MEMS力学特性测试及可靠性分析中若干关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MEMS力学特性测试及可靠性分析在MEMS的研发和产业化过程中具有极为重要的意义,而力学特性测试又是进行可靠性分析的基础。本论文在调研和分析了MEMS力学特性测试技术及可靠性测试技术研究现状的基础上,对应用相移显微干涉法测试分析MEMS力学特性参数以及在所得参数的基础上对微结构在振动和冲击环境下的可靠性展开研究,主要完成了以下几个方面的工作:
     1、从方法的类别、应用领域、研究现状和发展趋势等方面系统地调研了MEMS力学特性测试技术及可靠性分析技术的概况,分析和讨论了MEMS力学特性测试及可靠性分析的重要性。
     2、针对相移显微干涉技术在微结构表面轮廓测量中传统相位解包裹方法的局限性,提出了一种基于模板的广度优先搜索解包裹算法,在相位解包裹的过程中,以由三种不同方法获得的模板图像作为参考,绕过标记出来的非相容区域进行相位展开,从而得到连续而准确的被测表面轮廓。
     3、针对相移显微干涉法在微结构表面轮廓测量中存在的倾斜误差,提出了一种基于最小二乘法确定调平基准面及坐标旋转重构表面轮廓信息的方法调平被测表面,获得其相对于基准面的表面高度,从而实现了倾斜误差的补偿。
     4、提出了一种基于相移显微干涉法测量表面轮廓及有限差分法建模的MEMS力学特性分析方法,以未加载电压的微悬臂梁及施加了静电载荷的微悬臂梁作为测试对象,应用相移显微干涉法测量微悬臂梁的表面弯曲量,并应用有限差分法建模解析弯曲量与力学特性值之间的关系,将弯曲量的测量值与模拟值进行比较来提取特性参数值,实现了对微薄膜杨氏模量及残余应力梯度的测量。
     5、在所测得的力学特性参数的基础上,应用有限元分析软件对表面微加工工艺制备的碳化硅微悬臂梁在振动和冲击载荷下的响应与载荷信号的振幅、频率以及作用时间等参数之间的关系及变化规律进行了仿真分析,并用碳化硅微悬臂梁阵列作为测试样品,以标准的振动试验系统和冲击试验系统为实验平台,设计了一系列振动实验和冲击实验,从微悬臂梁在特定振动和冲击载荷下的失效情况分析了结构的抗振动和抗冲击能力。
MEMS mechanical property test and reliability analysis are significant in the research and development and even the industrialization of MEMS, and mechanical property test is the basis of reliability analysis. According to the detailed investigation on current research status of MEMS mechanical property test and reliability analysis techniques, phase-stepping microscopic interferometry is applied to characterize MEMS mechanical properties, based on which reliability of micro structures in vibration and shock environment is studied. The research work of the dissertation mainly includes the following aspects:
     1. The importance and the general situation of MEMS mechanical property test and reliability analysis are systematically investigated and analyzed, including classification of techniques, application fields, current status and development trend.
     2. To solve the problem that ordinary phase unwrapping methods in interferometry are not competent in measurement of surfaces with complicated profile or/and nonideal data areas, a breadth-first search phase unwrapping algorithm based on mask is presented. Inconsistent areas are flagged in mask images obtained using three optional methods and then ignored in phase unwrapping process to get continuous and correct surface profile information.
     3. In order to eliminate tilt errors in surface profile measurement of micro structures using microscopic interferometry, a robust approach based on least square method and coordinate conversion is proposed to compensate tilt errors, which is implemented by finding a reference plane with least squares fit and rotating the coordinate system to get the height information relative to the reference plane.
     4. A measurement technique to test MEMS mechanical properties based on phase-stepping microscopic interferometry and finite difference method is presented to extract Young’s modulus and residual stress gradient of micro membrane. Unloaded micro cantilevers and cantilevers loaded with DC voltage are used as devices under test, of which surface deflection is measured by phase-stepping microscopic interferometry, and then the relationship between beam deflection and mechanical property parameters is analyzed using finite difference method. Property parameters are then acquired via comparing the measured and modeled deflection data and finding the best fitted values.
