever and finite ball tip radius.
     After analyzing several calibration technologies and methods, we used the standard ball to calibrate the sensor and build a calibration model of the transmission characteristic of the sensor. Then we got the solution using the least squares fitting method. The result showed that when the radius of the standard ball is 80.029mm, the residual form error is no more than 2μm after calibration, relative error is 0.0025%. When the radius of the standard ball is 12.5086mm, the residual form error is no more than 0.5μm after calibration, relative error is 0.004%.
     (5) A new approximate mathematic model of Gaussian filter is proposed on the basis of central limit theorem. The amplitude deviation is approximate to 0.25% when 8 approximate filter cascaded. A fast algorithm of Gaussian filtering is given to separate the surface roughness, waviness and form deviation. This algorithm can be also used in 3-D surface measurement. Depending on the separability of the 2-D Gaussian filter, a 2-D Gaussian filter is separated into two 1-D Gaussian filter. The realization of the 2-D Gaussian filter is predigested and the filtering efficiency is improved in 3-D surface measurement.
     The result of the experiment showed that the theories, technologies and methods are correct which is affording a stable foundation to developing a new instrument for surface measurement.
引文
1汪恺主编.表面结构.北京:中国计划出版社. 2004
    2蒋向前.现代产品几何量技术规范(GPS)国际标准体系.机械工程学报. 2004,40(12):133-137
    3 Binnig G,Rohrer H. Angew. Chem. Int. Ed. Engl. 1987,26:606-617
    4 J.F.Song, F.F.Rudder Jr., T.V.Vorburger, et al. Microform Calibrations in Surface Metrology. Int.J.Mach.Tools Manufact. 1995,35(2):301-310
    5 J.F.Song, T.V.Vorburger, R.Clary, et al. Standards for Bullets and Casings. Material Today. 2002,(11):26-31
    6王立鼎,褚金奎,刘冲等.中国微纳制造研究进展.机械工程学报. 2008,44(11):2-11
    7孙立宁,陈立国,荣伟彬等.面向微机电系统组装与封装的微操作装备关键技术.机械工程学报. 2008,44(11):13-19
    8李源,邹子英,傅云霞等.基于MEMS微触觉测头和纳米测量机的特征尺寸测量.传感技术学报. 2008,21(12):2097-2100
    9毛起广.表面粗糙度的评定和测量.北京:机械工业出版社,1991
    10冯秀,顾伯勤.表面形貌的研究现状及发展趋势.润滑与密封. 2006,174(2):168-170
    11李伯奎,刘远伟,王林高.触针几何形状对粗糙度测量误差的影响.机械工程师. 2003.11:17-18
    12 Pawe P.Pawlus. Mechanical filtration of surface profiles. Measurement. 2004,35:325-341
    13王云庆,李兆祥,周兆英.接触式轮廓测量中触针测量力的分析.现代计量测试. 1996,1:18-21
    14 W.P.Dong, P.J.Sullivan, K.J.Stout. Investigation of Dynamic measurement of Stylus Instruments. Measurement Technology and Interlligent Instruments. 1993,2101:722-733
    15 Paul J.Scott. Recent Developments in the Measurement of Aspheric Surfaces by Contact Stylus Instrumentation. Proc SPIE, 4927(2002):199-206
    16郭军.激光干涉表面形貌测量系统及3D-Motif评定研究.华中科技大学博士学位论文. 2004
    17王选择,郭军,谢铁邦.大量程杠杆式光学轮廓仪的非线性分析与补偿.传感器技术. 2003,22(8):38-41
    18蒋向前,肖少军,谢铁邦等.一种新型触针式曲面形貌测量系统.华中理工大学学报. 1994,22(9):4-8
    19 Jiang xiang-qian, Gu ting-xi, Li zhu. Research on A New Measuring and Analyzing System for CurvedSurface Topography. SPIE, vol 2101:1163-1167
    20 JIANG Xiangqian, LI Zhu. Grating Technology for Topography Measurement of Curved Surface. ISMTII'93, 1993, Wuhan, China
    21 Marek Dobosz. New Stylus Probe with Interferometric Trasducer for Surface Roughness and Form Profiling. Optical Engineering. 1994,33(3):902-907
