钛合金表面氮化层激光辅助制备及其力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti6A14V合金由于优异的综合性能被广泛应用于航空航天、生物医学等高新技术领域,然而硬度低耐磨性差等自身不足致使其进一步推广受到局限,促使人们开展了钛合金表面强化技术的研究与应用探索。高硬度耐磨损的氮化钛防护涂层可有效改善钛合金材料表面性能,而激光气体氮化有传统技术无可代替的氮化钛涂层制备优势。激光氮化技术的关键是控制工艺参数,进而获得满足工艺需要的渗氮层,达到提高表面性能的目的。然而,由于影响参数众多,这一技术仍存在诸多急需解决的问题,距离真正广泛的实际生产应用尚有很大的距离。本文针对激光氮化工艺存在的不足,采用试验和理论分析并重的研究思路,开展了相关技术和理论研究。主要内容和创新如下:
     (1)对于钛合金激光辅助氮化过程的热质传递,存在界面浓度梯度驱动和高阶温度梯度驱动的耦合效应影响。采用数值模拟结合微观尺度试验研究的方法,首次分析了渗氮层内氮元素最大溶解极限对于扩散传质的影响,获得了激光渗氮层内组分的不均匀性分布规律。研究发现,在高阶温度梯度和浓度梯度的共同驱动下,氮原子不断向内扩散的同时也产生沿温度梯度方向的扩散,最高浓度峰值向内偏移至距表面一定深度处;分析了各加工参数对激光氮化表面强化层性能的影响,为激光氮化工艺优化提供指导。
     (2)根据工艺参数优化分析的结果,利用连续CO2激光和脉冲Nd:YAG激光在钛合金表面成功制备了高硬度高结合强度的枝晶状分布的氮化钛保护层。同时,试验分析发现,由于基体约束作用和氮化层相变等因素的影响,激光渗氮层表面存在残余应力和萌生表面裂纹等问题。
     (3)针对激光渗氮层开裂这一技术瓶颈问题,首次提出了施加压缩外载荷的激光氮化工艺。研究发现当施加一定的压缩载荷时,可以有效地减少甚至避免在激光渗氮工艺过程中形成裂纹;随着外载荷的加大,残余应力降低,氮化层内氮原子浓度峰值降低,表面硬度降低,摩擦系数增加。
     (4)基于纳米压痕和纳米划痕测试技术,测定了不均匀激光氮化层的弹塑性力学性能,并与采用不均匀组分相关的力学模型计算获得的弹塑性力学性能进行比较,揭示出激光渗氮层力学性能沿深度方向的分布规律与激光渗氮层内氮浓度分布规律的一致性。
     本研究为钛合金激光表面氮化技术的推广和工业应用提供了有力的支撑。
In view of excellent strength and lightweight properties, Ti6A14V alloy is an attractive candidate material to guarantee the comprehensive performances for metal components in many innovative and high technological fields, ranging from aeronautic industry to biomedicine. However, hardness and tribological properties are too low to satisfy the extensive application. For this reason, surface strengthening of titanium alloys has attracted much attention. Titanium nitride with high hardness and wear resistance is an excellent material known suitable for surface strengthening. Laser gas nitriding of titanium alloy in nitrogen environment is developed as a promising technology recently to form titanium nitride layer with metallurgical bonding to the titanium substrate for modification of the traditional technology in mechanics, tribological properties. The quality of nitriding layer for industrial demands is the key to performance by adjusting the process parameters. Nevertheless, due to the influence of many process parameters, there are still some confronting problems for the actual production for extensive application. These problems are further studied and discussed in this work by experimental and theoretical analysis on the basis of previous studies. The main contents are as follows:
     (1) A self-consistent diffusion model is employed to simulate the atomic nitrogen transport in titanium alloy with the coupling effect of both initial activated nitrogen concentration and high temperature gradient. It is the first attempt at investigation of the effect of the maximum concentration limit of nitrogen in titanium nitride layer on nitrogen transport. It is worth noting that high temperature and concentration gradients lead to inhomogeneous distribution of nitrogen with the local maximum close to the surface which is confirmed by both the experimental and simulated results. Meanwhile, transient theoretical models are employed to investigate the effect of process parameters on the distribution characteristics of temperature and concentration field. It is used as the applicable reference for process optimization by trial-and-error.
