利用锆硅渣制备白炭黑和沉淀法白炭黑品级评判研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锆硅渣是工业上利用锆英石生产锆系列化合物(如氧氯化锆等)后产生的固体废弃物,回收锆硅渣中的二氧化硅制备白炭黑产品以实现其资源化利用,对固体废弃物减量和降低环境污染具有积极意义。在现有评判体系基础上,研究和建立对实际应用具有指导作用的沉淀法白炭黑品级的评判方法十分必要。
     本论文以河南锆硅渣为原料,研究了分别采用化学沉淀法和直接中和法制备白炭黑的技术和工艺。对白炭黑产物进行了性能测试和表征,讨论了化学沉淀法制备白炭黑的机理,并研究了沉淀法白炭黑品级模糊综合评判问题。
     研究了化学沉淀法制备白炭黑的技术和工艺,表明通过锆硅渣除色、碱溶和碱溶滤液酸析步骤可制得白炭黑产物。试验得出最佳工艺条件:碱溶时间40min,液固比3:1,NaOH加入量0.67g/10g除色锆硅渣,酸析温度为80℃,陈化时间为60min,SiO2浓度为0.580mg/mL。
     研究了采用直接中和法,通过硅渣研磨制浆→含PEG分散剂洗水洗涤→水浴加热→诱导剂诱导→陈化→离心洗涤等工序制备白炭黑的工艺。试验确定的最佳工艺条件:分散剂用量2.5%,反应温度70℃,研磨时间45min。
     对制备的白炭黑产物进行了理化性能测试和性能表征。化学沉淀法和直接中和法制备的白炭黑产物均由非晶态物质组成,比表面积分别为302.8m~2/g和427.3m~2/g,原级颗粒呈球形,粒径约100nm,孔径均在中孔范围内。直接中和法产物分散性更好,孔道分布更发达。两种白炭黑产物的各项理化指标均符合国家标准。
     对化学沉淀法制备白炭黑的机理进行了讨论。化学沉淀法制备白炭黑属液相化学反应,应力求在亚稳过饱和状态下进行;白炭黑生长过程由颗粒生成和颗粒长大两部分组成,控制体系组分浓度直接影响白炭黑的颗粒分散性;白炭黑产品形态可通过对液相化学反应过程中各项参数的控制来进行有效调控。
     根据白炭黑产品的现有标准(HG/T 3061和ISO 5794-1),并结合相关生产企业产品标准和信息,通过综合分析沉淀法白炭黑各方面性能的作用影响方式,采用模糊数学综合评判方法,建立了沉淀法白炭黑品级模糊评判模型。实例验证表明,通过模型预测的产品品级和计算价格与实际状况基本相符。
Zr-containing silica residue is solid waste discharged during the industrial process of Zr serial compounds (such as ZrOCl2) from zirconite. Preparing amorphous silica by recovering silica from Zr-containing silica residue is very meaningful for reducing the solid waste and environmental pollution. It is necessary to establish grade evaluation for precipitated silica based on existing evaluation system, which is of guiding significance in applications.
     In this paper, preparation processes of amorphous silica using Henan Zr-containing silica residue as raw materials with chemical precipitation and direct neutralization methods were researched. Properties and structures of amorphous silica products were characterized. The mechanism of preparation of amorphous silica by chemical precipitation was discussed. The grade fuzzy comprehensive evaluation on precipitated silica was studied.
     Amorphous silica was prepared by chemical precipitation through procedures including alkali dissolving, color removal and acid eduction of alkali leachate. Optimum process conditions were obtained: alkali dissolving time 40min, liquid-solid ratio 3:1, dosage of NaOH 0.67g per 10g silica residue after color removal, acid eduction temperature 80℃, aging time 60min, and concentration of SiO2 0.580mg/mL.
     The preparation process of amorphous silica by direct neutralization was studied, which were composed of pulping by grinding, washing with PEG (dispersant) solution, water-bathing, inducing by Na2SiO3, aging, centrifugal washing and so on. Optimum process conditions were obtained: dosage of dispersant 2.5%, reaction temperature 70℃, and grinding time 45min.
