用全浮选法从攀枝花钒钛磁铁矿中回收钛的工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
攀枝花的钒钛磁铁矿是我国最重要的钛资源之一,矿石中主要的含钛工业矿物是钛铁矿。但由于该矿石成分复杂,钛含量较低,其回收是一大难题。多年以来有许多学者和科研人员对攀枝花的钒钛磁铁矿进行了大量深入而细致的研究工作,对矿石的综合利用提出过许多方案。
     中国是世界上第一个实现了在工业规模上从复杂钒钛磁铁矿矿石中综合提取铁、钒、钛的国家,取得这样的成绩极为不易。攀枝花钒钛磁铁矿矿石中含铁和含钛的工业矿物分别是(钛)磁铁矿和钛铁矿。综合利用总的技术路线是首先选铁,由于钒主要赋存于(钛)磁铁矿中,因此选铁的同时钒进入铁精矿,在冶炼过程中进行回收。选铁的尾矿进行选钛。相比于选铁而言,钛铁矿的回收难度要大得多。为了更好地回收钛,相关企业和院校经过20多年的攻关,尽管已经形成涵盖重、磁、浮、电多种选矿方法、包括主流程和微细粒级浮选流程在内的相当复杂的钛回收系统,回收率有所提高,但仍然停留在20%左右。近年来主流工艺已发展成为“强磁——浮选”流程,虽然选矿方法有所简化,但钛铁矿回收率也仅有30%左右。而且仍然存在选矿方法多、流程复杂以及微细粒级钛铁矿难以有效回收等不足。随着我国钛工业的不断发展,对原料的需求与日俱增。如何更好地回收利用攀枝花钒钛磁铁矿资源,改进选矿方法,提高钛回收率显得十分紧迫,对我国钛工业的科技进步以及相关产业的发展意义重大。
     本论文在“简化选矿方法,缩短选矿流程,全粒级入选,提高选矿指标”的基本技术路线指导下,创新性地提出了全粒级单一浮选方案。通过大量的试验对全粒级入选全浮选回收工艺进行了系统而深入的研究,解决了一系列技术难题,使得全浮选方案获得成功。这样就简化了选矿方法和流程,而且大幅度提高了选矿指标——钛精矿品位大于47%,回收率达到50%以上。本论文还通过单矿物的浮选机理研究为全浮选方案提供了理论依据。
     在工艺方面,通过本论文的研究发现,要使攀枝花钒钛磁铁矿矿石中钛铁矿的全粒级全浮选方案取得成功,必须把握以下几个技术关键点:彻底的除铁预处理、高效捕收剂的采用、pH值的精确控制以及合理的流程结构。
     在理论研究方面,本文首次发现了(钛)磁铁矿矿物在浮选中的“优先浮选效应”和“磁团聚效应”。这两个效应会对钛铁矿的浮选带来不利影响,因此浮选前彻底的除铁十分必要。在理论研究方面的另一个重要创新,是用实验证实了硫酸的活化作用,因而证明了硫酸在钛铁矿浮选过程中的“双重作用”,即既是pH值调整剂又是浮选活化剂。确定了pH值4.5~5.5是钛铁矿浮选的最佳pH值区间。在此区间内,钛铁矿具有最佳的可浮性和选择性,而且在浮选不同阶段对pH值有不同的要求,粗选和精选应分别选择pH值5和pH值4.5为宜。
     本研究通过对不同捕收剂的对比和筛选,证明新型高效捕收剂SYB2#的采用是全浮选方案获得成功的关键之一。在对比了多种抑制剂对脉石的抑制效果以及对钛铁矿的分选性后,最终证明羧甲基纤维素是现有抑制剂中最为有效的,同时对羧甲基纤维素的抑制机理进行了探讨。
The vanadium titano-magnetite ore in Panzhihua district is one of the most important titanium resources in China. The major industrial titanium-containing mineral in the ore is ilmenite. However, because of the complexity of the ore composition, low grade of titanium, ilmenite recovery has always been a big problem. For many years, some scholars and mining workers have done a lot of depth and detailed research on the comprehensive utilization of vanadium titano-magnetite ore in Panzhihua district, and many suggestions about the comprehensive utilization of the ore were provided.