    22 Marek Dobosz. Analysis of Tolerances in a Grating Interferometer for High-Resolution Displacement Measurement. Proc of SPIE. Vol 3744:253-261
    23肖刚,谢铁邦,王选择.一种以柱面全息光栅为标准器的大量程表面形貌测量仪.机床与液压. 2005,11:22-24
    24肖刚,谢铁邦,王选择.一种小型相位光栅干涉式(PGI)微位移传感器.计量技术. 2005,1:7~9
    25 Taylor Hobson co.ltd. Form Talysurf PGI 1250A. www.taylor-hobson.com
    26 L.P. Howard. Long Range Constant Force Profiling for Measuring Engineering Surface. Review of Science Instrument. 1994,64:892-902
    27 D.G.Chetwynd. X.Liu. S.T.Smith. A Controlled-force Stylus Displacement Probe. Prec. Eng.. 1996,19:105-111
    28杨练根.基于微恒力位移传感器的表面形貌测量系统和二维Motif评定方法.华中科技大学博士学位论文. 2004
    29孙艳玲,谢铁邦.基于垂直方向位移扫描的接触式表面形貌仪.自动化仪表. 2006,26(7):19-21
    30郑俊丽,赵学增,周莉莉.表面粗糙度的激光非接触检测方法.激光与红外. 2005,35(3):148-150
    31李芬兰,唐文彦,段海峰等.非接触式表面粗糙度测量研究新进展.激光与红外. 2007,37(6):498-502
    32 G.E.Sommargren. Optical Heterodyne Profilometry. Applied Optics. 1981,20(4):610-662
    33 G.E.Sommargren. An Optical Measurement of Surface Profile. Pre. Eng..1981,18(2):131-136
    34 Liu X, Gao F. A novel multi-function tribological probe microscope for mapping surface properties.Meas. Sci. Technol.. 2004,15:91-102
    35 Zenhausern F, Matin Y, et al. Scanning interferometric apertureless microscopy: Optical Imaging at 10 Angstrom Resolution. Science,1995,269:1083-1085
    36许谊,徐毓娴.微分相衬干涉显微镜定量测量表面形貌.光学精密工程. 2001,9(3):227-230
    37戴蓉,谢铁邦,常素萍.垂直扫描白光干涉表面三维形貌测量系统.光学技术,2006,32(4):545-552
    38 Jian-Ping Yun, Su-Ping Chang, Tie-Bang Xie. A Novel Contact and Non-contact Hybrid Profilometer. Pre.Eng. 2009,33:202-208
    39 ISO/CD4287-1. Geometrical Product Specification(GPS)—Surface Texture: Profile method. Part I.Terms, Definition and Pareameters of Surface Texture, 1993
    40 Whitehouse D.J. Survey of reference lines in the assessment of surface texture.Ann CIRP .1972,21(2):267-273
    41 ASME B46.1, Surface texture: Surface roughness, waviness, and lay. New York: American Society of Mechanical Engineers, 1995.
    42 ISO11562. Geometrical Product Specifications(GPS)─Surface Texture: Profile Method─Metrological Characteristics of Phase Correct Filters. International organization for Standardization, Geneva. 1996
    43 Krystek M.A fast Gauss filtering algorithm for roughness measurements. Prec Eng.1996,19:198-200
    44 Y.B.Yuan, X.F.Qiang, J.F.Song, T.V.Vorburger. A fast algorithm for determining the Gaussian filtered mean line in surface metrology. Prec Eng. 2000,24: 62-69
    45 Yuan Y B, Vorburger T V, Song J F. A simplified realization for the Gaussian filter in surface metrology. M.Dietzsch, H.Trumpold. The Xth International colloquium on surface, Chemnitz(Germany),2000. Aachen, Shaker verlag GmbH,2000:133
    46 ISO13565-1.Geometrical product specification(GPS)─surface texture:profile method surfaces having stratified functional properties. Part 1. Filtering and general measurement conditions,1996(E)
    47 Brinkmann S, Bodschwinna H, Lemke HW. Development of a robust Gaussian regression filter for three-dimensional surface analysis. Proceedings of the Xth International Colloquium on Surface, 2000:122-132.