     (2) The densely packed dendrites layers with high hardness and strength are prepared successfully under trial optimized condition by continuous CO2 laser and pulsed Nd:YAG laser. Meanwhile, considering the influence of substrate constraint and phase transformation during laser gas nitriding process, the distribution of residual stresses and the crack defects formed in nitriding layers are analyzed and summarized by experiments.
     (3) For the technical bottleneck problem of laser nitriding layer cracking, we report a laser surface nitriding process coupled with an applied stress field for the first attempt. A surprising finding is that the continuous and defect-free nitrided layer on the surface of Ti-6A1-4V alloy is achieved using a millisecond Nd:YAG laser coupled with an optimum applied stress field. The distribution rules of nitrides and stress states are not influenced by the applied stress. Meanwhile, the decreased residual stress, nitrogen concentration near the surface, and surface micro-hardness of the nirided layer is associated with increased friction coefficient and the increasing applied stress levels.
     (4) The elastic-plastic mechanical properties induced by the inhomogeneous composition in laser nitriding layer are quantitatively evaluated by nanoindentaion and nanoscratch experiments. A composition-dependent predicted model is developed to characterize the interplay between the inhomogeneous composition and mechanical performance which resembles the concentration profile of nitride generated from diffusion by laser irradiation. It is a new feasible method to confirm the mechanical properties by extracting the depth loading curvature profile involving the composition dependence.
     This study is the foundation of titanium alloy for extensive applications. Moreover, this gives us confidence in the industrial application of laser surface nitriding technology for rapidly developing and new green industrial revolution.
引文
[1]王红波.离子渗氮-渗硫复合处理对Ti-6Al-4V合金摩擦学性能的影响.西安:长安大学,2009
    [2]徐滨士,马世宁,梁秀兵,乔玉林.纳米粉体材料与表面工程.材料导报,2001,15(11):7-9
    [3]徐滨士.神奇的表面工程.北京:清华大学出版社.2000
    [4]陈晓林.钛合金表面织构与等离子渗氮处理及其生物摩擦特性研究.南京:南京理工大学,2008
    [5]Y.Q. Fu, J. Wei, Andrew W. Batchelor. Some considerations on the mitigation of fretting damage by the application of surface-modification technologies. J. Mater. Process. Technol. 2000,99(1):231-245
    [6]逯福生,贾翃.郝斌.钛工业市场前景广阔.中国有色金属,2008,(10):25-26
    [7]H.J. Rack, J.I. Qazi. Titanium alloys for biomedical applications. Mater. Sci. Eng. C,2006, 26 (8):1269-1277
    [8]卫争艳.钛合金文献综述.太钢科技,2008,(1):26-31
    [9]R.N. Feofilov, V.K. Chirkov and M.V. Levin. Application of titanium alloys in medical instruments. Biomed. Eng.1977,11 (1):44-47
    [10]陈英泽,张晓丹.钛及钛合金的加工特点.电讯技术,1995,35(6):58-61
    [11]R.R.Boyer. An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. A,1996,213 (1-2):103-104
    [12]I.V. Gorynin. Titanium alloys for marine application. Mater. Sci. Eng. A,1999,263 (2): 112-116
    [13]R.W. Schutz, C.F. Baxter, P.L. Boster. Applying Titanium Alloys in Drilling and Offshore Production Systems. JOM,2001,53 (4):33-35
    [14]K. Wang. The use of titanium for medical applications in the USA. Mater. Sci. Eng. A, 1996,213 (1-2):134-137
    [15]何利舰,张小农.钛及钛合金的表面处理技术新进展.上海金属,2005,27(3):39-45
    [16]张文毓.国外钛合金的研究与发展.世界有色金属,2009,(7):64-66
