蛇类爬行动物腹鳞的材料特性及摩擦学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术和仿生学的发展,仿生学在工程技术和微纳米科学方面的应用越来越广泛,因此人们更加重视从宏观范围到微观范围内对生物材料的形貌特征、力学性能及摩擦学行为等方面的研究。
     蛇类爬行动物腹鳞表面具有微观非光滑特性和疏水特性,对蛇的运动起着重要作用,并具有不沾泥土、保持蛇体清洁的作用。腹鳞的这些生物学特性对解决不同尺度范围内的减粘降阻及摩擦各向异性问题具有启示作用。本文以缅甸蟒蛇、乌梢蛇和红点锦蛇三种蛇的腹鳞为研究对象,从材料成分、微观结构、表面性能、力学性能、宏观和微观摩擦学行为等方面进行研究,建立了腹鳞表面摩擦运动的接触模型,旨在了解并掌握腹鳞的材料特性和摩擦学行为,揭示腹鳞的摩擦机理,为蛇类爬行动物腹部表皮的仿生制造提供依据。本论文的主要工作及结论如下:
     用傅立叶红外光谱仪、分析天平、物性测试仪分别测试腹鳞的材料成分、吸湿性和拉伸力学性能。结果表明,三种腹鳞的材料成分基本相同,是α角蛋白与β角蛋白的复合结构。腹鳞材料具有吸湿性,吸湿率在8%左右。腹鳞干样品的拉伸弹性模量为1.5 GPa左右,断裂强度为80 MN/m~2左右,蟒蛇腹鳞的弹性模量最高,乌梢蛇的最低;湿样品的弹性模量是干样品的1/5~1/3,断裂强度是干样品的1/2左右。这项研究主要在于了解腹鳞的材料特性,为腹鳞材料的摩擦特性研究及其仿生制造提供基础资料。
     用扫描电镜和原子力显微镜观察腹鳞表面的微观形貌。结果表明,三种不同腹鳞表面的微观形貌具有相似的结构特征,即高度有序的阵列结构,该结构可以看作由微凸体、微孔、凹坑以及板结构部分周期排列而成,并可以用排间距等11个参数定量描述。不同腹鳞表面上的微观形貌也有很大差异,主要表现在:蟒蛇腹鳞表面上的微凸体为手指状,其高度为200 nm左右,而红点锦蛇和乌梢蛇的微凸体是三角形,高度为60 nm左右;蟒蛇腹鳞的微凸体具有很大的后向角度,呈现出一边锋利、一边平缓的高度非对称性棘爪结构,而红点锦蛇和乌梢蛇腹鳞表面微凸体的后向角度很小;蟒蛇腹鳞表面微凸体的密度最高,是另外两种的1.8倍;蟒蛇和红点锦蛇的板结构部分约占排间距的1/2,而乌梢蛇腹鳞表面上基本没有板结构部分;乌梢蛇和红点锦蛇腹鳞表面凹坑的深度和直径远大于微孔,而蟒蛇腹鳞的凹坑深度相对较小;红点锦蛇腹鳞表面的微孔直径、深度及密度最大。腹鳞表面相似的微观结构特征使其具有减粘降阻及摩擦各向异性的作用,其差异是不同蛇类为了更好地适应栖息环境及运动方式造成的,并与蛇种有关。
     用接触角测量仪测量腹鳞表面的水接触角。结果表明,蛇类爬行动物腹鳞表面属于疏水表面,缅甸蟒蛇腹鳞表面的水接触角平均值是110.6°,乌梢蛇的是105.8°,红点锦蛇的是104.5°;腹鳞材料吸湿后表面的水接触角下降2°~3°。腹鳞表面的微观形貌可以增加表面的疏水性;在微纳米范围内,接触角随表面微凸体密度的增大而增大,随微凸体高度的增加而增大。
     用纳米硬度计研究腹鳞材料的纳米力学性能。结果表明,蟒蛇和红点锦蛇腹鳞材料压入弹性模量的最大值分别为1310 MPa、920 MPa,纳米硬度的最大值分别为104 MPa、90 Mpa;蟒蛇腹鳞的力学性能均高于红点锦蛇;压入过程中,腹鳞材料有蠕变,表明了腹鳞材料的粘弹性属性。腹鳞材料的纳米力学性能与蛇的生活环境有关。
     用UMT-2摩擦磨损试验机研究腹鳞表面的宏观摩擦特性。结果表明,腹鳞表面与不锈钢球摩擦副之间具有很低的摩擦阻力,摩擦系数为0.05~0.13,其中蟒蛇的摩擦系数最小,与聚四氟乙烯的相当,红点锦蛇的最大;干摩擦及水润滑时,摩擦系数随载荷的增加而减小,随滑动速度的增加而增加;油润滑时,摩擦系数随载荷的增加而减小,随滑动速度的增加而减小;水润滑时的摩擦系数是干摩擦时的1.3~1.9倍,油润滑时的摩擦系数是干摩擦时的0.8~2.3倍;腹鳞表面有宏观摩擦各向异性行为,前向运动时的摩擦阻力最小,后向运动时的摩擦阻力最大,是前向运动时的1.3~1.5倍,侧向运动时的摩擦阻力介于两者之间,并接近后向运动时的摩擦阻力。腹鳞滑动时的摩擦阻力由表面间粘着力、犁沟力、微凸体的机械变形阻力以及弹性滞后阻力组成,表面粘着力引起的阻力是摩擦力的主要部分;腹鳞表面的疏水性,减小了表面能;微凸体可以破坏水膜的连续性,表面凹坑存储的蛇体分泌液,增加了表面的疏水性,这些是腹鳞表面具有减粘降阻、减少泥土粘附的原因;腹鳞表面微观结构的倾斜角度是造成摩擦各向异性的主要原因。
     用原子力显微镜的LFM模式研究腹鳞表面的纳米摩擦性能。结果表明,腹鳞表面具有较低的粘附力和表面粘附能,缅甸蟒蛇、红点锦蛇、乌梢蛇腹鳞表面的粘附能分别为0.042J/m~2、0.045 J/m~2和0.047J/m~2;腹鳞表面的平均粘附力随着表面粗糙度的增加而减小;腹鳞表面的微观摩擦力与表面的微观形貌及其斜率有关,摩擦力的波动周期与微凸体的变化周期相同,但与微凸体的高度关系不大,与微凸体表面的斜率关系密切,并与微凸体的斜率分布相同;在蟒蛇腹鳞表面微凸体的边缘处,探针上升时的摩擦力变化剧烈,是下降时的2倍多,表现出微观摩擦的各向异性。腹鳞表面的摩擦力随载荷的增加而线性增大,与速度无关;三种腹鳞中,蟒蛇腹鳞的摩擦系数最低,红点锦蛇和乌梢蛇的基本相等。低载荷时,表面粘附力引起的摩擦力占微观摩擦力的主要部分。蟒蛇腹鳞表面上周期性排列的高度非对称的棘爪状微凸体结构是微摩擦各向异性的主要原因。研究结果表明,改变腹鳞表面上微凸体的倾斜角度、分布方式及密度可以改变不同方向上的摩擦力大小。
     本文的研究结果表明,蛇类爬行动物腹鳞表面在宏观和微观范围内均具有减粘降阻和摩擦各向异性作用,腹鳞的材料特性和表面的微观形貌是其主要原因。
With the development of science and technology,the bionics has been widely used in engineering and the research on biomaterial micrograph, mechanical properties and tribological behavior received great attention from micro area to macro one in the past few decades.The snakes' ventral scale has the micro non-lubricity and hydrophobe properties.It plays a great role in the snake body movement and keeps the body away from the clay,maintains the body clean.All these biological