     The properties and structures of amorphous silica products by chemical precipitation and direct neutralization were measured and characterized. Their specific surface areas reached to 302.8m2/g and 427.3m2/g, respectively. They were both composed of amorphous phase, and the original particle was spherical and of average size of 100nm in diameter, the pore diameter is at the range of mesopores. Compared with amorphous silica products prepared by chemical precipitation, the dispersibility of amorphous silica by direct neutralization was better, and the pore distribution was broader. The physicochemical characteristics of amorphous silica can accord with the national standards.
     The mechanism of preparation of amorphous by chemical precipitation was discussed. The process of preparation of amorphous precipitated silica was liquid phase chemical reaction, which was in metastable supersaturation region as possible. The growing processes of amorphous silica were composed of crystal nucleation and growth. Controlling the concentration of the system affected the dispersibilities of silica, and the morphologies of amorphous silica can be adjusted by controlling indexes of liquid phase chemical reactions.
     Grade fuzzy comprehensive evaluation model was established, which was based on present standards (HG/T 3061 and ISO 5794-1), combining with standards and information from manufacturers of amorphous silica and analysis of the influences on interactions between properties and performances. The grade and calculated price of amorphous silica sample coincided with the real situations.
引文
[1] LW Wang,ZC Wang,JZ Zhao,et al. Preparation of mesoporous silica by co-precipitation in the presence of non-ionic surfactant. Materials Chemistry and Physics,1999,59:171-174
    [2] P.H.Bolt,T.P.M.Beelen,R.A.van Santen. A small angle X-ray scattering study on high pH silica precipitations. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1997,122:183-187
    [3] J.Schlomach,M.Kind. Investigations on the semi-batch precipitation of silica. Journal of Colloid and Interface Science,2004,277:316-326
    [4] J.H.Johnston,A.J.McFarlane,et al. Nano-structured silicas and silicates-new materials and their applications in paper. Current Applied Physics,2004,4:411-414
    [5] S.L.Chen. Preparation of monosize silica spheres and their crystalline stack. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,142:59-63
    [6]胡庆福,王金阁,李国庭,等.喷雾碳化法生产透明白炭黑新工艺研究.无机盐工业,1997(6):31-33
    [7] T.Jesionowski,A.Krysztafkiewicz. Preparation of the hydrophilic/hydrophobic silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,207:49-58
    [8]金慧,曾之平,任保增,等.重碱过滤母液制工业白炭黑工艺条件的研究.河南化工,2001(9):13-14
    [9]刘海弟,贾宏,郭奋等.超重力反应沉淀法制备白炭黑的研究.无机盐工业,2003,1(35):13-15
    [10]钱伯章.气相法白炭黑的生产现状及发展前景.橡胶科技市场,2006(19):11-13
    [11]邹君辉,刘莉,徐宁.气相法白炭黑生产技术的研究.广东化工,2004(9,10):38-40
    [12]龙成坤,刘莉,桑国仁.气相法白炭黑合成工艺的研究.有机硅材料,2003,17(5):12-14
    [13]侯桂芹,王京甫,毕春波.纳米白炭黑的应用及其制备方法.江苏陶瓷,2007,40(3):16-18
    [14] W.V.Moreshead,J.R.Nogues,R.H.Krabill,Preparation,processing,and fluorescencecharacteristics of neodymium-doped silica glass prepared by the sol-gel process,J.Non-crystal. Solids,1990,121:267-272
    [15] M.J.Lochhead,k.l.Bray,Spectroscopic characterization of doped sol-gel silica gels and glasses:evidence of inner-sphere complexation of europium(Ⅲ),J.Non-crystal.Solids,1994,170:143-154.
    [16] E.J.A.Pope,J.D.Machenzie,Sol-gel processing of Neodymia-silica glass,J.Am.Ceram.Soc,1993,76:1325-1328
    [17]张瑞静,杨柯,熊天英.高活性中孔型纳米二氧化硅粉末制备新工艺的探索.材料导报,2003,17(3):78-80
    [18]赵秦生,李中军,刘长让.溶胶-凝胶法制备多孔SiO2超细粉体.中南工业大学学报,1998,29(2):131-134
    [19]姚林,徐桂英.以反相微乳液介质调控微/纳米SiO2的尺寸和形貌.日用化学工业,2007,37(1):34-37
    [20]王丽丽,贾光伟,许湧深.反相微乳液法制备纳米SiO2的研究.无机化学学报,2005(10):1505-1509.