    [17]H. Yilmazer, S. Yilmaz, M. E. Acma. Treatment of Surface Properties of Titanium with Plasma (Ion) Nitriding. Defect and Diffusion Forum,2009,283-286:401-405
    [18]冷崇燕,浅罔照夫,周荣.氮离子注入TiNi形状记忆合金表面改性.中国有色金属学报,2006,16(3):42-46
    [19]X.B. Tian, L.P. Wang, Q.Y. Zhang, Paul K. Chu. Dynamic nitrogen and titanium plasma ion implantation/deposition at different bias voltages. Thin Solid Films,2001,390 (1-2): 139-144
    [20]王福贞,马文存.气相沉积应用技术.北京:机械工业出版社,2007
    [21]张永康.激光加工技术.北京:化学工业出版社,2004
    [22]B.S. Yilbas, S.Z. Shuja. Laser treatment and PVD TiN coating of Ti-6Al-4V alloy. Surf. Coat. Technol.2000,130 (2-3):152-157
    [23]B.S. Yilbas, M.S.J. Hashmi, S.Z. Shuja. Laser treatment and PVD TiN coating of Ti-6Al-4V alloy. Surf. Coat. Technol.2001,140 (3):244-250
    [24]B.S. Yilbas, M.S.J. Hashmi. Laser treatment of Ti-6Al-4V alloy prior to plasma nitriding. J. Mater. Process. Technol.2000,103 (2):304-309
    [25]J.Y. Liu, F.J. Sun, H.J. Yu. Nitridation of iron by the mixing technology with laser and plasma beams. Appl. Surf. Sci.2005,252 (4):921-928
    [26]杨永强,张翠红.激光熔覆-激光氮化复合法制取TiNi-TiN梯度材料.中国有色金属学报,2006,16(2):213-218
    [27]C.H. Zhang, Y.Q. Yang, W.H. Xu. In Situ Synthesis of Titanium Nickel Intermetllic Compounds Layer and TiN Coating By Laser Cladding. Laser technology and applications, 2006,23 (5):33-39
    [28]H.C. Man, S. Zhang, F.T. Cheng, X. Guo. In situ formation of a TiN/Ti metal matrix composite gradient coating on NiTi by laser cladding and nitriding. Surf. Coat. Technol.2006, 200 (16-17):4961-4966
    [29]M.S. Selamat, L.M. Watson, T.N. Baker. XRD and XPS studies of surface MMC layers developed by laser alloying Ti-6Al-4V using a combination of a dilute nitrogen environment and SiC powder. Surf. Coat. Technol.2006,201 (3-4):724-736
    [30]M. Sato, N. Tsuji, Y. Minamino, Y. Koizumi. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation. Sci. Technol. Adv. Mater.2004,5 (1-2):145-152
    [31]L. Huang, J. Lu, M. Troyon. Nanomechanical properties of nanostructured titanium prepared by SMAT. Surf. Coat. Technol.2006,201 (1-2):208-213
    [32]W. P. Tong, H.W. Zhang, N.R. Tao, Z. B. Wang, J. Lu, K. Lu. Low-Temperature Nitriding by Meas of SMAT. Transactions of Materirals and Heat Treatment Proceedings of The 14th Ifhtse Congress,2004,25 (5):301-306
    [33]卑多慧,吕坚,顾剑锋,卢柯,潘健生.表面纳米化预处理对低碳钢气体渗氮行为的影响.材料热处理学报,2002,(1):19-24
    [34]W. P. Tong, N. R. Tao, Z. B. Wang, J. Lu, K. Lu. Nitriding Iron at Lower Temperatures. Science,2003,299 (5607):686-688
    [35]J.F. Gu, D.H. Bei, J.S. Pan, J. Lu, K. Lu. Improved nitrogen transport in surface nanocrystalli-zed low-carbon steels during gaseous nitridation. Mater. Lett.2002,55 (5): 340-343
    [36]Y.M. Lin, J. Lu, L.P. Wang, T. Xu, Q.J. Xue. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Mater.2006,54 (20):5599-5605
    [37]陈玮,王蕾,周磊,王君.钢的快速渗氮技术研究现状.武汉科技大学学报(自然科学版).2006,29(3):225-228,243
    [38]S. Katayama, A. Matsunawa, A.Morimoto, S. Ishimoto, Y. Arata, In:ICALEO'83 LIA. Los Angeles,1983,193:5
    [39]高听,宋宙模.Ti表面脉冲激光氮化成膜温度场的数值模拟.激光杂志,2000,21(2):62-63
    [40]崔振铎,朱胜利,杨贤金.Ti6A14V合金激光原位制备TiN枝晶增强梯度复合表面层.功能材料,2004,35(6):771-773
    [41]L.Xue, M. Islam, A. K.Koul, M. Bibbyl, W. Wallace. Laser Gas Nitriding of Ti-6Al-4V Part 1:Optimization of the Process. Advanced performance material,1997,4 (1):25-47