properties give a hand to figure out the problem of how to decrease the conglutination,less the resistance and overcome friction anisotropies.This paper focuses on the ventral scale research on Burmese python、Zaocys dhumnades and Elaphe rufodoreata.The contact model of the ventral scale friction movement is founded on the work of material component analysis,microstructure, surface characteristic and micro & macro tribological behavior.It aim is to understand the ventral scale material characteristic and tribological behavior and to reveal the ventral scale friction mechanism so that the bionics fabrication on ventral scale can be made.
     Firstly,the ingredients of ventral scale are analyzed by Fourier transform Infrared spectrometer.The results indicate that spectrums of the three ventral scale are extremely similar and the main structure isα-helix keratin.
     Texture analyzer is used to test the tension mechanical character of the ventral scale material.It shows the elastic modulus of the ventral scale is about 1.5 GPa and the fission strength is lower than 90 MN/m~2.The material of ventral scale has moisture absorption ability,the rate of which is about 8%.The elastic modulus of the python's ventral scale is the highest of all while that of the Zaocys dhumnades is the lowest.The elastic modulus of the damp sample is 1/5 to 1/3 of the dry one.All conclusions above all aim to know the material characteristic and to provide the basic resource of bio-fabrication.
     The topography of ventral scale surface is obtained with SEM and AFM.Regularly arrayed micro-structure is on the snake ventral scale surface.The structure is observed as a structure comprised of periodically arrayed micro-convex,micro-pits,micro-holes and plate-like part.Eleven parameters are used to depict the topography quantificationally.The micro-topography of ventral scale surface varies as species.The micro-convex on ventral scale surface of python is finger-like convex,and its height is 200 nm.The one of the Elaphe rufodoreata and Zaocys dhumnades is triangle and its height is 60 nm.This mciro-convexs is the claw-like structure with one side sharp and the other is flat.Its forward angle is small.The backward angle of the Elaphe rufodoreata and Zaocys dhumnades is small while the one of python is quite great.The density of micro convex on the ventral scale surface of python is the highest of all, which is as 1.8 times as that of the others.There is no plate-like structure on the ventral scale surface of Zaocys dhumnades,the plate-like structure of the Burmese python and Elaphe rufodoreata is 1/2 of the periodicity of terraces.The density of micro-pits on the ventral scale surface of Elaphe rufodoreata's is high,and the one of Zaocys dhumnades is low.The depth and diameter of micro-holes on the ventral scale surface of Zaocys dhumnades and Elaphe rufodoreata are far bigger than their micro-pits.
