GaN高电子迁移率晶体管特性及其功率放大器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球无线通信技术的迅速发展增加了无线通信系统中收发机的市场需求,并对收发机的性能提出了更高的要求。在整个无线通信系统中,功率放大器作为发射机关键组件,其带宽、输出功率、效率和工作温度等性能将严重影响系统的整体功能。功率放大器中最主要、最关键的部分是功率晶体管。现在用于功率放大器的功率器件主要有硅-横向扩散金属氧化物半导体器件、砷化镓、磷化铟和碳化硅材料的器件等,由于受到材料本身物理特性的限制,不能满足应用的需求,发展新型材料的功率器件迫在眉睫。作为第三代半导体材料代表,宽禁带氮化镓(GaN)材料凭借其优异的电学和热学性能成为研究热点。宽禁带半导体GaN高电子迁移率晶体管(HEMT)器件具有高击穿电压、大电流密度、高功率密度、低噪声及良好的频率特性,在高效、高频、宽带、大功率无限通信系统中具有广泛的应用前景。GaN高电子迁移率晶体管物理特性及其在功率放大器中的应用是目前功率器件的前沿研究内容,具有重要的研究价值和实际意义。本论文即针对GaN高电子迁移率晶体管的特性及其在功率放大器中的应用进行研究。
     研究GaN HEMT器件的小信号模型,根据现有的器件和实验条件,提出了一种小信号等效电路模型,采用直接提取法提取小信号参数,给出了详细的参数提取流程,对比了模型仿真与实际测量的S参数,验证了模型的准确性。基于AgilentADS大信号非线性模型中的EEHEMT1模型,建立了GaN HEMT的大信号非线性模型,并对直流模型进行了改进,引入了膝点电压随栅源电压的变化特性,通过仿真和测量数据的对比,证明了模型的准确性和可用性。
     设计并实现了一种基于GaN HEMT器件的新型宽带平衡功率放大器,分别从宽带匹配、宽带耦合器、偏置电路和热设计等方面对GaN HEMT放大器进行了设计,并制作和测试了实物电路,使用输入/输出端的最优化匹配网络结构,获得高的效率和大的带宽,验证了设计的正确性。同时,针对GaN HEMT器件输入、输出端最佳阻抗特性,研究了分别使用于输入/输出端的最优化匹配网络的结构和设计方法,并给出了设计实例加以验证。
     研究晶体管输出电容对E类功率放大器性能的影响,证明了在微波频段,晶体管的输出电容会破坏零电流切换(ZCS)和零电流导数切换(ZCDS)条件,输出电容的增加会导致放大器效率和输出功率的下降,输出电容限制了E类功率放大器的工作频率。为了消除晶体管大输出电容对E类放大器工作频率的限制,提出了多频点电感补偿法,用以消除大输出电容的影响,进行了详细的理论推导。
     提出了两种多频点微带补偿电路结构,可有效地消除晶体管输出大电容对工作频率的限制,并进行了详细的理论分析和参数计算公式推导。通过对理想功率放大器的ADS仿真,验证了微带补偿电路理论分析的正确性。基于该电路结构设计并测试了一款并联电路E类功率放大器,优良的测试结果证明了该电路结构能有效地提高E类放大器工作频率,克服晶体管输出电容对工作频率的限制,显著地提高了放大器的综合性能。
     提出了一种具有有限扼流电感的逆E类功率放大器电路结构,进行了详细的理论分析和公式推导,并与其他类型E类功率放大器做了详细的性能对比。基于该电路结构设计并测试了一款逆E类功率放大器,谐波平衡仿真和实验测试结果证明了理论分析的正确性和拓扑结构的合理性。为了使有限扼流电感逆E类功率放大器更好在微波频段应用,提出了有限扼流电感逆E类功率放大器的传输线近似结构,并制作和测试了工作频率为3GHz的逆E类功率放大器实例,采用有效扼流电感的谐波抑制作用,利用和补偿管芯漏极电感和输出电容,有效提高了输出功率和效率,获得了良好的测试结果,证明了该电路技术可以广泛地应用于微波频段的高效率功率放大器设计。
The rapid development of the global wireless communication technologiesincreases the market demand for transceiver of a wireless communication system andgives higher performance requirements of the transceiver. In the entire wirelesscommunication system, the power amplifier is the critical components of thetransmitter, whose performances, such as bandwidth, output power, efficiency andworking temperature, severely affect the overall fuction of the system. The powerdevice is the most important and critical part of the power amplfier, such as the deviceof silicon-lateral deffusion metal oxide semiconductor, GaAs, InP and SiC, etc. Due tothe physical charactristics limitations of the materials themselves, they can not meetthe needs of the application, and the development of new materials using for powerdevices is extremely urgent. As the behalf of the third generation of semiconductormaterial, GaN, which is a wide-bandgap semiconductor material, become a hotresearch topic due to its excellent electrical and thermal properties. The advantageouscharacteristics of GaN HEMT are well known and documented. These include highbreakdown voltage, high current carrying capability, high power density and highfrequency of operation. These attributes make GaN HEMT well suited for present andfuture wireless communication systems. It is a cutting-edge research that is thephysical characteristics of the high electron mobility transistor of GaN and itsapplication in the power amplfier. The research has important value and practicalsignificance. The dissertation focuses on the research on the characteristics of highelecton mobility transistor using GaN and its application in power amplifer.
     To study the small signal model of GaN HEMT. A small-signal equivalent circuitmodel is proposed, and a direct extraction method with detailed parameter extractionprocess is given to extract the small signal parameters. The accuracy of the model isverified by the comparison of the simulated and measured S-parameter. A large-signalnonlinear model, whose DC model is improved by considering the impact of thegate-source voltage on the knee voltage, is established for GaN HEMT based onEEHEMT1(the ADS large-signal nonlinear model). The accuracy and usability of thelarge-signal nonlinear model is proved by the comparison of the simulated andmeasured data.