    [42]X.K. Chen, G. Wu, R. Wang, W.T. Guo, J.P. Yang, S.Z. Cao. Laser nitriding of titanium alloy in the atmosphere environment. Surf. Coat. Technol.2007,201 (9-11):4843-4846
    [43]崔振铎,朱胜利,杨贤金.Ti6A14V合金激光原位制备TiN枝晶增强梯度复合表面层.功能材料,2004,35(6):771-773
    [44]E.C. Santos, M. Morita, M. Shiomi, K. Osakada, M. Takahashi. Laser gas nitriding of pure titanium using CW and pulsed Nd:YAG lasers. Surf. Coat. Technol.2006,201 (3-4): 1635-1642
    [45]E. Carpene, M. Shinn, P. Schaaf. Free-electron laser surface processing of titanium in nitrogen atmosphere. Appl. Surf. Sci.2005,247 (1-4):307-312
    [46]E. Carpene, P. Schaaf, M. Han, K. P. Lieb, M. Shinn. Reactive surface processing by irradiation with excimer laser, Nd:YAG laser, free electron laser and Ti:sappire laser in nitrogen atmosphere. Appl. Surf. Sci.2002,186 (1-4):195-199
    [47]M.S Selamat, T.N. Baker, L.M. Watson. Study of the surface layer formed by the laser processing of Ti-6A1-4V alloy in a dilute nitrogen environment. J. Mater. Process. Technol. 2001,113:509-515
    [48]Y.Q Fu, Andrew W. Batchelor. Laser nitriding of pure titanium with Ni, Cr for improved wear performance. Wear,1998,214 (1):83-90
    [49]C. Hu, T.N. Baker. The importance of preheat before laser nitriding a Ti-6A1-4V alloy. Mater. Sci. Eng. A,1999,265 (1-2):268-275
    [50]M.G. Perez, N.R. Harlan, F. Zapirain, F. Zubiri. Laser nitriding of an intermetallic TiAl alloy with a diode laser. Surf. Coat. Technol.2006,200 (16-17):5152-5159
    [51]C. Hu, T.N. Baker. A semi-empirical model to predict the melt depth developed in overlapping laser tracks on a Ti-6A1-4V alloy. J. Mater. Process. Technol.1999,94:116-122
    [52]H.A. Wriedt, J.L. Murray, The N-Ti (Nitrogen-Titanium) system, in Phase Diagrams of Binary Titanium Alloys, edited by J.L. Murray. ASM International,1987:176-186
    [53]A. Zhecheva, W. Sha, S. Malinov, A. Long. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf. Coat. Technol.2005,200 (7):2192-2207
    [54]葛志明.钛的二元系相图.北京:国防工业出版社,1977
    [55]C. Hu, H. Xin, L.M.Watson, T.N. Baker, Analysis of the phases developed by laser nitriding Ti-6Al-4V alloys, Acta Mater.1997,45 (10):4311-4322
    [56]E. Sicard, V.C. Andreazza, L.C. Boulmer, P. Delaporte, M. Sentis, M. Frainais, Light alloy valorization by excimer laser surface nitriding, Int. Soc. Opt. Eng.2000,3885:148-158.
    [57]L. Xue, M.U. Islam, A.K. Koul, W.Wallace, M. Bibby, Laser gas nitriding of Ti-6A1-4V, Mater. Manuf. Process.1997,12 (5):799-817
    [58]E. Gyorgy, A. Perez del Pino, P. Serra, J.L. Morenza. Depth profiling characterisation of the surface layer obtained by pulsed Nd:YAG laser irradiation of titanium in nitrogen. Surf. Coat. Technol.2003,173 (2-3):265-270
    [59]D. Hoche, M. Shinn, S. Muller, P. Schaaf. Diffusion, convection, and solidification in cw-mode free electron laser nitride titanium, J. Appl. Phys.2009,105 (8),083503
    [60]D. Hoche, H. Schikora, H. Zutz, R. Queitsch. A. Emmel, P. Schaaf. Microstructure of TiN coatings synthesized by direct pulsed Nd:YAG laser nitriding of titanium:Development of grain size, microstrain, and grain orientation. Appl. Phys. A,2008,91 (2):305-314
    [61]王家金.激光加工技术.北京:中国计量出版社,1992
    [62]杨森,刘振侠,刘文今,黄卫东,周尧和.激光表面熔凝温度场的二维数值模型.应用激光,2005,25(5):313-315
    [63]王云山,杨洗陈,刘亚君.激光扫描光斑温度场.中国激光,2006,33(7):981-986.