     The similar microstructure of the ventral scale surface makes it have the role to decrease the conglutination,less the resistance.The difference of different kind's snakes is to make them to adapt for the outer environment.
     The water contact angle of the ventral scale surface is measured by water contact angle tester.The result shows that the ventral scale surface snakes are hydrophobic.The mean water contacting angle of ventral scale surface of python,Zaocys dhumnades and Elaphe rufodoreata is 110.6°, 105.8°and 104.5°,respectively.The water contacting angle decreases by 2°to 3°after wetted.The increase of the density and the height of micro convex on the ventral scale surface will enlarge the water contacting angle.
     The nano mechanical properties of the ventral scale material are researched by using nanoindentation.The result shows that the elastic moduli for ventral scale of the Burmese python and Elaphe rufodoreata are 1310 MPa and 920 MPa,respectively and the nano-hardness are 104 MPa and 90 Mpa,respectively.The mechanical properties of the python's ventral scale are higher than the one of Elaphe rufodoreata.Creep deformation in the ventral scale material occurs during the process of impressing.
     UMT-2 model of universal micro materials tester is used to research the macro friction properties of the ventral scale surfaces.It is found the friction resistance between ventral scale surface and steel ball is low,and the coefficient is 0.05 to 0.13.The friction coefficient of python's sample is the lowest of all,which is equal to the one of the PTFE,and the one of the Elaphe rufodoreata is the biggest of all.Under dry friction and water lubrication,the friction coefficient decreases as the load or sliding velocity increases.Under oil lubrication condition,the friction coefficient decreases with the increase of the load and the sliding velocity.The friction coefficient under water lubrication is 1.3 to 1.9 times of that under dry friction.And the friction coefficient under oil lubrication is 0.8 to 2.3 times of that under dry friction.The friction force for the ventral scale surface is anisotropic.The forward motion friction resistance is the lowest of all and the backward one is the biggest.The friction resistance in the lateral motion is between the two above,which is nearly equal to the backward one.The friction resistance in backward motion is 1.3 to 1.5 times of that in the forward motion.The lean angle of the micro convex on the ventral scale surface is the main cause of the friction anisotropy.The friction resistance of sliding motion is composed of the resistance due to the adhesion force on the surface,plough force,the mechanical distortion resistance of the micro-convex and elastic resistance,and among them the adhesion force is the main one.The hydrophobia of the ventral scale surface decreases the surface energy.The micro-convex can destroy the continuous water film. The micro-hole on the surface stores the snake's secretion,increasing the surface's hydrophobia.And these are the reasons for decreasing adhesion force and soil's adhesion force function of snake ventral scale surface.The slope angle of microstructure in the ventral scale surface is the main cause of anisotropic friction properties.
     The nano friction properties of ventral scale surface are researched by using LFM mode of AFM.As a result,the adhesion force and surface energy for ventral scale surface of snake is low.The adhesion energies for ventral scale surface of Burmese python,Elaphe rufodoreata and Zaocys dhumnades are 0.042 J/m~2,0.045 J/m~2 and 0.047 J/m~2,respectively.The mean adhesion force of ventral scale surface decreases as the surface roughness increases.The friction force of ventral scale surface is related to topography and slope of the micro-convex.The periodicity of the friction variation is the same as the one of the micro-convex.It is not related to the height of the micro-convex,but is highly related to the slope of the micro-convex surface,which is the same as the distribution of the micro-convex.At the brink of the micro-convex on ventral scale surface of python,the friction force vary greatly when the tip is ascending phase,and the varying range is twice the one when the tip is drop phase.The friction force of the ventral scale surface linearly increases as the load increases, but not related to the velocity.During the low load,due to the surface adhesion,the micro friction becomes the main factor of the friction.The friction coefficient for the ventral scale of python is the lowest of all,which is basically the same as the one of Elaphe rufodoreata and Zaocys dhumnades.