     5. Based on the test results of mechanical property parameters, the relationships and the variation regularities between micromachined SiC cantilevers' response to vibration and shock signals and amplitude, frequency and duration of shock pulse are analyzed with finite element analysis software. Using SiC cantilever arrays as test samples and standard vibration and shock testing systems as testing platform, a series of vibration and shock experiments are designed and performed to get the resistance capability of the cantilevers to vibration and shock from their failure situations under specific vibration and shock load.
引文
[1]陶家渠,李应选,万达等译,硅微机械传感器,北京:中国宇航出版社,2003
    [2]李德胜,王东红,孙金玮等,MEMS技术及其应用,哈尔滨:哈尔滨工业大学出版社,2002
    [3]石庚辰,郝一龙,微机电系统技术基础,北京:中国电力出版社,2006
    [4]王伯雄,陈非凡,董瑛,微纳米测量技术,北京:清华大学出版社,2006
    [5]李智,王向军,微机电系统测试技术及方法,光学精密工程,2003,11(1):37~44
    [6] http://www.bb.ustc.edu.cn/jpkc/guojia/dxwlsy/kj/part1/pdf/smdj.pdf
    [7] John Henry J Scott. Accuracy issues in chemical and dimensional metrology in the SEM and TEM. Meas. Sci.Technol. 2007 (18): 2755~2761
    [8]郭彤,胡春光,胡晓东等,利用光切方法测量微结构的三维微运动,光学技术,2005,31(4):568~574
    [9] Conor O’Mahony, Martin Hill, Magali Brunet, etc. Characterization of micromechanical structures using white-light interferometry. Meas. Sci. Technol. 2003 (14): 1807~1814
    [10] M W Denhoff. A measurement of Young's modulus and residual stress in MEMS bridges using a surface profiler. Journal of Micromechanics and Microengineering, 2003 (13): 686~692
    [11] J. De Coster, H.A.C. Tilmans, J.M.J. den Toonder. Empirical and theoretical characterisation of electrostatically driven MEMS structures with stress gradients. Sensors and Actuators A 2005(123–124): 555~562
    [12] Wu Xiaofeng, Zhang guoxiong. Development of a modern coordinate measuring machine. Nanotechnology and Precision Engineering. 2006, 4(4): 301~306
    [13] G.X. Zhang, Y. Zhong, X. Hong, etc. A laser doppler interferometric system for measuring motion of vibrating combs. In: CIRP Annals - Manufacturing Technology, Volume 54, Issue 1, 2005: 491~494
    [14] Xiaodong Hu, Chunguang Hu, Zhi Chen, etc. Measuring in-plane and out-of-plane coupled motions of microstructures by stroboscopic microscopic interferometry. Optics & Laser Technology, 2007, 39(6): 1176~1182
    [15]胡春光,胡晓东,金翠云等,MEMS动态测试中频闪同步控制系统,天津大学学报,2005,38(1):47~51
    [16]栗大超,冯亚林,傅星等,MEMS动态测试技术,微纳电子技术,2005(4):188~194
    [17] Freeman D M, Aranyosi A J,Gordon M J, etc. Multidimensional motion analysis of MEMS using computer microvision. In: Dig Solid State Sensor & Actuator Workshop. SC: Hilton Head, 1998: 150~155
    [18]殷纯永,现代干涉测量技术,天津:天津大学出版社,1999
    [19] Ursula Klein. Working and knowing in the history of STM. Stud. Hist. Phil. Sci. 2004 (35): 159~172
    [20] Huiwen Liu, Bharat Bhushan. Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM. Ultramicroscopy. 2003, 97(1-4): 321~340
    [21] John Henry J Scott. Accuracy issues in chemical and dimensional metrology in the SEM and TEM. Meas. Sci. Technol. 2007 (18): 2755~2761
    [22]张泰华,杨业敏,赵亚溥等,MEMS材料力学性能的测试技术,力学进展,2002,32(4):545~562