     A design procedure and implementation for a broadband balanced PA has beenpresented from several aspects; wideband matching, broadband couplers, bias circuit and thermal design. A wideband balanced PA is fabricated based on GaN HEMTdevices. Measured results are in agreement with design expectations showing highefficiency and large bandwidth. The excellent results obtained verify the correctnessof the design method.
     The effects of a transistor output capacitance is analyzed for performance of aClass-E power amplifier. The output capacitance of the transistor is found to destroythe ZCS and ZCDS conditions of a Class-E power amplifier. The increase of theoutput capacitor will cause the decline of the amplifier efficiency and output power.And the maximum operation frequency of the Class-E PA is found to be affected bythe transistor's output capacitance. In order to eliminate the limitation on themaximum operation frequency caused by the transistor's output capacitor, amulti-frequency inductance-compensation method is proposed to eliminate the impactof large output capacitance. The theoretical derivation is carried out in detail, and thecorrectness of the theoretical analysis is proved by simulation results.
     Two transmission-line compensation circuits is developed, considering theapplication of the multi-frequency inductance-compensation technology in themicrowave band, to effectively eliminate the limitation on the opertation frequency ofthe transistor output capacitance. Analytical expressions are derived to determine thevalues of the required circuit elements in detail. The proposed circuit has beensimulated and the predicted behavior is substantiated by measurements results. Basedon the theory developed, a class-E PA has been designed, fabricated and measured.The agreement between simulation and measured data, taken together with ease offabrication demonstrates the validity and advantage of the proposed capacitivecompensation network. The restriction on operating frequency imposed by thetransistor’s increased output capacitance is eliminated, and the comprehensiveperformance of the power amplifier is significantly improved.
     An inverse Class-E power amplifier with finite D.C. feed inductance is propesedand analyzed. A set of design equations are derived in order to obtain the values of thecircuit components and evaluate the major performance parameters. As analyticalsolutions of the resultant circuit equations are cumbersome, the performance of theproposed inverse class-E PA is analyzed using numerical simulations, tables, andgraphs. The advantages of an inverse Class-E amplifier are compared with otherclass-E PA. The proposed PA has been simulated and the predicted behavior has beensubstantiated by measurements. The agreement between simulation and measured data,demonstrates the validity of the proposed PA. In order to make it better in the microwave band applications, a transmission-line topology is proposed of theinverse class-E power maplifier. A3-GHz inverse class-E power amplifier instancehas been designed, fabricated and measured. Due to the effective harmonicsuppression, the using and compensation of the transisitor drain inductor and outputcapacitor, the output power and efficiency are effectively improved. Excellentmeasured results prove that the circuit technology can be widely used in the design ofthe microwave-band high-efficiency power amplifier.
引文
[1]何庆立.无线通信技术应用及发展.无线电技术与信息,2006(001):84-88
    [2]张辉, GaN基HEMT内匹配功率放大器研究:[中国科学院微电子研究所硕士学位论文].北京:中国科学院微电子研究所,2009.1-3
    [3] Mimura T, Hiyamizu S, Hashimoto H, et al. High-Electron Mobility Transistorswith Selectively Doped Gaas-N-Algaas Heterojunctions. Ieee Transactions onElectron Devices,1980,27(11):2197-2197
    [4] Khan M A, Kuznia J N, Bhattarai A R, et al. Metal-Semiconductor Field-EffectTransistor Based on Single-Crystal Gan. Applied Physics Letters,1993,62(15):1786-1787
    [5] Mishra U K, Shen L, Kazior T E, et al. GaN-Based RF power devices andamplifiers. Proceedings of the Ieee,2008,96(2):287-305
    [6] Colantonio P, Giannini F, Giofre R, et al. Evaluation of Gan Technology inPower Amplifier Design. Microwave and Optical Technology Letters,2009,51(1):42-44
    [7] Pengelly R S, Wood S M, Milligan J W, et al. A Review of GaN on SiC HighElectron-Mobility Power Transistors and MMICs. Ieee Transactions onMicrowave Theory and Techniques,2012,60(6):1764-1783
    [8] Krishnamurthy K, Lieu D, Vetury R, et al. A0.1-1.8GHz,100W GaN HEMTPower Amplifier Module.2010IEEE Compound Semiconductor IntegratedCircuit Symposium (CSICS),2010:1-4
    [9] Khan M A, Shur M S, Chen Q C, et al. Current-Voltage Characteristic Collapsein Algan/Gan Heterostructure Insulated Gate Field-Effect Transistors at HighDrain Bias. Electronics Letters,1994,30(25):2175-2176
    [10] Chou Y C, Li G P, Chen Y C, et al. Off-state breakdown effects on gate leakagecurrent in power pseudomorphic AlGaAs/InGaAs HEMT's. IEEE ElectronDevice Letters,1996,17(10):479-481
    [11] Chou Y C, Li G P, Leung D, et al. Degradation effects induced by hot carrierand high channel temperature in pseudomorphic GaAs millimeter wave powerHEMT's. Gaas Ic Symposium-19th Annual, Technical Digest1997,1997:165-168
    [12] Chan Y J, Wu C S, Chen C H, et al. Characteristics of aIn-0.52(AlxGa1-x)(0.48)As/In0.53Ga0.47As(0<=x<=1) heterojunction and itsapplication on HEMT's. Ieee Transactions on Electron Devices,1997,44(5):708-714