    48 S.Brinkmann, H. Bodschwinna, H.W. Lemke. Accessing roughness in three-dimensions using Gaussian regression filtering. Machine Tools & Manufacture. 2001, 41:2153-2161
    49 Huifen Li, Xaingqian Jiang, Zhu Li. Robust estimation in Gaussian filtering for engineering surface characterization. Prec Eng. 2004,28:186-193
    50李惠芬,蒋向前,李柱.高斯滤波稳健性能的研究与改进.仪器仪表学报. 2004,25(5):633-637
    51 Michael Krystek. Form filtering by splines. Measurement. 1996, Vol.18, No.1:9-15
    52 Michael Krystek. Discrete L-spline Filtering in Roundness Measurements. Measurement. 1996,Vol.18,No.2:129-138
    53 Chen X, Raja J, Simanapalli S. Multi-scale Analysis of Engineering Surface. Int J Mach Tools Manufact. 1995,35(2):231-238
    54 Liu X, Raja J. Analyzing Engineering Surface using Wavelet Filter. Proc SPIE. 1996, 2825
    55 Vetterli M, Herley C. Wavelets and Filter Banks: Theory and Design. IEEE Trans Signal Processing. 1992,40(9):2207-2232
    56 Sweldens W. The Lifting Scheme: a custom-design Construction of Biorthogonal wavelets. Appl Comput Harmon Anal. 1996,3(2):186-200
    57 X.Q.Jiang, L.Blunt, K.J.Stout. Application of the lifting wavelet to rough surfaces. Prec Eng. 2001,25: 83-89
    58 J.Raja, B.Muralikrishnan, Shengyu Fu. Recent advances in separation of roughness, waviness and form. Prec Eng. 2002,26: 222-235
    59郭军,王选择,谢铁邦.基于形态学和高斯滤波器的混和Rk滤波器.华中科技大学学报. 2003,31(11):61-62
    60王生怀,杨旭东,谢铁邦.双衍射光栅位移传感器原理及应用.计量技术.2008, 6:7-10
    61汤天瑾,曹向群,林斌.计量光栅制造综述.光学仪器. 2004,26(4):62-67
    62 Angilika taubner, Hans-jurgen v.Martens. Diffraction grating interferometer for the accurate measurement of rotation quantities. Measurement, 1995, (6):71-80
    63 Born M., Wolf E. (著),杨葭荪(等译).光学原理(第七版)(上册).北京:电子工业出版社. 2005.8
    64 Born M., Wolf E. (著),杨葭荪(等译).光学原理(第七版)(下册).北京:电子工业出版社. 2005.8
    65谢建平,明海,王沛.近代光学基础.北京:高等教育出版社. 2006.5
    66王楚,汤俊雄.光学.北京:北京大学出版社,2001
    67 Houmin Yang, Xiaolin Wang, Yinxian Zhang. The micro-displacement positioning system for a diffraction grating ruling engine. SPIE, vol 1533:185-192
    68楚兴春,吕海宝,赵尚弘.大量程纳米级光栅干涉位移测量.光电工程. 2008,35(1):55-59
    69孔智勇,赵红颖,熊文卓等.采用衍射、干涉技术提高光电轴角编码器的测角精度和分辨率.光学精密工程. 2001,9(3):260-265
    70杜振辉,李淑清,蒋承志等.激光光栅多普勒效应微小振动测量.光学学报. 2004,24(6):834-837
    71杜振辉,李志刚,高华等.光栅多普勒效应新型地震检波器.天津大学学报. 2005,38(5):391-394
    72 Xuanze Wang, Xiaohua Dong, Jun Guo et. al. Two-dimensional displacement sensing using a cross diffraction grating scheme. J. of Optics A: Pure and Applied Optics. 2004,6(1):106-111
    73夏豪杰,费业泰,范光照等.基于衍射光栅的二维纳米位移测量技术.纳米技术与精密工程. 2007,15(4):311-314