    [23]张泰华,杨业敏,纳米硬度技术的发展和应用,力学进展,2002,32(3):349~364
    [24]陈隆庆,赵明皞,张统一,薄膜的力学测试技术,机械强度,2001,23(4):413~429
    [25]张泰华,微/纳米力学测试技术及其应用,北京:机械工业出版社,2004
    [26] T P Weihs, J C Hong, W D Nix, etc. Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films. Journal of Materials Research, 1988, 3(5): 931~942
    [27] M. G?ken, M. Kempf, W. D. Nix. Hardness and modulus of the lamellar microstructure in PST-TiAl studied by nanoindentations and AFM. Acta Materialia, 2001, 49(5): 903~911
    [28] J.N. Florando, W.D. Nix. A microbeam bending method for studying stress-strain relations for metal thin films on silicon substrates. Journal of the Mechanics and Physics of Solids, 2005, 53(3): 619~638
    [29] M K Small, W D Nix. Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films. Journal of Materials Research. 1996, 7(6): 1553~1563
    [30] Yu-Jung Hsu, Yen-Hwei Chang, Yin-Lai Chai, etc. Residual stress and thermal stability of the Fe-Ni-Cr/Invar bimetal membrane used for microactuation. Thin Solid Films, 2002, 418(2): 189~196
    [31] H. Miao, P. Gu, Z.T. Liu, etc. Bulge deformation measurement and elastic modulus analysis of nanoporous alumina membrane using time sequence speckle pattern interferometry. Optics and Lasers in Engineering. 2005, 43(8): 885~894
    [32] Brian D. Jensen, Maarten P. de Boer, Nathan D. Masters, etc. Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS. Journal of MicroelectromechanicalSystems. 2001, 10(3): 336~346
    [33] Michael S. Baker, Maarten P. de Boer, Norman F. Smith, etc. Integrated measurement-modeling approaches for evaluating residual stress using micromachined fixed–fixed beams. Journal of Microelectromechanical Systems. 2002, 11(6): 743~753
    [34] Peter M. Osterberg, Stephen D. Senturia. M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. Journal of Microelectromechanical Systems. 1997, 6(2): 107~118
    [35] Kristian P. Larsen, Anette A. Rasmussen, Jan T. Ravnkilde, etc. MEMS device for bending test: measurements of fatigue and creep of electroplated nickel. Sensors and Actuators A: Physical. 2003, 103(1-2): 156~164
    [36]刘昀强,利用显微激光多普勒技术测量微悬臂梁的机械特性:[硕士学位论文],天津;天津大学,2004
    [37] Freund L B, Floro J A, Chason E. Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Applied Physics Letters, 1999, 74(14): 1987~1989
    [38]王莎莎,陈兢,栗大超等,基于局部基底弯曲法的高灵敏度薄膜应力测试技术,半导体学报, 2006,27(6):1129~1135
    [39] Eberhard Bamberg, Christian P. Grippo, Panitarn Wanakamol, etc. A tensile test device for in situ atomic force microscope mechanical testing. Precision Engineering, 2006, 30(1): 71~84
    [40] Tetsuo Yoshioka, Taeko Ando, Mitsuhiro Shikida, etc. Tensile testing of SiO2 and Si3N4 films carried out on a silicon chip. Sensors and Actuators. 2000(82): 291~296
    [41] Xin Zhang, Tong-Yi Zhang, Yitshak Zohar. Measurements of residual stresses in thin films using micro-rotating-structures. Thin Solid Films. 1998, 335(1-2): 97~105
    [42] Q. He, Z.X. Luo, X.Y. Chen. Comparison of residual stress measurement in thin films using surface micromachining method. Thin Solid Films, In Press, Corrected Proof, Available online, 2007