    [64]席明哲,虞钢.连续移动三维瞬态激光熔池温度场数值模拟.中国激光,2004,31(12):1527-1532
    [65]高昕,宋宙模.Ti表面脉冲激光氮化成膜温度场的数值模拟.激光杂志,2000,21(2):62-63
    [66]S. Roy, M.F. Modest. CW laser machining of hard ceramics-I. Effects of three dimensional conduction, variable properties and various laser parameters. Int. J. Heat Mass Transf.1993,36 (14):3515-3528
    [67]W.S. Kim, B.C. Sim. Study of thermal behavior and fluid flow during laser surface heating of alloys. Numer. Heat Transfer. A,1997,31 (7):703-723
    [68]B.S. Yilbas, S.Z. Shuja, M.S.J. Hashmi, A numerical solution for laser heating of titanium and nitrogen diffusion in solid. J. Mater. Process. Technol.2003,136 (1-3):12-23
    [69]D. Hoche, G. Rapin, P. Schaaf. FEM simulation of the laser plasma interaction during laser nitriding of titanium, Appl. Surf. Sci.2007,254 (4):888-892
    [70]D. Hoche, S. Miiller, G. Rapin, M. Shinn, E. Remdt, M. Gubisch, P. Schaaf. Marangoni convection during free electron laser nitriding of titanium. Metall. Mater. Trans. B,2009,40 (4):497-507
    [71]刘江龙,邹至荣,苏宝嫆.高能束热处理.北京:机械工业出版社,1997
    [72]戚正风.固态金属中的扩散与相变.北京:机械工业出版社,1998
    [73]P. Laurens, H. L'Enfant, M. C. Sainte Catherine, J. J. Blechet, J. Amouroux. Nitriding of titanium under CW CO2 laser radiation. Thin Solid Films,1997,293 (1-2):220-226
    [74]H. L'Enfant, P. Laurens, M.C. Sainte Catherine, T. Dubois, J. Amouroux. Kinetics of titanium nitriding under CW CO2 laser radiation. Surf. Coat. Technol.1997,96 (2-3):169-175
    [75]A.G. Gnedovets, O.M. Portnov, I. Smurov, G. Flamant. Kinetic model of mass transfer through gas-liquid interface in laser surface alloying. Appl. Surf. Sci.1997,109/110:143-149
    [76]C Illgner, P Schaaf, KP Lieb. Material transport during excimer laser nitriding of iron. J. Appl. Phys.1998,83 (6):2907-2914
    [77]C. Illgner, P. Schaaf, K.P. Lieb, R. Queitsch, K. Schutte, H. W. Bergmann. Mechanisms of laser nitriding in 14N and 15N atmospheres studied with RNRA. Appl. Surf. Sci.1997, 109/110:150-153
    [78]P. Schaaf, F. Landry, K.P. Lieb. Origin of nitrogen depth profiles after laser nitriding of iron. Appl. Phys. Lett.1999,74 (1):153-155
    [79]D. Hoche, H. Schikora, H. Zutz, A. Emmel, R. Queitsch, P. Schaaf. TiN-coating formation by pulsed Nd:YAG laser irradiation of titanium in nitrogen. J. Coat. Technol. Res. 2008,5 (4):505-512
    [80]E. Carpene, F. Landry, P. Schaaf. Modeling of nitrogen depth profiles in iron after nitriding with a homogenized laser beam. Appl. Phys. Lett.2000,77:2412-2414
    [81]M. Von Allmen. Laser beam interaction with materials physical principles and applications. Springer-Verlag, Berlin,1995
    [82]E. Carpene, P. Schaaf. Mass transport mechanisms during excimer laser nitriding of aluminum. Phys. Rev. B,2002,65 (22),224111
    [83]杨玉玲,孙凤久,张多.大气气氛下Ti表面激光氮化及其温度场的计算.激光技术,2005,29(2):201-204
    [84]B.S. Yilbas, C. Karatas, Uslan, O. Keles, I.Y. Usta, M. Ahsan. CO2 laser gas assisted nitriding of Ti-6Al-4V alloy. Appl. Surf. Sci.2006,252 (24):8557-8564
    [85]陈红兵,罗启泉.钛合金的激光气体氮化研究.激光杂志,1997,18(3):32-36
    [86]Y.L. Yang, G.J. Zhao, D. Zhang. Improving the surface property of TC4 alloy by laser nitriding and its mechanism. Acta Metall. Sin. (Engl. Lett.),2006,19 (2):151-156
    [87]崔振铎,杨贤金,朱胜利,文效忠.Ti6A14V合金激光气体渗氮层显微组织及性能.第八次全国热处理大会论文集,2003,8:309-312