    74李成贵,董申.高精度光栅干涉测量技术及仪器.航空计测技术. 2000,20(1):36-39
    75 M. Dobosz. High resolution laser transducer of liner displacement. Opt. Eng. 1992,31(3):500-504
    76曹国荣.平面波倾斜入射时的夫琅禾费衍射花样.安徽师范大学学报. 2000,23(1):22-26
    77苏亚凤,李普选,徐忠锋等.斜入射条件下光栅衍射现象的分析.大学物理,2001,20(7):18-21
    78 M. Dobosz. Application of a divergent laser beam in a grating interferometer for high resolution displacement measurements. Opt. Eng. 1994,33:897-901
    79 M. Dobosz. Application of focused laser beam in a grating interferometer forhigh resolution displacement measurement. Opt. Eng. 1999,38:897-901
    80 M. Dobosz. High resolution laser linear encoder with numerical error compensation. Opt. Eng. 1999,38:897-901
    81楚兴春.纳米光栅干涉位移测量关键技术的研究.国防科技大学博士学位论文. 2005
    82杨国光.近代光学测试技术.浙江大学出版社. 1997,430-465
    83 Y.Jourlin, J.Jay, O.Parriaux. Compact diffractive interferometric displacement sensor in reflection. Prec Eng. 2002,26:1-6
    84曹国荣,李英飞,陈家壁.光栅信号振幅合成的软件细分及误差分析.南京师大学报,1996,19(1):33-36
    85 K.P.Brich, Optical fringe subdivision with nanometric accuracy, Precision Engineering, 1990(12),4:195-198
    86余文新,胡小唐,邹自强.一种高分辨率和高频响的光栅纳米测量细分方法.天津大学学报,2002,35(1):1-4
    87王跃琼.高速莫尔条纹信号单片机细分的一种方法.光学精密工程,1997,
    5(1):112-118
    88李谋.位置检测与数显技术.北京:机械工业出版社,1993
    89孟超,费业泰.光栅信号时钟脉冲细分的误差分析.宇航计测技术,1996,16(6):6-9
    90金喜平,边英杰,梅笑宇.鉴相技术在金属粗光栅细分中的应用.沈阳工业大学学报. 1999,21(5):429-431
    91郭雨梅,崔晋玲,刘雪艳等.锁相式莫尔条纹信号细分方法.哈尔滨工业大学学报. 2007, 39(9):1496-1498
    92唐小琦,刘世峰,王平江等.正切法莫尔条纹信号幅值分割细分的误差分析.计量学报,2007,28(3):220-223
    93罗华,高山,李翔龙.粗光栅信号全数字化处理法实现高倍数细分.光学精密工程,2007,15(2):283-288
    94 M.Takeda, H.Ima, S.Kobayashi. Fourier transform method of fringe pattern analysis for computer-based topography and interferometry. J.Opt.Soc.Am. 1982,72(1):156-160
    95楚兴春,吕海宝,赵尚弘.基于傅里叶变换的高精度条纹细分方法.光学学报. 2007,27(12):2199-2183
    96余文新,胡小唐,邹自强.光栅纳米测量技术及应用.计量技术,2001,7:9-12
    97 Su Shaojing, Lu Haibao, Zhou Weihong et al. A software solution to counting and subdivision of moiréfringes with wide dynamic range. proceedings of SPIE, 2000, 4222:308-312
    98苏绍景,吕海宝,李圣怡.基于CPLD的宽动态范围莫尔条纹计数与精密细分技术.光学精密工程,2001,9(2):146-150
    99楚兴春,吕海宝,杜列波.莫尔(干涉)条纹计数细分和辨向技术的研究.光学技术,2004,30(4):475-477
    100陈仁文,袁红卫.精密光栅位移传感器的若干信号处理问题研究.传感技术学报. 2002,12(4):360-363
    101张国雄,金篆芷.测控电路(第一版).北京:机械工业出版社,2001:198-207
    102魏青,杜贤和.实际光栅信号质量对细分精度影响的研究.计量技术,1993,3:5-7
    103 Hans-jurgen von Marterns. Generalization and analysis of the fringe-counting method for interferometric measurement of motion quantities. Measurement, 1999,25(1999):71-87