引文
[1]任露泉,佟金,李建桥,等.松软地面机械仿生理论与技术.农业机械学报,2000,31(01):5-9
    [2]张毅,周志立,郭志军.耕地机械触土部件材料及其仿生研究.拖拉机与农用运输车,2002,4:30-31
    [3]邓石桥,任露泉,韩志武.土壤-犁壁界面毛细负压的形成和作用.吉林大学学报(工学版),2004,3:517-520
    [4]全永昕,施高义.摩擦磨损原理.杭州:浙江大学出版社,1992
    [5]王承鹤.塑料摩擦学.北京:机械工业出版社,1994
    [6]http://www.gmw.cn/01gmrb12004-12/271content_154818.htm
    [7]施卫平,任露泉.波纹形非光滑推土板减粘降阻的简化力学模型.农业机械学报,2005,35(01):93-95
    [8]任露泉,佟金,李建桥,等.生物脱附与机械仿生——多学科交叉新技术领域.中国机械工程,1999,10(09):984-986
    [9]吉爱红,戴振东,周来水.仿生机器人的研究进展.机器人,2005,27(03):284-288
    [10]Ostrowski J,Burdick J.The Geometric Mechanics of Undulatory Robotic Locomotbn.The Intematbnal Journal of Robotics Research,1998,(17):638-701
    [11]Kyriakopoulos K J,Migadis G,Sarfigeorgidis K.The NTUA Snake:Design Planar Kinematics,and Motion Planning.Journal of Robotic Systems,1999,16(1):37-72
    [12]Crespi,Alessandro;Badertscher,AndrE;Guignard,Andreet,et al.an amphibious snake-like robot.Robotics & Autonomous Systems;2005,50(4):163-175
    [13]http://www.chinatoynet.corn/html/list.asp?id=5609
    [14]http://jczs.news.sina.com.cn/2001-11-27/45409.html
    [15]http://www.snakerobots.com/S5.html
    [16]刘金国,王越超,李斌,等.蛇形机器人伸缩运动仿生研究.机械工程学报,2005,41(05):108-113
    [17]Shugen Ma.Analysis of creeping locomotion of a snake-like robot.Advanced Robotics,2001,15(2):205-224
    [18]Tanev Ivan,Ray Thomas,Buller Andrzej.Automated Evolutionary Design,Robustness,and Adaptation of Sidewinding Locomotion of a Simulated Snake-Like Robot.IEEE Transactions on Robotics,2005,21(4):632-645
    [19]陈丽.具有环境适应能力的蛇形机器人运动的研究.沈阳:中国科学院沈阳自动化研究所博士学位论文,2003
    [20]Dowling,K.Limbless Locomotion:Learning to Crawl with a Snake Robot.CamegieMellon University,1997
    [21]干东英,王立鼎.微型机械的现状与发展.机械工程学报,1994,30(2):1-7
    [22]Gong Qiulian,Zhou Zhaoying,Yang Yihua,et al.Design,optimization and simulation on microelectromagnetic pump.Sensor and Actuators,2000,83:200-207
    [23]Y.P.Zhao,L.S.Wang,T.X.Yu.Mechanics of adhesion in MWMS—a review.Journal of Adhesion Science and Technology,2003,17(4):519-546
    [24]D Gao,C Carraro,R T Howe,et al.Polycrystalline silicon carbide as a substrate material for reducing adhesion in MEMS,Tribology Letters,2006,21(3):226-232
    [25]N R Tas,C Gui,M Elwenspoek.Static friction in elastic adhesion contacts in MEMS.Journal of Adhesion Science and Technology,2003,17(4):547-561
    [26]丁建宁,范,真,李长生,等.基于AFM的微机械表面抗粘附薄膜性能.中国机械工程,2003,14(4):274-277
    [27]丁建宁.多晶硅微机械构件材料力学行为及微机械粘附问题研究.清华大学博士学位论文,2001
    [28]K L Johnson.Mechanics of adhesion.Tribology International,1998.31(8):.413-418
    [29]Kenneth R.Shull.Contact mechanics and the adhesion of soft Solids.Materials Science and Engineering,2002,36:1-45
    [30]C Gui,M Elwenspoek,N Tas,et al.The effect of surface roughness on direct wafer bonding.Journal of applied physics,1999,85(10):7448-7454
    [31]解国新,丁建宁,范真,等.硅基微机械表面粘附及摩擦性能的AFM试验研究.中国机械工程,2006,17(02):200-203
    [32]Jiang W,Luo J B,Wen S Z.Tribological Properties of OTS Self-assembled Monolayers.Chinese Science Bulletin,2001,46(8):698-702
    [33]赵洋.车轮的起源.科学大观园,2005,(18):60-61
    [34]郑其绪.思维创新的理性探索.石油大学学报(社会科学版),2005,21(2):63-66
    [35]赵彬.木牛、流马研制现状及问题.成都大学学报(社科版),2006,6:15-19
    [36]路甬祥,仿生学的意义与发展.科学中国人,2004,4:23-24
    [37]http://www.xssc.ac.cn/Web/ListConfs/ConfDetail.asp?mo=608
    [38]http://218.24.233.167:8000/Resource/Book/Edu/KPTS/TS001100/0012_ts001100.htm
    [39]陈秉聪.车辆行走机构形态学及仿生减粘脱土理论.北京:机械工业出版社,2001
    [40]李杰,庄继德,魏东,等.沙漠仿生轮胎与普通轮胎牵引性能的对比试验.吉林大学学报(工学版),2006,36(4):510-513
    [41]任露泉,丛茜,佟金.界面粘附中非光滑表面基本特性的研究.农业工程学报,1992,8(1):16-21
    [42]丛茜,任露泉,吴连奎,等.几何非光滑生物体表的分类学研究.农业工程学报,1992,8(2):7-12
    [43]L.Q.Ren,Z.W.Han,J.Q.Li,et al,Experimental investigation of bionic rough curved soil cutting blade surface to reduce soil adhesion and friction.Soil & Tillage Research,2006,85:1-12
    [44]Ren Luquan,Tong Jin,Chen Bingcong.Soil adhesion and biomimetics of soil-engaging components in anti-adhesion against soil:a review.Journal of Agricultural Engineerinn Research,2001,79(3):239-242.