    [13] Binari S, Redwing J, Kelner G, et al. AlGaN/GaN HEMTs grown on SiCsubstrates. Electronics Letters,1997,33(3):242-243
    [14] Ping A, Chen Q, Yang J, et al. DC and microwave performance of high-currentAlGaN/GaN heterostructure field effect transistors grown on p-type SiCsubstrates. Electron Device Letters, IEEE,1998,19(2):54-56
    [15] Sullivan G, Higgins J, Chen M, et al. High power RF operation of AlGaN/GaNHEMTs grown on insulating silicon carbide substrates. Electronics Letters,1998,34(9):922-924
    [16] Xu J J, Wu Y F, Keller S, et al.1-8-GHz GaN-based power amplifier usingflip-chip bonding. Microwave and Guided Wave Letters, IEEE,1999,9(7):277-279
    [17] Micovic M, Nguyen N, Janke P, et al. GaN/AlGaN high electron mobilitytransistors with ft of110GHz. Electronics Letters,2000,36(4):358-359
    [18] Xu J J, Keller S, Perish G, et al., A3-10GHz LCR-matched power amplifierusing flip-chip mounted AlGaN/GaN HEMTs, in: Microwave SymposiumDigest.2000IEEE MTT-S International,2000,959-962
    [19] Sheppard S, Pribble W, Emerson D, et al. Technology development forGan/AlGaN HEMT hybrid and MMIC amplifiers on semi-insulating SiCsubstrates, in: High Performance Devices,2000. Proceedings.2000IEEE/Cornell Conference on,2000,232-236
    [20] Chumbes E M, Schremer A, Smart J A, et al. AlGaN/GaN high electronmobility transistors on Si (111) substrates. Electron Devices, IEEE Transactionson,2001,48(3):420-426
    [21] Keller S, Wu Y F, Parish G, et al. Gallium nitride based high powerheterojunction field effect transistors: process development and present status atUCSB. Electron Devices, IEEE Transactions on,2001,48(3):552-559
    [22] Kumar V, Lu W, Khan F, et al. High performance0.25μm gate-lengthAlGaN/GaN HEMTs on sapphire with transconductance of over400mS/mm.Electronics Letters,2002,38(5):252-253
    [23] Wu Y F, Moore M, Wisleder T, et al. High-gain microwave GaN HEMTs withsource-terminated field-plates, in: Electron Devices Meeting,2004. IEDMTechnical Digest. IEEE International,2004,1078-1079
    [24] Moon J, Wong D, Hu M, et al.55%PAE and high power Ka-band GaN HEMTswith linearized transconductance via n+GaN source contact ledge. IEEEElectron Device Letters,2008,29(8):834-837
    [25] Okamoto N, Hoshino K, Hara N, et al. MOCVD-grown InGaN-channel HEMTstructures with electron mobility of over1000cm(2)/Vs. Journal of CrystalGrowth,2004,272(1-4):278-284
    [26] Gao S, Xu H, Heikman S, et al. Microwave class-E GaN power amplifiers, in:2005Asia-Pacific Microwave Conference Proceedings, Vols1-5,2005,1035-1038
    [27] Gao S, Xu H, Mishra U K, et al. MMIC class-F power amplifiers usingfield-plated AlGaN/GaN HEMTs, in: Compound Semiconductor IntegratedCircuit Symposium,2006. CSIC2006. IEEE,2006,81-84
    [28] Wu Y F, Moore M, Saxler A, et al.40-W/mm double field-plated GaN HEMTs,in: Device Research Conference,200664th,2006,151-152
    [29] Darwish A, Boutros K, Luo B, et al.4-watt Ka-band AlGaN/GaN poweramplifier MMIC, in: Microwave Symposium Digest,2006. IEEE MTT-SInternational,2006,730-733
    [30] Katz A, Kubak M, and DeSalvo G. A6to16GHz linearized GaN poweramplifier, in: Microwave Symposium Digest,2006. IEEE MTT-S International,2006,1364-1367
    [31] Murase Y, Wakejima A, Inoue T, et al. CW20-W AlGaN/GaN FET PowerAmplifier for Quasi-Millimeter Wave Applications, in: CompoundSemiconductor Integrated Circuit Symposium,2007. IEEE,2007,1-4
    [32] Kobayashi K W, Chen Y C, Smorchkova I, et al.1-Watt conventional andcascoded GaN-SiC Darlington MMIC amplifiers to18GHz, in: RadioFrequency Integrated Circuits (RFIC) Symposium,2007IEEE,2007,585-588
    [33] Defrance N, Hoel V, Douvry Y, et al. AlGaN/GaN HEMT high power densitieson SiC/SiO2/poly-SiC substrates. IEEE Electron Device Letters,2009,30(6):596-598
    [34] Santhakumar R, Pei Y, Mishra U K, et al. Monolithic millimeter-wavedistributed amplifiers using AlGaN/GaN HEMTs. in: Microwave SymposiumDigest,2008IEEE MTT-S International,2008,1063-1066
    [35] Krishnamurthy K, Martin J, Landberg B, et al. Wideband400W pulsed powerGaN HEMT amplifiers, in: Microwave Symposium Digest,2008IEEE MTT-SInternational,2008,303-306
    [36] http://www.sedi.co.jp/e/products/newproducts/gan_hemt.html
    [37] Shinohara K, Corrion A, Regan D, et al.220GHz f(T) and400GHz f(max) in40-nm GaN DH-HEMTs with Re-grown Ohmic.2010International ElectronDevices Meeting-Technical Digest,2010
    [38] http://www.cree.com/products/wireless_gan_hemt2.asp
    [39] https://estore.rfmd.com/RFMD_Onlinestore/Products/RFMD+Parts
    [40] http://nitronex.com/products.html
    [41] Green B M, Chu K K, Chumbes E M, et al. The effect of surface passivation onthe microwave characteristics of undoped AlGaN/GaN HEMTs. Electron DeviceLetters, IEEE,2000,21(6):268-270
    [42]陈堂胜,张斌,焦刚等. X-波段AlGaN/GaN HEMT功率MMIC.固体电子学研究与进展,2008,27(3):3-3
    [43] Xiaojiang Y, Bin L, Yanhu C, et al. AIGaN/GaN HEMTs Power Amplifier MICwith Power Combining at C-Band.2007,28(4)
    [44] Yingkui Z, Gu0gu L, Zhijing H, et al.0.25um Gate-Length AIGaN/GaN PowerHEMTs on Sapphire with fTof77GHz.半导体学报,2006,27(6),
    [45]曾轩,陈晓娟,刘果果等.8GHz带有RC稳定网络的AlGaN/GaN HEMTs内匹配功率合成放大器的设计.半导体学报,2008,29(8):145-148
    [46]顾卫东,张志国. X波段大栅宽高输出功率AlGaN/GaN HEMT的研究.半导体技术,2009,34(011):1082-1084
    [47]孙春妹,钟世昌,陈堂胜等. Ku波段20W AlGaN/GaN功率管内匹配技术研究.电子与封装,2010,10(006):23-25
    [48] M. Albulet. RF power amplifiers Atlanta, GA: Noble2001,131-338
    [49]游飞. E类功率放大器研究:[电子科技大学博士学位论文].成都:电子科技大学,2009.