    [43] Schiltges G, Gsell D, Dual J. Torsional tests on microstructures: two methods to determine shear-mduli. Microsystem Technologies, 1998(5): 22~29
    [44]罗雯,魏建中,阳辉等,电子元器件可靠性试验工程,北京:电子工业出版社,2005
    [45] X. Lafontan, F. Pressecq, F. Beaudoin, etc. The advent of MEMS in space. Microelectronics Reliability. 2003(43): 1061~1083
    [46] W. Merlijn van Spengen. MEMS reliability from a failure mechanisms perspective. Microelectronics Reliability. 2003(4): 1049~1060
    [47] Van Spengen W M, Puers R, De Wolf I. A physical model to predict stiction in MEMS. J Micromech Microeng. 2002(12): 702~713
    [48] Danelle M. Tanner, Norman F. Smith, Lloyd W. Irwin, etc. MEMS reliability: infrastructure, test structures, experiments and failure modes. Sandia Report. Sandia National Laboratories, available from National Technical Information Service, US Department of Commerce, 5285 Port Royal Rd, Springfield, VA 22161, USA, 2000
    [49] D.H. Alsem, E.A. Stach, M.T. Dugger, etc. An electron microscopy study of wear in polysilicon microelectromechanical systems in ambient air. Thin Solid Films, 2007, 515(6): 3259~3266
    [50] R. Modlinski, A. Witvrouw, P. Ratchev, etc. Creep as a reliability problem in MEMS. Microelectronics Reliability. 2004, 44(9-11): 1733~1738
    [51] R. Modlinski, A. Witvrouw, P. Ratchev, etc. Creep characterization of Al alloy thin films for use in MEMS applications. Microelectronic Engineering. 2004, 76(1-4): 272~278
    [52] S. Mellé, D. De Conto, L. Mazenq, etc. Failure predictive model of capacitive RF-MEMS. Microelectronics and Reliability. 2005, 45(9-11): 1770~1775
    [53] M. Lamhamdi, J. Guastavino, L. Boudou, etc. Charging-Effects in RF capacitive switches influence of insulating layers composition. Microelectronics and Reliability. 2006. 46(9-11): 1700~1704
    [54] A. Witvrouw, H.A.C. Tilmans, I. De Wolf. Materials issues in the processing, the operation and the reliability of MEMS. Microelectronic Engineering. 2004(76): 245~257
    [55] Danelle M. Tanner, Jeremy A. Walraven, Lloyd W. Irwin, etc. The effect of humidity on the reliability of a surface micromachined microengine. In: The 1999 IEEE International Reliability Physics Symposium, March 21-25, San Diego CA, 1999. 189~197
    [56] P. Schmitt, X. Lafontan, F. Pressecq, etc. Impact of the space environmental conditions on the reliability of a MEMS COTS based system. Microelectronics Reliability. 2004(44): 1739~1744
    [57] Danelle M. Tanner, Jeremy A. Walraven, Karen S. Helgesen, etc. MEMS reliability in a vibration environment. In: IEEE International Reliability Physics Symposium, April 10-13, San Jose, CA, 2000. 139~145
    [58] Danelle M. Tanner, Jeremy A. Walraven, Karen Helgesen, etc. MEMS reliability in shock environments. In: IEEE International Reliability Physics Symposium, April 10-13, San Jose, CA, 2000. 129~138
    [59]傅建中,胡晓旭,微系统原理与技术,北京:机械工业出版社,2005
    [60] (美)雷茨(Rebeiz. G. M)著,黄庆安,廖小平译,RF MEMS理论·设计·技术,南京:东南大学出版社,2005
    [61]李朝辉,基于相移干涉法的微表面轮廓仪的研究:[博士学位论文],天津;天津大学,2004
    [62]惠梅,牛憨笨,李庆祥等,相移干涉显微术测量表面微观形貌,光学技术,2003,29(1):2~4