    [88]Z.D. Cui, S.L. Zhu, H.C. Man, X.J. Yang. Microstructure and wear performance of gradient Ti/TiN metal matrix composite coating synthesized using a gas nitriding technology. Surf. Coat. Technol.2005,190 (2-3):309-313
    [89]S. Ettaqi, V. Hays, J.J. Hantzpergue, G. Saindrenan, J.C. Remy. Mechanical, structural and tribological properties of titanium nitrided by a pulsed laser. Surf. Coat. Technol.1998, 100-101:428-432
    [90]A. Vadiraj, M. Kamaraj, R. Gnanamoorthy. Fretting wear studies on uncoated, plasma nitrided and laser nitrided biomedical titanium alloys. Mater. Sci. Eng. A,2007,445-446: 446-453
    [91]王姗,钱鸣,左铁钏.激光整平对钛合金激光氮化表面形态和耐磨性的影响.激光杂志,2007,28(1):76-78
    [92]H. C. Man, N. Q. Zhao. Surface morphology of a laser surface nitrided and etched Ti-6Al-4V alloy. Surf. Coat. Technol.2005,192 (2-3):341-346
    [93]李俊昌.激光的衍射及热作用计算.北京:科学出版社,2002
    [94]J. Sabbaghzadeh, M. Azizi, M. Javad Torkamany. Numerical and experimental investigation of seam welding with a pulsed laser. Opt. Laser Technol.2008,40 (2):289-296
    [95]T.N. Baker, M.S. Selamat. Surface engineering of Ti-6A1-4V by nitriding and power alloying using CW CO2 laser. Mater. Sci. Technol.2008,24 (2):189-200
    [96]A. Biswas, L. Li, U.K. Chatterjee, I. Manna, S.K. Pabi, J. Dutta Majumdar. Mechanical and electrochemical properties of laser surface nitrided Ti-6Al-4V. Scr. Mater.2008,59 (2): 239-242
    [97]P. Schaaf. Laser Nitriding of Metals. Prog. Mater. Sci.2002,47 (1):1-161
    [98]M. Raaif, F. M. El-Hossary, N. Z. Negm, S. M. Khalil, A. Kolitsch, D. Hoche, J. Kaspar, S. Mandl, P. Schaaf. CO2 Laser Nitriding of Titanium. J. Phys. D:Appl. Phys.2008,41 (8): 1-8
    [99]J. H. Abboud, A. F. Fidel, K. Y. Benyounis. Surface nitriding of Ti-6A1-4V alloy with a high power CO2 laser. Opt. Laser Technol.2008,40 (2):405-414
    [100]L. Xue, M. Islam, Ashok K. Koul, M. Bibby, William Wallace. Laser Gas Nitriding of Ti-6A1-4V Part 2:Characteristics of Nitrided Layers. Advanced Performance Materials,1997, 4 (4):389-408
    [101]T.K. Hirsch, A.D.S. Rocha, F.D. Ramos, T.R. Strohaecker. Residual Stress-Affected Diffusion during Plasma Nitriding of Tool Steels. Metall. Mater. Trans. A,2004,35 (11): 3523-3530
    [102]J.M. Robinson, B.A. Van. Brussel, J.Th.M. De Hosson, R.C. Reed. X-ray measurement of residual stresses in laser surface melted Ti-6Al-4V alloy. Mater. Sci. Eng. A,1996,208: 143-147
    [103]A.G. Gnedovets, O.M. Portnov, I. Smurov, G. Flamant. Kinetic model of mass transfer through gas-liquid interface in laser surface alloying. Appl. Surf. Sci.1997,109/110:143-149
    [104]B.S. Yilbas, M. Kalyon. Analytical solution for multilayer assembly including heating and cooling cycles with laser pulse parameter variation. Opt. Lasers Eng.2006,44 (11): 1219-1234
    [105]F.Z. Xuan, S.S. Shao, Z.D. Wang, S.T. Tu. Coupling effects of chemical stresses and external mechanical stresses on diffusion. J. Phys. D:Appl. Phys.2009,42 (1),015401
    [106]Y. Liu, C.T. Liu, E.P. George, X.Z. Wang, The Soret effect in bulk metallic glasses. Intermetallics,2007,15 (4):557-563
    [107]W.L. Holetein. The roles of ordinary and Soret diffusion in the metal-catalyzed formation of filamentous carbon. J. Catal.1995,152 (1):42-51
    [108]F.W. Wood, O.G. Paasche. Dubious details of nitrogen diffusion in nitrided titanium. Thin Solid Films,1977,40:131-137