    [50] Jeon J and Kuhn W B. A fully integrated UHF CMOS power amplifier forspacecraft applications. Microwave Theory and Techniques, IEEE Transactionson,2007,55(10):2006-2014
    [51] Mury T and Fusco V F. Inverse class-E amplifier with transmission-lineearmonic suppression. Ieee Transactions on Circuits and Systems I-RegularPapers,2007,54(7):1555-1561
    [52] Koller R, Stelzer A, Abt K H, et al. A Class-E GSM-handset PA with increasedefficiency,2003
    [53] Park C, Kim Y, Kim H, et al. A1.9-GHz triple-mode class-E power amplifierfor a polar transmitter. Ieee Microwave and Wireless Components Letters,2007,17(2):148-150
    [54] Wang N, Peng X L, Yousefzadeh V, et al. Linearity of X-band class-E poweramplifiers in EER operation. Ieee Transactions on Microwave Theory andTechniques,2005,53(3):1096-1102
    [55] Quach T K, Watson P M, Okamura W, et al. Ultrahigh-efficiency poweramplifier for space radar applications. IEEE Journal of Solid-State Circuits,2002,37(9):1126-1134
    [56] Tayrani R. A spectrally pure5.0w, high PAE,(6-12GHz) GaN monolithic classE power amplifier for advanced T/R modules.2007IEEE Radio FrequencyIntegrated Circuits (RFIC) Symposium, Digest of Papers,2007:581-584
    [57] Sokal N O and Sokal A D. Class-E-New Class of High-Efficiency TunedSingle-Ended Swithing Power Amplifiers. IEEE Journal of Solid-State Circuits,1975, SC10(3):168-176
    [58] Raab F H. Idealized Operation of Class-E Tuned Power Amplifier. IeeeTransactions on Circuits and Systems,1977,24(12):725-735
    [59] Zulinski R E and Steadman J W. Class-E Power-Amplifiers andFrequency-Multipliers with Finite DC-feed Iinductance. Ieee Transactions onCircuits and Systems,1987,34(9):1074-1087
    [60] Grebennikov A V and Jaeger H. Class E with parallel circuit-A new challengefor high-efficiency RF and microwave power amplifiers, in2002Ieee Mtt-SInternational Microwave Symposium Digest, Vols1-3, Hamilton R, Ed., ed,2002,1627-1630
    [61] Mury T and Fusco V F. Series-L/parallel-tuned comparison withshunt-C/series-tuned class-E power amplifier. Iee Proceedings-Circuits Devicesand Systems,2005,152(6):709-717
    [62] Wong S C and Tse C K. Design of symmetrical Class E power amplifiers forvery low harmonic-content applications. Ieee Transactions on Circuits andSystems I-Regular Papers,2005,52(8):1684-1690
    [63] Mertens K L R and Steyaert M S J. A700-MHz1-W fully differential CMOSclass-E power amplifier. IEEE Journal of Solid-State Circuits,2002,37(2):137-141
    [64] Choi D K and Long S I. Finite DC feed inductor in class E power amplifiers-Asimplified approach, in2002Ieee Mtt-S International Microwave SymposiumDigest, Vols1-3, Hamilton R, Ed., ed,2002,1643-1646
    [65] Kee S D, Aoki I, Hajimiri A, et al. The class-E/F family of ZVS switchingamplifiers. Ieee Transactions on Microwave Theory and Techniques,2003,51(6):1677-1690
    [66] Chudobiak M J. The Use of Parasitic Nonlinear Capacitors in Class-EAmplifiers. Ieee Transactions on Circuits and Systems I-Fundamental Theoryand Applications,1994,41(12):941-944
    [67] Wang C, Larson L E, and Asbeck P M. Improved design technique of amicrowave class-E power amplifier with finite switching-on resistance. Rawcon2002: Ieee Radio and Wireless Conference, Proceedings,2002:241-244
    [68] Choi D K and Long S I. The effect of transistor feedback capacitance in class-Epower amplifiers. Ieee Transactions on Circuits and Systems I-FundamentalTheory and Applications,2003,50(12):1556-1559
    [69] Blanchard J A and Yuan J S. Effect of Collector Current Exponential Decay onPower Efficiency for Class-E Tuned Power-Amplifier. Ieee Transactions onCircuits and Systems I-Fundamental Theory and Applications,1994,41(1):69-72
    [70] Grebennikov A. Simple design equations for broadband class E poweramplifiers with reactance compensation.2001Ieee Mtt-S InternationalMicrowave Symposium Digest, Vols1-3,2001:2143-2146
    [71] Qin Y, Gao S, and Sambell A. Design of low cost broadband class-E poweramplifier using low voltage supply.2004High Frequency Postgraduate StudentColloquium,2004:101-106
    [72] Jarvinen E A and Alanen M J. GaAsHBT class-E amplifiers for2-GHz mobileapplications.2005IEEE Radio Frequency Integrated Circuits (RFIC)Symposium, Digest of Papers,2005:421-424
    [73] Gu H M, Gao B X, and Liang C G. Mechanical class-E amplifier using MEMSswitch. Electronics Letters,2003,39(1):154-155
    [74] Dong P, Cheng K W E, Ho S L, et al. Modeling and examination of class-EDC-DC converter using piezoelectric transformer for automotive applications.2006IEEE Power Electronics Specialists Conference, Vols1-7,2006:501-506
    [75] Zhang H, Wong S C, Tse C, et al. Study of parasitic and stray componentsinduced ringings in Class E power amplifiers in MHz range. Proceedings of the2005European Conference on Circuit Theory and Design, Vol3,2005:129-132
    [76]马鹏飞.高新能低功耗射频功率放大器的设计:[西安电子科技大学硕士学位论文].西安:西安电子科技大学,2007.