    [45]Ren Luquan,Deng Shiqiao,Wang Jingchun,et al.Design principles of the non-smooth surface of bionic plow moldboard.Journal of Bionics Engineering,2004,1:9-19
    [46]李建桥,任露泉,刘朝宗,等.减粘降阻仿生犁壁的研究.农业机械学报,1996,27(2):1-4
    [47]Barthlott W,Neinhuis C.Purity of the sacred lotus,or escape from contamination in biological surfaces.Planta,1997,202(1):1-8
    [48]Wenzel R N.Resistance of solid surfaces to wetting by water.Ind Eng Chem,1936,28:988-994
    [49]Cassie A,Baxter S.Wettablity of porous surfaces.Trans Faraday Soc,1944,40:546-551
    [50]Lei Jiang,Yong Zhao,Jin Zhai.A Lotus-leaf-like Superhydrophobic Surface:A Porous Microsphere/Nanofiber Composite Film Preppared by Electro-hydrodynamics.Angew.Chem.Int.Ed.,2004,43:4338-4341
    [51]Lin Feng,Shuhong Li,Yingshun Li,et al.Super-hydrophobic Surfaces:From Natural to Artificial.Adv.Mater,2002,14:1857-1860
    [52]Xu J,Jiang L,Xie Q D,et al.Facile creation of a super-amphiphobic coating surface with bionic microstructure.Adv Mater,2004,16:302-305.
    [53]Paula Could.Smart dean surfaces.Materials Today,2003,10:44-48
    [54]Birb A,Ermuth J.Soiling characteristics of exterior paints.Farbe and Lack,2001,107(7):87-93
    [55]Minglin Ma,Randal M.Hill.Superhydrophobic surfaces.Current Opinion in Colloid &Interface Science,2006,11(4):193-202
    [56]http://www.sztlzx.com/teacher/wp/kuangjia/shayu.htm
    [57]D W Bechert,M Bruse,W Hage.Experiments with three-dimensional riblets as an idealized model of shark skin.Experiments in Fluids,2000,28:403-412
    [58]M Scholle,A Rund,N Aksel.Drag reduction and improvement of material transport in creeping films.Archive of Applied Mechanics,2006,75(2-3):93-112
    [59]D W Bechert,M Bruse,W Hage,et al.Fluid Mechanics of Biological Surfaces and their Technological Application.Naturwissenschaften,2000,87(4):157-171
    [60]Bechert D W,Bartenwerfer M.The viscous flow on surfaces with longitudinal ribs.J Fluid Mech,1989,206:105-129
    [61]林永光.一种具有空间关节的蛇形机器人系统设计与实现.秦皇岛:燕山大学硕士学位论文,2006
    [62]季达明,温世生.中国爬行动物图鉴.郑州:河南科学技术出版社,2002,301.302
    [63]叶长龙.蛇形机器人的机构设计和运动控制.沈阳:中国科学院沈阳自动化研究所博士学位论文,2004
    [64]华惠伦,吴焱煌.蛇.上海:上海科学技术出版社,1990
    [65]吕恬生,王翔宇.蛇的爬行运动实验和运动中蛇体曲线的动态模拟.上海交通大学学报,1998,32(1):131-135
    [66]F L Chemousko.Modelling of snake-like locomotion.Applied Mathematics and Computation,2005,164(2):415-434
    [67]V.M.Kuznetsov,B A Lugovtsov,Y N Sher.On the motive mechanism of snakes and fish.Archive for Rational Mechanics and Analysis,1967,25(5):367-387
    [68]钟福生,夏中生,石俭省.蛇.北京:中国中医药出版社,2000,7-11
    [69]Roe J H,Kingsbury B A,Herbert N R.Comparative water snake ecology:conservation of mobile animals that use temporally dynamic resources.Biological Conservation,2004,118(1):79-89
    [70]Jones D E,Gogal R M,Nader P B.Organochiorine detection in the shed skins of snakes.Ecotoxicology and Environmental Safety,2005,60:282-287
    [71]Jean-Philippe Chippaux,Blanca Ramos-Cerrillo,Roberto P.Stock.Study of the efficacy of the black stone on envenomation by snake bite in the murine model.Toxicon,2007,49(5):717-720
    [72]Etsuko Oyama,Hidenobu Takahashi.Distribution of low molecular weight platelet aggregation inhibitors from snake venoms.Toxicon,2007,49(3):293-298
    [73]Jayne B.Mechanical behavior of snake skin.Journal of Zoology.1998,214:125-140
    [74]张梅香,罗晓民,桂祖荣,等.蛇皮组织结构的研究.中国皮革,1998,27(8):14-15
    [75]孙丹红,石碧,廖学品,等.菜花蛇皮组织结构的研究.中国皮革,2001,30(21):35-37