    [63]李岩,井文才,周革等,纳米检测轮廓仪相移干涉图处理,纳米技术与精密工程,2005,3(1):13~18
    [64]胡春光,利用相移显微干涉术和频闪成像技术研究MEMS了离面运动:[硕士学位论文],天津;天津大学,2004
    [65] Y. Y. Cheng and J. C. Wyant. Multiple-wavelength phase-shifting interferometry. Appl. Opt., 1985, 24(6): 804~807
    [66] Wyant J C, Koliopoilos C L, Bhishan, etc. An optical profilometer for surface characterization of magnetic media. ASLE Trans., 1984(7): 101~113
    [67] Wyant J C. Interferometric optical metrology: basic systems and principles. Laser Focus, May. 1982: 65~71
    [68] Hariharan P, Oreb B, Eiju T. Digital phase-shifting interferometry: a simple error-compensating phase calculations algorithm. Appl. Opt., 1987(26): 2540~2505
    [69] Carre P. Installation et utilization du comparateur photoeclectrque interferentiedl du Burear International Poids et Measures. Metrologia, 1966(2): 13~23
    [70] Schwider J, burrow R R, Elsman K E, etc. Digital wave-front measuring interferometry: some systematic error sources. Appl. Opt., 1983(22): 3421
    [71] Y. Y. Cheng and J. C. Wyant. Phase shifter calibration in phase-shifting interferometry. Appl. Opt., 1985, 24(18): 3049~3052
    [72] Zhi hua Ding, etc. Analysis of Phase_shifting Error in Phase-shifting Interferometric Microscope. acta metrological sinica, 16(4), Oct., 1995
    [73] K. Itoh. Analysis of the phase unwrapping algorithm. Appl. Opt., 1982, 21(14): 2740~2473
    [74] JiríNovák. Methods for 2-D phase unwrapping in MATLAB. MATLAB 2001, VydavatelstvíV?CHT, 2001
    [75] G.Fornaro, G.Franceschetti, R.Lanari, and E.sansosti. Robust phase -unwrapping techniques: a comparison. J.Opt. Soc.Am.A, 1996, 13(11): 2355~2366
    [76]于瀛洁,李国培,陈明仪,干涉图处理中的相位去包裹技术,宇航计测技术,2002,22(4):49~54
    [77] R.M.Goldstein, H.A.Zebker and C.L.Werner. Statellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 1988, 23(4): 713~720
    [78] J. M. Huntley. Noise-immune phase unwrapping algorithm. Applied optics, 1989, 28(15): 3268~3270
    [79] R. Cusack, J. M. Huntley and H. T. Goldrein. Improved noise-immune phase unwrapping algorithm. Applied optics, 1995, 34(5): 781~789
    [80] J. R. Buckland, J. M. Huntley and S. R. E. Turner. Unwrapping noisy phase maps by use of a minimum cost matching algorithm. Applied optics, 1995, 34(23): 5100~5108
    [81] D. J. Bone. Fourier fringe analysis: The two-dimensional phase unwrapping problem. Applied Optics, 1991, 30(25): 3627~3632
    [82] Y. Xu, C. Ai. Simple and effective phase unwrapping technique. Interferometry IV: Technique and Analysis, Proceeding of the SPIE, Vol. 2003, Society of Photo-Optical Instrumentation Engineers, Belingham, VA, 1993, 254~263,
    [83] J. A. Quiroga, A. Gonzalez Cano, E. Bernabeu. Phase-unwrapping algorithm based on an adaptive criterion. Applied Optics, 1995, 34(14): 2560~2563
    [84] H. Lim, W. Xu, X. Huang. Two new practical methods for phase unwrapping. IGARSS’95, Tokyo, Japan, 1995, 196~198
    [85] M. D. Pritt and J. S. Shipman. Least-squares two-dimensional phase unwrapping using FFTs. IEEE Transactions on geoscience and remote sensing, 1994, 32(3): 706~708