    [77]王科平.高效率射频功率放大器的研究:[浙江大学硕士学位论文].杭州:浙江大学,2006.
    [78]孙文宾,黄云新,刘鹏.一种设计宽带高效E类功率放大器的方法——“参数补偿压缩法”.电子学报,2001,29(11):1536-1539
    [79] Chen W, Floberg H, and S.-S. Qiu. A new analytical method for analysis anddesign of class E power amplifiers taking into account the switching device onresistance. International Journal of Circuit Theory and Applications,1999,27(4):421-436
    [80]杜春山,陈常勇,刘章发.1.8GHz CMOS高效率E类功率放大器.半导体技术,2007,32(8):703-706
    [81] Zhang W P, Zhang D Y, Wang Y H, et al. A Low-Cost-ZVS-Class-E converterusing PT. Pesc04:2004Ieee35th Annual Power Electronics SpecialistsConference, Vols1-6, Conference Proceedings,2004:1803-1807
    [82] You F, He S, Tang X, et al. Analysis of a class E power amplifier withseries-parallel resonator. Iet Circuits Devices&Systems,2008,2(6):476-484
    [83]朱健程.高效率2.4GHz E类功率放大器技术研究:[国立中山大学硕士学位论文].高雄:国立中山大学,2004.
    [84] Yam Y O, Cheung C W, and Li C H. Transmission-Line Modeling of the Class-EAmplifier with an Analytical Method. International Journal of NumericalModelling-Electronic Networks Devices and Fields,1995,8(5):357-366
    [85] Lin W C, Wu T C, Tsai Y H, et al. Reliability evaluation of class-E and class-Apower amplifiers with nanoscaled CMOS technology. Ieee Transactions onElectron Devices,2005,52(7):1478-1483
    [86]何岳龙.高效率与线性度的纲领放大器设计:[国立中山大学硕士学位论文].桃园:国立中山大学,2003.
    [87] Wang M-C. A2.4GHz0.18um full-COMS single-stage class E power ampliferwith temperature effect for ISM band wireless communicaion in: internationalConference on Intergration and Commercialization of Micro and Nanosystems,2007,311-314
    [88] Chen F Y, Chen J F, and Lin R L. Low-harmonic push-pull Class-E poweramplifier with a pair of LC resonant networks. Ieee Transactions on Circuitsand Systems I-Regular Papers,2007,54(3):579-589
    [89] Ho C C, Kuo C W, Hsiao C C, et al. A fully integrated2.4GHz class-Eamplifier with a63%PAE by0.18mu m CMOS technologies. Solid-StateElectronics,2004,48(1):99-102
    [90] Tu S H L. Class E RF tuned power amplifiers in CMOS technologies: Theoryand circuit design considerations. IEEE Communications Magazine,2004:S6-11
    [91] Lin C H, Su J H, and Ho C Y. Design of Class E Backlight Module WithOptimal Operating Frequency Tracking Mechanism, in: Industrial Electronicsand Applications,2007. ICIEA2007.2nd IEEE Conference on,2007,1933-1938
    [92] Jau J K, Li J Y, Li C J, et al. Design of Class-E power amplifier for hybridquadrature polar modulation transmitter. Tencon2007-2007Ieee Region10Conference, Vols1-3,2007:112-115
    [93] Lepine F, Adahl A, and Zirath H. L-band LDMOS power amplifiers based on aninverse class-F architecture. Ieee Transactions on Microwave Theory andTechniques,2005,53(6):2007-2012
    [94] Islam S S and Anwar A F M. GaN/AlGaN HEMT microwave class-E poweramplifler.2001International Semiconductor Device Research Symposium,Proceedings,2001:446-449
    [95] Xu H T, Gao S, Heikman S, et al. High-efficiency class-E power amplifier usingfield-plated GaNHEMTs.2005Ieee Csic Symposium, Technical Digest,2005:166-169
    [96] Lee Y S and Jeong Y H. A high-efficiency class-E GaN HEMT power amplifierfor WCDMA applications. Ieee Microwave and Wireless Components Letters,2007,17(8):622-624
    [97] Lee Y S and Jeong Y H. Applications of GaN HEMTs and SiC MESFETs in highefficiency class-E power amplifier design for WCDMA applications, in2007Ieee/Mtt-S International Microwave Symposium Digest, Vols1-6, ed,2007,1097-1100
    [98] I.D.Robertson and S.Lucyszyn. RFIC and MMIC design and technology London:The Institution of Electrical Engineers2001,69
    [99]武世香.双极型和场效应晶体管北京:电子工业出版社1995,116
    [100]谢孟贤,刘诺.化合物半导体材料与器件西安:电子科技大学出版社2000,108
    [101] Shur M. Compound semiconductor electronics: World Scientific1996
    [102] Kohn E, Daumiller I, Schmid P, et al. Large signal frequency dispersion ofAlGaN GaN heterostructure field effect transistors. Electronics Letters,1999,35(12):1022-1024
    [103] Vetury R, Zhang N Q Q, Keller S, et al. The impact of surface states on the DCand RF characteristics of A1GaN/GaN HFETs. Ieee Transactions on ElectronDevices,2001,48(3):560-566
    [104] Binari S C, Ikossi K, Roussos J A, et al. Trapping effects and microwave powerperformance in AlGaN/GaN HEMTs. Ieee Transactions on Electron Devices,2001,48(3):465-471
    [105]罗大为. AlGaN/GaN HEMT电流崩塌效应的测试及仿真研究:[电子科技大学硕士学位论文].成都:电子科技大学,2007.11
    [106]蒲颜. GaN基MMIC器件模型研究:[中国科学院微电子研究所博士学位论文].北京:中国科学院微电子研究所,2011.17-19
    [107] Webster R T, Wu S L, and Anwar A F M. Impact ionization inInAlAs/InGaAs/InAlAs HEMT's. IEEE Electron Device Letters,2000,21(5):193-195
    [108] Horio K and Fuseya Y.2-Dimensional Simulations of Drain-Current Transientsin Gaas-Mesfets with Semiinsulating Substrates Compensated by Deep Levels.Ieee Transactions on Electron Devices,1994,41(8):1340-1346