    104李江国,宣明,王一凡.莫尔条纹细分中位置误差的软件修正方法.光学精密工程,1995,3(1):69-73
    105 Chunhai Wang, Guoxiong Zhang, Shangqi Guo et.al..Autocorrection of interpolation errors in optical encoders. SPIE. Vol.2718:439-447
    106楚兴春,吕海宝,杜列波等.任意位置差条纹信号细分方法的研究.光学学报,2005,25(4):497-500
    107余文新,胡小唐,邹自强.光栅纳米测量中的系统误差修正技术研究.计量学报,2002,23(2):101-105
    108余文新,邹自强,胡小唐.光栅纳米测量中实时动态误差修正方法研究.仪器仪表学报,2001,22(3):63-64
    109王春海,张国雄,景芳盛.不依赖长度基准的光栅细分精度的评定方法.计量学报,1995,16(1):6-10
    110 H.Haitjema. Uncertainty analysis of roughness standard calibration using stylus instruments. Prec Eng. 1998,22: 110-119
    111 Paul Rubert. Some problems with the calibration of surface roughness reference specimens. Int.J.Mach.Tools Manufact. 1995,35(2):289-292
    112 U.Brand, W.Hillmann. Calibration of step height standards for nanometrology using interference microscopy and stylus profilometry. Precision Engineering.1995,17:22-33
    113 T.V.Vorburger, J.F.Song, C.H.W.Giauque. et al. Stylus-laser surface calibration system. Precision Engineering. 1996,19:157-163
    114 B.C.Park, Y.W.Lee, C.Lee, et al. Algorithm for stylus instruments to measure aspheric surface. Proc of SPIE. 2005,vol 5638:309-318
    115陈庆虎,李柱.小波分析用于表面粗糙度量仪导轨位移误差补偿的探讨.计量技术. 1998,2:5-7
    116刘惟信.机械最优化设计(第二版).北京:清华大学出版社. 1994.9:94-103
    117 Stephan R. Clark, John E.Greivenkamp. Ball tip-stylus tilt correction for a stylus profilometer. Prec Eng. 2002,26:405-411
    118 Luo NL, Sullivan PJ, Stout KJ. Gaussian filtering of three-dimensional engineering surface topography. Proc SPIE .1993,2101: 527-538
    119 W.P.Dong, E.Manisah, K.J.Stout. Reference planes for the assessment of surface roughness in three dimensions. Int.J.Mach.Tools Manufact. 1995,35(2):263-271
    120 W.P.Dong, E.Manisah, K.J.Stout. Determination of appropriate sampling conditions for three-dimensionls microtopography measurement. 1996, 36(12): 1347-1362
    121李成贵,李行善,强锡富.三维表面微观形貌的测量方法.宇航计测技术. 2000,4:2-10
    122 R.Ohlsson, A.Wihlborg, H.Westberg. The accuracy of 3D topography measurements. Machine Tools & Manufacture. 2001, 41:1899-1907
    123 Richard Leach. Some issues of traceability in the field of surface topography measurement. Wear. 2004,257:1246-1249
    124强锡富,袁怡宝.建立表面粗糙度评定中线的快速算法.仪器仪表学报. 1994,4:353~358
    125袁怡宝.表面形貌测量若干基本理论的研究.哈尔滨工业大学工学博士学位论文.1997
    126许景波,袁怡宝,朴伟英,J.F.Song,T.V.Vorburger.表面粗糙度测量中的高斯滤波快速算法.计量学报. 2005,26(4):309-312
    127程佩青.数字信号处理教程.第二版.清华大学出版社,2001
    128许景波.高斯滤波器逼近理论与应用研究.哈尔滨工业大学工学博士学位论文. 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700