    [21]张庆军.纳米白炭黑的研制与表征:[硕士学位论文].河北:河北理工大学,2005
    [22]周光,王延吉.利用非金属矿制备白炭黑现状及发展前景.华东地质学院学报,2001,24(4):298-301
    [23]黄足文,李莹,郑晓虹,等.硫酸铝渣制备纳米白炭黑的研究.矿产保护与利用,2004,4(2):17-22
    [24]徐洁明,谢吉民,朱建军.粉煤灰气相法制备纳米白炭黑的研究.无机盐工业,2006,7(38):54-59
    [25]李勇,薛向欣,冯宗玉,等.用油页岩渣制备白炭黑的工艺.过程工程学报,2007,4(7):751-756
    [26]杜高翔.利用石棉尾矿制备超细氢氧化镁和超细白炭黑:[博士学位论文].北京:中国矿业大学(北京),2005
    [27]李炳炎.国内外轮胎用白炭黑发展动态.中国橡胶,2007,20(9):3-7
    [28]朱永康.沉淀法白炭黑和炭黑补强橡胶的新方法.橡塑资源利用,2006(6):10-14
    [29] N.Rattanasom,T. Saowapark. Reinforcement of natural rubber with silica/carbon blackhybrid filler. Polymer Testing,2007(26):369-377
    [30] Christopher M. Liauw,Norman S. Allen. The role of silica and carbon-silica dual phase filler in a novel approach to the high temperature stabilization of natural rubber based composites. Polymer degradation and stability,2001(74):159-166
    [31]梅鑫东.白炭黑的生产工艺及其应用.江西化工,2006(3):39-40
    [32]李株.白炭黑应用的新领域.当代化工,2001,30(2):114-116
    [33]方鹏飞,陈远荫,段和平,等.二氧化硅聚硅氧烷负载富勒烯铂配合物的合成及其催化硅氢化性能.催化学报,1999,20(1):89-92
    [34]戴清,路春娥,翁葵平,等.载钛中孔二氧化硅分子筛的光催化性能.催化学报,1999,20(3):313-316
    [35] G.P.Lepore,L.Persaud,C.H.Langford. Supperting titanium dioxide photocatalysts on silica gel and hydrophobically silica gel. Journal of Photobiology,1996,98:103-111
    [36] M.Nele,A.Vidal,D.L.Bhering,et al. Preparation of high loading silica supported nickel catalyst:simultaneous analysis of the precipitation and aging steps. Applied Catalysis A:General,1999,178:177-189
    [37]罗方承,吴传官,杨勇,等. 10000吨氧氯化锆生产工艺改进研究和经济效益分析.矿产与地质,2001(10):535-539
    [38]罗方承,吕文广,郑景宜,等.氧氯化锆的生产及其在现在新能源中的应用.无机盐工业,2003,35(1):10-12
    [39]柳云珍.硅渣处理工艺.中国,01115132.3,2001.12.19
    [40]宜兴新兴锆业有限公司.锆硅渣制备白炭黑.中国,200610037670.6,2006.7.19
    [41]陈文利,欧阳贻德,姚本林,等.工业废弃物锆硅渣生产白炭黑.武汉化工学院学报,2002,24(4):25-26
    [42]潘群雄,王建,蒋自红.锆硅渣制备白炭黑研究.非金属矿,2005,28(1):37-39
    [43]古映莹,潘春跃,黄可龙,等.氧化锆生产中锆硅渣及含碱废液的综合利用.矿产综合利用,2000,4(2):45-48
    [44]孙亚光,余丽秀.用氯氧化锆生产排放废料制备层状结晶二硅酸钠及其性能研究.日用化学工业,2008,38(4) :226-229
    [45]孙亚光,陈潮钿,易征兵.氯氧化锆生产排放废水废渣处理技术研究.研发与应用,2004,23 (6):24-26
    [46]陆继根,王凤英,李芳,等.锆化工废渣无害化处理与利用研究.污染防治技术,2005,18(1):3-5
    [47]彭祖赠,孙韬玉.模糊(Fuzzy)数学及其应用.武汉大学出版社,2007:90-97
    [48]黄靓,张俊容. AHP中判断矩阵次序一致性检验的新方法.理论探新,2008(12):35-36