    [86] D. C. Ghiglia and L. A. Romero. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. Journal of the optical society of America A, 1994, Vol.11: 107~117
    [87] M. D. Pritt. Phase unwrapping by means of multigrid techniques for interferometric SAR. IEEE Transactions on geoscience and remote sensing. 1996, 32(3): 728~738
    [88] G. Fornaro, G. Frances Chetti and R. Lanari. Interferometric SAR phase unwrapping using Green’s Formulation. IEEE Transactions on Geoscience and remote sensing, 1996, 34(3): 720~727
    [89] W. Hemmert, M. S. Mermelstein and D. M. Freeman. Nanometer resolution of three-dimensional motions using video interference microscopy. In: Twelfth IEEE International Conference on Micro Electro Mechanical Systems, 1999. 302~308
    [90]李弼程,彭天强,彭波等,智能图像处理技术,北京:电子工业出版社,2004
    [91]薛军平,何继善,基于人体信息三维可视化的医学图像边缘检测算法研究,生物医学工程研究,2004,23(1):7~10
    [92]栗大超,硅微机械扭转镜光致动器及其动态测试技术的研究:[博士学位论文],天津;天津大学,2003
    [93]杨杰,直角坐标转换方法的探讨,南阳师范学院学报,2005,4(12):87~90
    [94]孙丹,李振加,高安邦等,刀具表面轮廓测量三维复现后调平方法的研究,哈尔滨理工大学学报,2003,8(4):28~30
    [95] Li Yingle, Huang Jiying. The scattering fields for a spherical target irradiated by a plane electromagnetic wave in an arbitrary direction. Chinese Physics, 2006, 15(2): 281~285
    [96] Zhao Ping, Shi Haoshan. A kind of algorithm for increasing accuracy of position location in mobile network system. In: IEEE Int Conf Neural Networks and Signal Processing. Nanjing, 2003. 723~726
    [97]王磊,李家宝,结构分析的有限差分法,人民交通出版社,1982
    [98]张文生,科学计算中的偏微分方程有限差分法,北京:高等教育出版社,2006
    [99]薛强,弹性力学,北京:北京大学出版社,2006
    [100]马文淦,张子平,计算物理学,安徽:中国科学技术大学出版社,1992
    [101] W Fang, J A Wickert. Determining mean and gradient residual stresses in thin films using micromachined cantilevers. J. Micromech. Microeng. 6 (1996): 301~309
    [102]阳明盛,罗长童,最优化原理、方法及其求解软件,北京:科学出版社,2006
    [103]张光澄,非线性最优化计算方法,北京:高等教育出版社,2005
    [104]陈宝林,最优化理论与算法,北京:清华大学出版社,2005
    [105]苏金明,阮沈勇,王永利,MATLAB工程数学,北京:电子工业出版社,2005
    [106]陈哲,激光退火SiC薄膜在MEMS中的应用研究:[硕士学位论文],北京;北京大学,2008
    [107]濮良贵,纪名刚,机械设计,北京:高等教育出版社,2006
    [108]庞振基,黄其圣,精密机械设计,北京:机械工业出版社,2000
    [109]《振动与冲击手册》编辑委员会,振动与冲击手册,第一卷:基本理论和分析方法,北京:国防工业出版社,1988
    [110]屈维德,唐恒龄,机械振动手册,第2版,北京:机械工业出版社,2000
    [111]刘晶波,杜修力,结构动力学,北京:机械工业出版社,2005
    [112]唐友刚,高等结构动力学,天津:天津大学出版社,2002
    [113]小飒工作室,最新经典ANSYS及Workbench教程,北京:电子工业出版社,2004
    [114]尚晓江等,ANSYS结构有限元高级分析方法与范例应用,北京:中国水利水电出版社,2006
    [115] http://www.memsnet.org/material/siliconcarbidesicbulk/
    [116]谢官模,振动力学,北京:国防工业出版社,2007
    [117] http://www.testunit.com/cn/p08_03.htm
    [118] http://www.chinasti.com/pro_detail.asp?id=86
    [119] J. N. Ding, P. L. Wong, J. C. Yang. Friction and fracture properties of polysilicon coated with self-assembled monolayers. Wear. 260 (2006): 209~214
    [120] Maarten P. de Boer, Brian D. Jensen and Fernando Bitsie. A small area in-stitu MEMS test structure to measure fracture strength by electrostatic probing. In: SPIE Conference on Materials and Device Characterization in Micromaching. Santa Clara, California. 1999, 3875:97
    [121]王立蜂,黄庆安,李伟华,一种基于热执行器的多晶硅断裂强度的电测量法,电子器件,2005,28(4):740~742

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700