    [76]Lillywhite,H.B.Subcutaneous Compliance and Gravitational adaptation in Snakes.Journal of Experimental Zoology,1993,267:557-562
    [77]Mosauer,W.On the locomotion of snakes.Science,1932,76:583-585
    [78]Gray.J.The mechanism of locomotion in snakes.Journal of Experimental Biology,1946,23(2):101-120
    [79]Miller G.The motion dynamics of snakes and worms.Computer Graphics,1988,22(4),169-178
    [80]Jayne,B.Kinematics of terrestrial snake locomotion.Copela,1986,4:915-927
    [81]王义权,周开亚.16种蛇鳞的微皮纹分析.应用与环境生物学报,1998,49(2):152-158
    [82]吴孝兵,顾长明,陈士超.锦蛇属六种鳞片扫描电镜研究.安徽师大学报(自然科学版),1994,17(3):59-64
    [83]Stille B.Dorsal scale microdermatoglyphics and rattlesnake phylogeny.Herpetologica,1987,43(1):98-104
    [84]Gans C,Baic D.Regional specialization of reptilian scale surfaces:relation of texture and biologic.Science,1977,195:1348-1350
    [85]Chlasson R B,Bentley D L,Lowe C H.Scale morphology in agkistrodon and closely related crotaline genera.Herpetologlca,1989,45:432-440
    [86]Gray J,Lissmann H W.The kinetics of locomotion of the grass snakes.Journal of Experimental Biology,1950,26:354-367
    [87]李明孜.特种机器人驱动机制的仿生研究.南京:南京航空航天大学硕士学位论文,2003
    [88]胡友耀,丁建宁,杨继昌,等.蛇类表皮的生物摩擦学性能研究.润滑与密封,2006,11: 56-59
    [89]N Fuchigami,J Hazel,V V Gorbunov,et al.Biological Thermal Detection in Infrared Imaging Snakes.1.Ultramicrostructure of Pit Receptor Organs.Biomacromolecules,2001,2:757-764
    [90]Richard C G,Yoshitoshi A,Masato N,et al.The microvasculature of python pit organs:morphology and blood flow microkinetics.Microvascular Research,2003,65:179-185
    [91]Amemlya F,Gorls R C,Masuda Y,et al.The surface architecture of snake infrared receptor organs.Blomedlcal Research,1995,16:411-421
    [92]Hazel J,Stone M,Grace M S,et al.Nanoscale design of snake skin for reptation locomotions via friction anisotropy.Journal of Biomechanics,1999,32:477-484
    [93]http://shiba.hpe.cn/kepu/animal/class/cls313.html
    [94]赵尔宓,黄美华,宗愉等.中国动物志.北京:科学出版社,1998
    [95]翁诗甫.傅里叶变换红外光谱仪,北京:化学工业出版社,2005
    [96]R Pena-Alonso,F Rubio,J Rubio,J L Oteo.Study of the hydrolysis and condensation of γ-Aminopropyltriethoxysilane by FT-IR spectroscopy,Journal of Materials Science,2007,42(2):595-603
    [97]Ornella Preisner,Joao Almeida Lopes,Raquel Guiomar,et.al.Fourier transform infrared (FT-IR) spectroscopy in bacteriology:towards a reference method for bacteria discrimination.Analytical and Bioanalytical Chemistry,2007,387(5):1739-1748
    [98]Liudi Jiang,A G Fitzgerald,M J Rose,et.al.Characterisation of cubic boron nitride films at different stages of deposition.Applied Surface Science,2000,167(1-2):89-93
    [99]霍红.人体乳腺肿瘤的傅里叶变换红外光谱研究.大连:中国科学院大连化学物理研究所硕士学位论文,1999
    [100]Wyld J A,Brush A H.Keratin diversity in the reptilian epidermis.J.Exp.Zool.,1983,225:387-396
    [101]Sawyer R H,Glenn T,French J O,et al.The expression of beta(b) keratins in the epidermal appendages of reptiles and birds.Am.Zool.,2000,40:530-539
    [102]Maderson P F.Some developmental problems of the reptilian integument.Biology of the Reptilia,1985,14:525-598
    [103]沈德言.红外光谱法在高分子研究中的应用.北京:科学出版社,1982
    [104]孙霁宇.臭蜣螂表皮纳米力学测试方法和纳米力学行为.长春:吉林大学博士学位论文,2005
    [105]K Bhasi,A T Riga,K S Alexander.Characterization of snake skin by thermoanalytical techniques.Journal of Thermal Analysis and Calorimetry,2004,75:269-276
    [106]Baden H P,Sviokla S,Roth I.The structural protein of reptilian scales.J.Exp.Zool.,1974.187,287-294.