    [49]张裕卿,黄晓明.模糊综合评判在优选改性剂中的应用.石油沥青,2006(6):56-60
    [50]岳子明,李晓秀,高晓晶.北京通州区土壤环境质量模糊综合评价.农业环境科学学报,2007,26(4):1402-1405
    [51]宋海华,张学岗,冯国红.萃取精馏溶剂的选择(Ⅱ)模糊综合评判方法.化工学报,2007,58(8):2016-2019
    [52]丁浩.晶质石墨矿石可选性的模糊综合评判.矿产综合利用,1992(4):42-45
    [53]丁浩.低品位硅藻土加工成助滤剂难易程度的模糊综合评判.非金属矿,1993,96:17-20
    [54] L.T.Tran , C.G.Knight , E.R.Smith , et al. Fuzzy decision analysis for integrated environmental vulnerability assessment of the Mid-Atlantic region. Environmental Assessment,2002,29(6):845-859
    [55] ZG Feng,Q Wang. Research on health evalution system of liquid-propellant rocket engine ground-testing bed based on fuzzy theory. Acta Astronautica,2007(61):840-853
    [56]廖雯丽.锆渣制备硅酸钙绝热材料的研究:[硕士学位论文].南京:南京理工大学,2007
    [57]李树棠. X射线衍射实验方法.冶金工业出版社,1993. 114-116
    [58]王国光,水淼,岳林海. X射线衍射分析非晶二氧化硅结构及其物化性质的研究.无机化学学报,2002,10(18):991-996
    [59]熊文杰,邝先飞,康念铅. X射线在晶体衍射分析中的应用.江西化工,2008,9:137-140
    [60]王志成,平琳,张慧勤.沉淀法纳米白炭黑的制备.有机硅材料. 2005,19(2):23-25
    [61]周良玉,尹荔松,周克省,等.白炭黑的制备、表面改性及应用研究进展.材料导报,2003,11(17):56-59
    [62]俞斌.无机与分析化学教程.化学工业出版社,2002:119
    [63]沈钟,赵振国,王果庭.胶体与表面化学.化学工业出版社,2004:19
    [64]王春生,雷永泉,吴京,等.成核过程的热力学分析.人工晶体学报,1994,1(23):51-55
    [65]妖连增.晶体生长基础.中国科学技术大学出版社,1995:258-309
    [66]吴峰民.一维随机成核生长模型.物理学报,1996,45(12):1960-1969
    [67]冯世宏,贾太轩,杜慧玲,等.晶体生长机理的研究进展.有色矿冶,2004,5(20):48-50
    [68]刘光照,朱亚男.晶体成核理论.人工晶体学报,1981,1:1-33
    [69]万鹏,雷新亚,韦齐和,等.胶体系统中的非线性生长与聚集.物理,1996,12(25):745-748
    [70]王孝恩.晶体成核和生长的微观模型.潍坊教育学院学报,2007,2(20):15-17
    [71]钟志勇.固态材料形成过程中的晶体生长机理探讨.人工晶体学报,2004,10(5):848-850
    [72]闫晓红,陈福义,于子龙,等.单分散SiO2微球的合成及胶体晶体的生长.功能材料,2008,11(39):1926-1928
    [73]李武,高世扬.晶体生长机理.盐湖研究,1994,2(3):76-81
    [74]闵乃本.晶体生长过程中的形态稳定性.人工晶体学报,1981,7:77-82
    [75]贾寿泉.溶液相晶体生长理论发展概述.物理,1979,6(8):526-533
    [76]李汶军,施尔畏,郑燕青,等.氧化物晶体的成核机理与晶粒粒度.无机材料学报,2000,5(15):777-787
    [77]任俊,沈健,卢寿慈.颗粒分散科学与技术.化学工业出版社,2005:108-126
    [78]李炳炎.高分散性白炭黑的性能特征和生产工艺(二),橡胶科技市场,2002,5:9
    [79]黄炜.白炭黑特性特性对橡胶和轮胎胶料性能的影响.轮胎工业,1996,(16):162-172
    [80]徐匡宇.白炭黑理化性质对橡胶制品性能及加工工艺的影响.江西化工,1999,1:26-28
    [81]赵柄国,郭锴,谢小平.白炭黑制备工艺对比表面积和吸油值的影响.无机盐工业,2006,5(38):23-26
    [82]柴金岭.制备白炭黑的实验条件对白炭黑粒径的影响.山东师大学报(自然科学版),1998,2(13):148-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700