    [109] Barton T M, Snowden C M, Richardson J R, et al. Narrow Pulse Measurementof Drain Characteristics of Gaas-Mesfets. Electronics Letters,1987,23(13):686-687
    [110] Charbonniaud C, De Meyer S, Quéré R, et al. Electrothermal and trappingeffects characterisation of AlGaN/GaN HEMTs, in:11th GaAs Symposium,Munich,2003,201-204
    [111] Golio J M, Miller M G, Maracas G N, et al. Frequency-Dependent ElectricalCharacteristics of Gaas-Mesfets. Ieee Transactions on Electron Devices,1990,37(5):1217-1227
    [112] Staudinger J, Golio M, Woodin C, et al. Considerations for Improving theAccuracy of Large-Signal Gaas-Mesfet Models to Predict Power-AmplifierCircuit Performance. IEEE Journal of Solid-State Circuits,1994,29(3):366-373
    [113] Vitanov S, Palankovski V, Maroldt S, et al. High-temperature modeling ofAlGaN/GaN HEMTs. Solid-State Electronics,2010,54(10):1105-1112
    [114] Rajasingam S, Pomeroy J W, Kuball M, et al. Micro-Raman temperaturemeasurements for electric field assessment in active AlGaN-GaNHFETs. IEEEElectron Device Letters,2004,25(7):456-458
    [115] Curtice W R, Pla J A, Bridges D, et al. A new dynamic electro-thermalnonlinear model for silicon RF LDMOS FETs.1999Ieee Mtt-S InternationalMicrowave Symposium Digest, Vols1-4,1999:419-422
    [116] Dambrine G, Cappy A, Heliodore F, et al. A new method for determining theFET small-signal equivalent circuit Ieee Transactions on Microwave Theoryand Techniques,1988,36(7):1151-1159
    [117] Jarndal A and Kompa G. A new small-signal modeling approach applied to GaNdevices. Ieee Transactions on Microwave Theory and Techniques,2005,53(11):3440-3448
    [118] Berroth M and Bosch R. High-frequency equivalent circuit of GaAs FETs forlarge-signal applications. Ieee Transactions on Microwave Theory andTechniques,1991,39(2):224-229
    [119] Shirakawa K, Oikawa H, Shimura T, et al. An approach to determining anequivalent circuit for HEMTs Ieee Transactions on Microwave Theory andTechniques,1995,43(3):499-503
    [120] Caddemi A, Crupi G, and Donato N. A robust and fast procedure for thedetermination of the small signal equivalent circuit of HEMTs.Microelectronics Journal,2004,35(5):431-436
    [121] Ma T, Hao Y, Chen C, et al. A new small-signal model for asymmetricalAlGaN/GaN HEMTs. Journal of Semiconductors,2010,31(6):064002(5pp.)-064002
    [122] Tayrani R, Gerber J E, Daniel T, et al. A new and reliable direct parasiticextraction method for MESFETs and HEMTs.23rd European MicrowaveConference Proceedings,1993:451-453
    [123]高建军.场效应晶体管射频微波建模技术北京:电子工业出版社2007,138-140
    [124] Pantoja R R, Howes M J, Richardson J R, et al. A Large-Signal Physical MesfetModel for Computer-Aided-Design and Its Applications. Ieee Transactions onMicrowave Theory and Techniques,1989,37(12):2039-2045
    [125] Trew R J. Mesfet Models for Microwave Computer-Aided-Design. MicrowaveJournal,1990,33(5):115-118
    [126] Root D E and Fan S. Experimental evaluation of large-signal modelingassumptions based on vector analysis of bias-dependent S-parameter data fromMESFETs and HEMTs. IEEE MTT-S International Microwave SymposiumDigest,1992,1:255-258
    [127] Andrei Grebennikov著张玉兴,赵宏飞译.射频与微波功率放大器设计北京:电子工业出版社2006,63-70
    [128]Curtice W R. A Mesfet Model for Use in the Design of Gaas Integrated-Circuits.Ieee Transactions on Microwave Theory and Techniques,1980,28(5):448-456
    [129] Curtice W R and Ettenberg M. A Nonlinear Gaas-Fet Model for Use in theDesign of Output Circuits for Power-Amplifiers. Ieee Transactions onMicrowave Theory and Techniques,1985,33(12):1383-1394
    [130] Kacprzak T and Materka A. Compact Dc Model of Gaas-Fets for Large-SignalComputer Calculation. IEEE Journal of Solid-State Circuits,1983,18(2):211-213
    [131] Statz H, Newman P, Smith I W, et al. Gaas-Fet Device and Circuit Simulation inSpice. IEEE Transactions on Electron Devices,1987,34(2):160-169
    [132] Mccamant A J, Mccormack G D, and Smith D H. An Improved Gaas-MesfetModel for Spice. Ieee Transactions on Microwave Theory and Techniques,1990,38(6):822-824
    [133] Angelov I, Zirath H, and Rorsman N. A New Empirical Nonlinear Model forHemt and Mesfet Devices. Ieee Transactions on Microwave Theory andTechniques,1992,40(12):2258-2266
    [134] Chang Y H and Chang J J. Analysis of an EEHEMT model for InP pHEMTs.Edssc:2007Ieee International Conference on Electron Devices and Solid-StateCircuits, Vols1and2, Proceedings,2007:237-240
    [135] Saad P, Fager C, Cao H Y, et al. Design of a Highly Efficient2-4-GHz OctaveBandwidth GaN-HEMT Power Amplifier. Ieee Transactions on MicrowaveTheory and Techniques,2010,58(7):1677-1685