    [107]Mattia Toni,Lorenzo Alibardi.Alpha-and beta-keratins of the snake epidermis.Zoology,2007,110:41-47
    [108]王海鸥.猕猴桃苹果的流变特性及品质研究.镇江:江苏大学硕士学位论文,2004
    [109]Jin-shui Wang,Mou-ming Zhao Qiang-zhong Zhao.Correlation of glutenin macropolymer with viscoelastic properties during dough mixing.Journal of Cereal Science,2007,45(2):128-133
    [110]T M Paschoalick,F T Garcia,P J A Sobral,et al.Characterization of some functional properties of edible films based on muscle proteins of Nile Tilapia.Food Hydrocolloids,2003,17(4):419-427
    [111]C Eouani,Ph Piccerclle,P Prinderre,et.al.In-vitro comparative study of buccal mucoadhesive performance of different polymeric films.European Journal of Pharmaceutics and Biopharmaceuties,2001,52(1):45-55
    [112]I M沃德.固体高聚物的力学性能.徐懋,漆宗能译.北京:科学出版社,1988
    [113]刘鸿文.材料力学.北京:人民教育出版社,1981
    [114]赵学笃,陈元生,张守勤.农业物料学.北京:机械工业出版社,1986
    [115]王海鸥,胡志超,谢焕雄,等.称猴桃压缩一应力松弛的试验.农机化研究,2006,5:144-146
    [116]郭素枝.扫描电镜技术及其应用.厦门:厦门大学出版社,2006
    [117]颜肖慈,罗明道.界面化学.北京:化学工业出版社,2005
    [118]http://www.spm.com.cn
    [119]Roberts J B,Lillywhite H B.Lipid barrier to water exchange in reptile epidermis.Science,1980,207:1077-1079
    [120]Lillywhite H B,Sanmartino V.Permeability and water relations of hydroscopic skin of the file snake.Copeia,1993,1:99-103
    [121]赵振国.接触角及其在表面化学研究中的应用.化学研究与应用,2000,12(4):370-374
    [122]禹营,汪家道,陈大融.疏水表面的摩擦阻力特性研究.润滑与密封,2006,9:15-20
    [123]Zachary Burton,Bharat Bhushan.Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces.Ultramicroscopy,2006,106(8-9):709-719
    [124]温诗铸.纳米摩擦学.北京:清华大学,1998
    [125]冯瑞乾.印刷原理及工艺.北京:印刷工业出版社,2005
    [126]朱亮,冯焱颖,叶雄英,等.粗糙表面的可控润湿性研究.传感技术学报,2006,19(5):1709-1712
    [127]葛亮.仿生不粘锅粘附性能的研究.长春:吉林大学硕士学位论文,2005
    [128]黎明,温诗铸.纳米压痕技术及其应用.中国机械工程,2002,13:1437-1439
    [129]Pharr G M.Measurement of mechanical properties by ultra-low load indentation.Matter Sci Eng A,1998,253:151-159
    [130]丁建宁,范真,杨继昌,等.多层耐磨硬涂层纳米力学性能评定新方法.江苏大学学报(自然科学版),2002,23(2):4-8
    [131]丁建宁,孟永钢,温诗铸.纳米硬度计研究多晶硅微悬臂梁力学特性.清华大学学报(自然科学版),2001,41(2):21-24
    [132]张泰华,杨业敏.纳米硬度技术的发展和应用.力学进展,2002,32(3):349-364
    [133]张泰华,微/纳米力学测试技术及其应用.北京:机械工业出版社,2005
    [134]Oliver W C,Pharr G M.An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments.J Mater Res.1992,7:1564-1583
    [135]Doemer M F,.Nix W D.A method for interpreting the data from depth-sensing indentation instruments.J Mater Res,1986,1:601-609
    [136]Li X D,Bhushan B.A review of nanoindentation continuous stiffnessmeasurement technique and its applications.Materials Characterization,2002,48(1):11-36
    [137]King R B.Elastic analysis of some punches problems for a layered medium.International Journal of Solids Structure,1987,23(12):1657-1664
    [138]Bell T J,Field J S,Swain M V.Elastic-plastic characterization of thin films with spherical indentation.Thin Solid Films,1992,220(1-2):289-294