    [109]A.I.P. Nwobu, R.D. Rawlings, D.R.F. West. Nitride Formation in Titanium Based Substrates during Laser Surface Melting in Nitrogen-Argon Atmospheres. Acta mater.1999, 47 (2):631-643
    [110]曹丽琴,轩福贞,王正东,涂善东.激光强化渗氮过程的数值模型及分析.中国激光,2008,35(8):1255-1259
    [111]A.G. Gnedovets, O.M. Portnov, I. Smurov, G. Flamant. Kinetic model of mass transfer through gas-liquid interface in laser surface alloying. Appl. Surf. Sci.1997,109/110:143-149
    [112]R.S. Razavi, M. Salehi, M. Monirvaghefi, GR. Gordani. Corrosion behaviour of laser gas-nitrided Ti-6A1-4V alloy in nitric acid solution. J. Mater. Process. Technol.2008,203 (1-3):315-320
    [113]A. Vadiraj, M. Kamaraj, R. Gnanamoorthy. Fretting wear studies on uncoated, plasma nitrided and laser nitrided biomedical titanium alloys. Mater. Sci. Eng. A,2007,445-446: 446-453
    [114]N. Chollacoop, M. Dao, S. Suresh. Depth-sensing instrumented indentation with dual sharp Indenters. Acta Mater.2003,51 (1-3):3713-3729
    [115]P. Jiang, T. Zhang, Y. Feng, R. Yang, N. Liang. Determination of plastic properties by instrumented spherical indentation:Expanding cavity model and similarity solution approach. J. Mater. Res.2009,24 (3):1045-1053
    [116]M. Dao, N. Chollacoop, K.J. Van Vlief, T.A. Venkatesh, S. Suresh. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001,49 (19):3899-3918
    [117]A.E. Giannakopoulos, S. Suresh. Determination of Elastoplastic Properties by Instrumented Sharp Indentation. Scr. Mater.1999,40 (10):1191-1198
    [118]张泰华.微纳米力学性能测试技术及其应用.北京:机械工业出版社,2004
    [119]D.P. Cole, H. A. Bruck, A.L. Roytburd. Nanomechanical characterisation of graded NiTi films fabricated through diffusion modification. Strain,2009,45 (3):232-237
    [120]I.S. Choi, A.J. Detor, R. Schwaiger, M. Dao, C. A. Schuh, S. Suresh. Mechanics of indentation of plastically graded materials-Ⅱ:Experiments on nanocrystalline alloys with grain size gradients. J. Mech. Phys. Solids,2008,56 (1):172-183
    [121]D.P. Cole, H.A. Bruck, A.L. Roytburd. Nanoindentation studies of graded shape memory alloy thin films processed using diffusion modification. J. Appl. Phys.2008,103 (6), 064315
    [122]T. Chudoba, N. Schwarzer, V. Linss, F. Richter. Determination of mechanical properties of graded coatings using nanoindentation. Thin Solid Films,2004,469-470:239-247
    [123]A.E. Giannakopoulos, S. Suresh. Indentaition of solids with gradients in elastic properties:part Ⅰ. point force. Int. J. Solids Struct.1997,34 (19):2357-2392
    [124]A.E. Giannakopoulos, S. Suresh. Indentaition of solids with gradients in elastic properties:part Ⅱ. axisymmetric indentors. Int. J. Solids Struct.1997,34(19):2393-2428
    [125]S. Suresh. Graded Materials for Resistance to Contact Deformation and Damage. Science,2001,292 (5526):2447-2451
    [126]A. Prasad, M. Dao, S. Suresh. Steady-state frictional sliding contact on surfaces of plastically graded materials. Acta Mater.2009,57 (2):511-524
    [127]Y.T. Cheng, C.M. Cheng. Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R,2004,44 (4-5):91-149
    [128]N. Chollacoop, M. Dao, S. Suresh. Depth-sensing instrumented indentation with dual sharp Indenters. Acta Mater.2003,51 (13):3713-3729
    [129]T. Nakamura, T. Wang, S. Sampath. Determination of Properties of Graded Materials By Inverse Analysis and Instrumented Indentation. Acta mater.2000,48 (17):4293-4306