    [136] Masuda S, Akasegawa A, Ohki T, et al. Over10W C-Ku Band GaN MMICNon-uniform Distributed Power Amplifier with Broadband Couplers.2010IEEE MTT-S International Microwave Symposium Digest (MTT),2010:1388-1389
    [137]陈雪军,高建峰.2-26GHz GaAs单片功率放大器.电子学报,2000,28(11):140-142
    [138] Shastry P N and Ibrahim A S. Design guidelines for a novel tapered drain linedistributed power amplifier, in:2006European Microwave Conference, Vols1-4,2006,1031-1034
    [139] Cripps S C. RF Power Amplifiers for Wireless Communications Norwood: MA:Artech House2006
    [140]孙文宾,黄云新.一种设计宽带高效E类功率放大器的方法—“参数补偿压缩法”.电子学报,2001,29(11):1536-1539
    [141] Wu Y, York R, Keller S, et al.3-9-GHz GaN-based microwave power amplifierswith LCR broad-bandmatching. Ieee Microwave and Guided Wave Letters,1999,9(8):314-316
    [142]恽小华,孙琳琳,楚然等.一种基于双级支线功分/功合网络的毫米波固态功率放大器.电子学报,2006,34(B12):2347-2349
    [143]高葆新等.微波集成电路北京:国防工业出版1995
    [144] Wu L, Basaran U, Dettmann I, et al. A broadband high efficiency class-ABLDMOS balanced power amplifier.35th European Microwave Conference, Vols1-3, Conference Proceedings,2005:1079-1082
    [145] Podcameni A and Riback C R. An amplifier linearization method based on aquadrature balanced structure. Ieee Transactions on Broadcasting,2002,48(2):158-162
    [146] Fano R M. Theoretical Limitations on the Broadband Matching of ArbitraryImpedances. Journal of the Franklin Institute,1950,249:57-83,139-154
    [147] Lange J. Interdigited Stripline Quadrature Hybrid. IEEE Transactions onMicrowave Theory and Techniques,1969, MT17(12):1150-1151
    [148] Presser A. Interdigitated Microstrip Coupler Design. IEEE Transactions onMicrowave Theory and Techniques,1978,26(10):801-805
    [149] Osmani R M. Synthesis of Lange Couplers. Ieee Transactions on MicrowaveTheory and Techniques,1981,29(2):168-170
    [150] Azam S, Jonsson R, and Wahab Q. Designing, Fabrication and Characterizationof Power Amplifiers Based on10-Watt SiC MESFET&GaN HEMT atMicrowave Frequencies.2008European Microwave Conference, Vols1-3,2008:1412-1415
    [151] van der Heijden M P, Acar M, Vromans J S, et al. A Compact12-WattHigh-Efficiency2.1-2.7GHz Class-E GaN HEMT Power Amplifier for BaseStations, in2009Ieee/Mtt-S International Microwave Symposium, Vols1-3, ed,2009,657-660
    [152] Wright P, Lees J, Benedikt J, et al. A Methodology for Realizing HighEfficiency Class-J in a Linear and Broadband PA. Ieee Transactions onMicrowave Theory and Techniques,2009,57(12):3196-3204
    [153] Azam S, Svensson C, Wahab Q, et al. Comparison of Two GaN TransistorTechnologies in Broadband Power Amplifiers. Microwave Journal,2010,53(4):184-192
    [154] Al Tanany A, Gruner D, Sayed A, et al. Highly Efficient Harmonically TunedBroadband GaN Power Amplifier, in:2010European Microwave IntegratedCircuits Conference,2010,5-8
    [155] Azam S, Svensson C, Wahab Q, et al. Comparison of GaN TransistorTechnologies in Broadband Power Amplifiers. Microwave Journal,2010,53(4):184-192
    [156] Chen K and Peroulis D. Design of Highly Efficient Broadband Class-E PowerAmplifier Using Synthesized Low-Pass Matching Networks. Ieee Transactionson Microwave Theory and Techniques,2011,59(12):3162-3173
    [157] Vatankhahghadim A and Boumaiza S. Design of High-Efficiency andBroadband-Tuned Class Ab Power Amplifier. Microwave and OpticalTechnology Letters,2011,53(2):395-398
    [158] Dawson D E. Closed-Form Solutions for the Design of Optimum MatchingNetworks. Ieee Transactions on Microwave Theory and Techniques,2009,57(1):121-129
    [159] Mediano A and Molina P. Frequency limitation of a high-efficiency class Etuned RF power amplifier due to a shunt capacitance, in1999Ieee Mtt-SInternational Microwave Symposium Digest, Vols1-4, Matloubian M and PontiE, Eds., ed,1999,363-366
    [160] Grebennikov A. RF and Microwave Power Amplifier Design: Publishing Houseof Electronics Industry2006,63-65
    [161]Grebennikov A and Sokal N O. Switchmode RF power Amplifers: Oxford, U.K.:Elsevier2007
    [162] Li C H and Yam Y O. Maximum frequency and optimum performance of classE power amplifiers. Iee Proceedings-Circuits Devices and Systems,1994,141(3):174-184
    [163] Ortega-Gonzalez J, Jimenez-Martin J L, Asensio-Lopez A, et al. High-efficiency load-pull harmonic controlled class-E power amplifier. IeeeMicrowave and Guided Wave Letters,1998,8(10):348-350
    [164] Cipriani E, Colantonio P, Giannini F, et al. Optimization of Class E PowerAmplifier Design above Theoretical Maximum Frequency. in:2008EuropeanMicrowave Integrated Circuits Conference,2008,514-517
    [165] Thian M and Fusco V F. Transmission-Line Class-E Power Amplifier WithExtended Maximum Operating Frequency. Ieee Transactions on Circuits andSystems Ii-Express Briefs,2011,58(4):195-199