    [139]Bhushan B,Kulkami AV,Bonin W,et al.Nanoindentation and picoindentation measurements using a capacitive transducer system in atomic force microscopy.Philos Mag A,1996,74:1117-1128
    [140]Shanhua Qian,Shirong Ge,Qingliang Wang.The Frictional Coefficient of Bovine Knee Articular Cartilage.Journal of Bionic Engineering,2006,3(2):79-85
    [141]Guangbin Yang,Hongxia Ma,Zhishen Wu,et al.Tribological behavior of ZnS-filled polyelectrolyte multilayers.Wear,2007,262(3-4):471-476
    [142]唐玮,朱华,丁璐颖,等.人体手部皮肤的摩擦特性实验研究.摩擦学学报,2006,26(5):494-497
    [143]Rainer Franke,Dieter Lehmann,Klaus Kunze.Tdbological behaviour of new chemically bonded PTFE polyamide compounds.Wear,2007,262(3-4):242-252
    [144]张占立,杨继昌,丁建宁,等.竹叶青蛇腹鳞的超微结构及减阻机理研究.江苏大学学报(自然科学版),2006,27(6):471474
    [145]温诗铸,黄平.摩擦学原理.北京:清华大学出版社,2002
    [146]全永昕,施高义.摩擦磨损原理.杭州:浙江大学出版社,1992
    [147]张占立,丁建宁,杨继昌,等.乌梢蛇腹部表皮的纳米力学性能研究.传感技术学报,2006,19(5):1652-1654
    [148]华文深,吴杏芳,陆华,等.TiCx/NiAI复合材料界面纳米硬度与弹性模量分布.机械工程材料,2003,27(3):8-11
    [149]M谢尔格,S戈尔博.微/纳米生物摩擦学.李健,杨膺,顾卡丽,等译.北京:机械工业出版社,2004
    [150]郝荷生,曲敬信,许小棣,等.摩擦与磨损.北京:煤炭工业出版社,1992
    [151]伞金福,朱宝亮,刘家浚,等.塑料表面改性对其摩擦学性能影响.摩擦学学报,2000,20(3):237-240
    [152]松原清.摩擦学.李明怀,庄志,译.西安:西安交通大学出版社,1988
    [153]凌智勇,丁建宁,杨继昌,等.微流动的研究现状及影响因素.江苏大学学报(自然科学 版),2002,23(6):1-4
    [154]任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究.农业机械学报,2003,34(2):86-88
    [155]任露泉,李建桥,陈秉聪.非光滑表面的仿生降阻研究.科学通报,1995,40(19):1812-1814
    [156]高芒来,聂时春,张嗣伟.扫描速率对硅表面分子沉积膜纳米摩擦特性的影响.化学研究与应用,2003,15(5):734-736
    [157]钱林茂,雒建斌,温诗铸,等.AFM/FFM测量参考样品云母的规范实验.科学通报,2000,45(4):439-444
    [158]朱守星.基于SPM的硫系薄膜探针存储技术和纳米加工方法研究.镇江:江苏大学博士学位论文,2004
    [159]Z O Wei,C Wang,C L Bai.Surface imaging of fragile materials with hydrophobic atomic force microscope tips.Surface Science,2000,467(1-3):185-190
    [160]Hazel J L,Tsukruk V V.Spring constants of micro fabricated ceramic/gold cantilevers for scanning probe microscopy.Journal of Tribology,1998,120:814-821
    [161]D F Ogletree,R.W.Carpick,M.Salmeron.Calibration of frictional forces in atomic force microscopy.Rev.Sci.Instrum.1996,67:3298-3306
    [162]R G Cain,N W Page,S Biggs.Force Calibration in Lateral Force Microscopy.J.Colloid Interface Sci.2000,227,55-65
    [163]A Feiler,P Attard,I Larson.Calibration of the torsional spring constant and the lateral photodiode response of frictional force microscopes.Rev.Sci.Instrum.,2000,71,2746-2750
    [164]高芒来,聂时春,张嗣伟.载荷、相对湿度和气氛对硅表面及金表面纳米摩擦特性的影响.机械科学与技术,2004,23(1):87-89
    [165]Bhushan B,Koinkar V N.J.Appl.Phys,1994,76:5022-5035
    [166]王德国,高芒来,张嗣伟.利用原子力显微镜测量石英岩表面分子沉积膜的粘附力.石油大学学报(自然科学版),1999,23(4):53-55
    [167]J 霍林.摩擦学原理.上海交通大学摩擦学研究室译.北京:机械工业出版社,1981
    [168]Carmen LaTorre,Bharat Bhushan.Nanotribological characterization of human hair and skin using atomic force microscopy.Ultramicroscopy,2005,105(1-4):155-175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700