    [130]Y.P. Cao, J. Lu. A new scheme for computational modeling of conical indentation in plastically graded materials. J. Mater. Res.2004,19 (6):1703-1716
    [131]I.S. Choi, M. Dao, S. Suresh. Mechanics of indentation of plastically graded materials-Ⅰ: Analysis. J. Mech. Phys. Solids,2008,56 (1):157-171
    [132]I.S. Choi, A.J. Detor, R. Schwaiger, M. Dao, C.A. Schuh, S. Suresh. Mechanics of indentation of plastically graded materials-Ⅱ:Experiments on nanocrystalline alloys with grain size gradients. J. Mech. Phys. Solids,2008,56 (1):172-183
    [133]S.P. Wen, R.L. Zong, F. Zeng, S. Guo, F. Pan. Nanoindentation And Nanoscratch Behaviors Of Ag/Ni Multilayers. Appl. Surf. Sci.2009,255 (8):4558-4562
    [134]A. Leyland, A. Matthews. On the Significance of the H/E Ratio in Wear Control:A Nanocomposite Approach to Optimised Tribological Behaviour. Wear,2000,246 (1-2):1-11
    [135]W.Y. Ni, Y.T. Cheng, M.J. Lukitsch, A.M. Weiner, L.C. Lev. Effects of the ratio of hardness to Young's modulus on the friction and wear behavior of bilayer coatings. Appl. Phys. Lett.2004,85 (18):4028-4030
    [136]I. S. Choi, A.J. Detor, R. Schwaiger, M. Dao, C.A. Schuh, S. Suresh. Mechanics of indentation of plastically graded materials-Ⅱ:Experiments on nanocrystalline alloys with grain size gradients. J. Mech. Phys. Solids,2008,56 (1):172-183
    [137]S. Lafaye, M. Troyon. On the friction behaviour in nanoscratch testing. Wear,2006,261 (7-8):905-913
    [138]L.Y. Huang, J. Lu, K.W. Xu. The nano-scratch behaviour of different diamond-like carbon film-substrate systems. J. Phys. D:Appl. Phys.2004,37 (15):2135-2139
    [139]S.C. Bellemare, M. Dao, S. Suresh. Effects of mechanical properties and surface friction on elasto-plastic sliding contact. Mech. Mater.2008,40 (4-5):206-219
    [140]M.G. Perez, N.R. Harlan, F. Zapirain, F. Zubiri. Laser nitriding of an intermetallic TiAl alloy with a diode laser. Surf. Coat. Technol.2006,200 (16-17):5152-5159
    [141]B.S. Yilbas, A.F.M. Arif, C. Karatas. Laser gas assisted nitriding of Ti-6Al-4V alloy and residual stress analysis. Surf. Eng.2009,25 (3):228-234
    [142]A.B. Kloosterman, J.Th.M. De Hosson. Microstructural characterization of laser nitriding titanium. Scr. Metall. Mater.1995,33 (4):567-573
    [143]M. Labudovic, R. Kovacevic. Modelling of the laser surface nitriding of Ti-6Al-4V alloy-analysis of heat transfer and residual stresses. Proc. Instn. Mech. Engrs. C,2001,215 (3):315-340
    [144]A.F.M. Arif, S.Z. Shuja, B.S. Yilbas. Gas-assisted laser single-pulse heating:study of thermal stresses. Proc. Instn. Mech. Engrs. C,2001,215 (3):291-306
    [145]刘鸿文.材料力学.北京:高等教育出版社,2004
    [146]宋天民.焊接残余应力的产生与消除.北京:中国石化出版社,2004
    [147]米谷茂.残余应力的产生与对策.北京:机械工业出版社,1983
    [148]C. Hu, T. N. Baker. Overlapping laser tracks to produce a continuous nitrided layer in Ti-6Al-4V alloy. J. Mater. Sci.1997,32 (11):2821-2826
    [149]P.B. Kadolkar, T.R. Watkins, J.Th.M. De Hosson, B.J. Kooi, N.B. Dahotre. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys. Acta mater. 2007,55 (4):1203-1214
    [150]M. Mochizuki, M. Toyoda. Strategy of Considering Microstructure Effect on Weld Residual Stress Analysis. J. Pressure Vessel Technol.2007,129 (4):619-629

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700