    [166] Lee J, Kim S, Nam J, et al. Highly efficient LDMOS power amplifier based onclass-E topology. Microwave and Optical Technology Letters,2006,48(4):789-791
    [167] Cumana J, Grebennikov A, Sun G L, et al. An Extended Topology ofParallel-Circuit Class-E Power Amplifier to Account for Larger OutputCapacitances. Ieee Transactions on Microwave Theory and Techniques,2011,59(12):3174-3183
    [168] Choi D K and Long S I. Finite DC feed inductor in class E power amplifiers-Asimplified approach.2002Ieee Mtt-S International Microwave SymposiumDigest, Vols1-3,2002:1643-1646
    [169] Jee S, Moon J, Kim J, et al. Switching Behavior of Class-E Power Amplifierand Its Operation Above Maximum Frequency. Ieee Transactions on MicrowaveTheory and Techniques,2012,60(1):89-98
    [170] Grebennikov A. High-Efficiency Class E/F Lumped and Transmission-LinePower Amplifiers. Ieee Transactions on Microwave Theory and Techniques,2011,59(6):1579-1588
    [171] Tao C A O, Youjiang L I U, Rong Z, et al. S-Band High Efficiency GaNInverse-Class E Power Amplifier. Journal of Microwaves,2011,27(4):49-56
    [172] Ghajar M R and Boumaiza S. High Efficiency GaN Class E Amplifier for PolarTransmitter. in:20093rd International Conference on Signals, Circuits andSystems,2009,21-24
    [173] Brabetz T and Fusco V F. Voltage-driven class E amplifier and applications. IeeProceedings-Microwaves Antennas and Propagation,2005,152(5):373-377
    [174] Kazimierczuk M. Class-E Tuned Power-Amplifier with Shunt Inductor. IEEEJournal of Solid-State Circuits,1981,16(1):2-7
    [175] Mury T and Fusco V F. Transmission line matching effects on the performanceof shunt-C/series-tuned and series-L/parallel-tuned Class-E amplifiers. in:Microwave Conference Proceedings, Asia-Pacific Conference Proceedings,2005,4
    [176] You F, He S B, Tang X H, et al. The Effects of Limited Drain Current and OnResistance on the Performance of an LDMOS Inverse Class-E Power Amplifier.Ieee Transactions on Microwave Theory and Techniques,2009,57(2):336-343
    [177] Lee Y S, Lee M W, Kam S H, et al. A High-Efficiency GaN-Based PowerAmplifier Employing Inverse Class-E Topology. Ieee Microwave and WirelessComponents Letters,2009,19(9):593-595
    [178] He J and Ren D H. Design of a2.2GHz High Efficiency GaN HEMT InverseClass E Transmission-Line Power Amplifier. in: Communications, Circuits andSystems,2009. ICCCAS2009. International Conference on,2009,746-748
    [179] El Din M G, Geck B, and Eul H. Improved inverse class-E matching network formicrowave high power amplifiers.200916th IEEE International Conference onElectronics, Circuits and Systems (ICECS2009),2009:391-394
    [180] Sang-Ho K, Mun-Woo L, and Yoon-Ha J. A high-efficiency inverse class-Epower amplifier using double CRLH-TL for3.5GHz WiMAX applications.Proceedings of the2011Asia Pacific Microwave Conference,2011:279-282
    [181] Mun-Woo L, Sang-Ho K, and Yoon-Ha J. A highly efficient dual-band inverseclass-E power amplifier with double CRLH-TLs for LTE and WCDMAapplications. Proceedings of the2011Asia Pacific Microwave Conference,2011:514-517
    [182] Mury T and Fusco V F. Analysis of the effect of finite d.c. blocking capacitanceand finite d.c. feed inductance on the performance of inverse Class-E amplifiers.Iee Proceedings-Circuits Devices and Systems,2006,153(2):129-135
    [183] Wilkinson A J and Everard J K A. Transmission-line load-network topology forclass-E power amplifiers. IEEE Transactions on Microwave Theory andTechniques,2001,49(6):1202-1210
    [184] You F, He S B, Tang X H, et al. Performance Study of a Class-E PowerAmplifier With Tuned Series-Parallel Resonance Network. Ieee Transactions onMicrowave Theory and Techniques,2008,56(10):2190-2200
    [185] Leng Y Q, Zeng Y, Zhang L J, et al. Transmission-line compensation circuit ofparallel-circuit class-E power amplifier to extend maximum operatingfrequency. Electronics Letters,2012,48(20):1284-1286
    [186] Leng Y Q, Zeng Y, Zhang L J, et al. An Extended topology of Parallel-CircuitClass-E Power Amplifier Using Transmission-Line Compensation. IEEETransactions on Microwave Theory and Techniques,2013,61(4):1628-1638
    [187] Leng Y Q, Zhang L J, Zeng Y, et al. Inverse Class-E Power Amplifier WithFinite DC-feed Inductance and Transmission-Line Harmonic Suppression.Microwave Journal,(Accepted,2013)
    [188] Leng Y Q, Zeng Y, Zhang L J, et al. Design of a Broadband High EfficiencyGaN-HEMT Balanced Power Amplifier. Microwaves&RF,(Accepted,2013)
    [189]冷永清,张立军,曾云等.基于GaN HEMT的1.5~3.5GHz宽带平衡功率放大器设计.电子学报,(接收,2012)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700