     China is the first country that can extract iron, vanadium and titanium from complex vanadium titano-magnetite ore in industrial-scale, which is a great achievement. The general technical line of the comprehensive utilization of vanadium titano-magnetite ore in Panzhihua district is consisted of three parts. Firstly, we concentrate magnetite and titano-magnetite. Secondly, vanadium is recoverd from the titano-magnetite in metallurgy process. Finally, ilmenite is separated from the tailings of magnetic separation. The traditional separating process of ilmenite was consisted of gravity separation, magnetic separation, floatation and electrostatic separation. But the recovery of ilmenite is very low(about 20%). Nowerdays, the most popular separating process of ilmenite is "high intensity magnetic separation——floatation". This process is able to recover more ilmenite and the recovery is about 30%. But there are still many disadvantages. For example, the process is too long and complicated, the recovery of ilmenite is still low, ilmenite of fine fraction can not be recovered effectively and so on. The demand for raw materials is increasing with the continuous development of China's titanium industry. It is very important to improve the separating process of ilmenite and get better utilization of the vanadium titano-magnetite ore in Panzhihua district.
     The basic technical line of the study is "simplifying the methods, shortening the process, all-partical-fraction and improving the indicators ". A systematic and in-depth study of recovering ilmenite from the vanadium titano-magnetite ore in Panzhihua district by all-partical-fraction-floatation process("APF-floatation") was carried out through a lot of experiments. A series of technical problems were solved. Finally, the "APF-floatation" is successful with the concentrate grade≥47% and recovery≥50%. Meanwhile, the study of monominerals floatation mechanism provides a theoretical basis.
     Overall the "APF-floatation" has the following key technical points:complete removal of titano-magnetite pretreatment, the usage of efficient collector, precise control of pH value and reasonable flow structure.
     The study discovered the titano-magnetite has "Priority Floating Effect" and "Magnetic Agglomeration Effect". The two effects have bad influence on ilmenite floatation. The pre-removal of residual magnetite before concentrating ilmenite from magnetic separation tailings by floatation is essential. It is noteworthy that the sulfuric acid is not only the pH conditioner but also the important activator in the ilmenite flotation. The activation was studied and confirmed in this paper. The effect of pH value on the performance of ilmenite floatation is investigated. It is found that a pH value range of 4.5-5.5 is the best one for ilmenite floatation, within which ilmenite presents the most optimal floatability and selectivity. And pH values of 5 and 4.5 are considered to be the best pH values for roughing and cleaning respectively according to the different demands.
     This research compared the effects of a variety of collectors and depressants in ilmenite flotation by detailed monominerals floatation tests and carried out detailed analysis and discussion. Finally we consider that the usage of new and efficient collector SYB2# is the key to the success of "APF-floatation" in this study. The other conclusion is that carboxymethyl cellulose is the most effective depressant.
引文
[1]吴贤,张健.中国的钛资源分布及特点.钛工业进展.2006,23(6):8—12
    [2]邓炬.正在崛起的中国钛工业.稀有金属快报.2007,(6):1—6
    [3]Norgate, T. E., Rajakumar, V., Trang, S., Titanium and other light metals-Technology pathways to sustainable development. Green Processing 2004.2004, (2):105-112
    [4]FH. Froes etal. The Journal of the Minerals, Metals and Materials society. Vol.49 (5),1997, (5):34-50
    [5]F. Chachula, Q. Li. Fuel.2003,82:929-942
    [6]S. Bulatovic, D. M. Wyslouzil, Miner. Eng.1999(12):1407-1417
    [7]G. Belardi, L. Piga, S. Quaresima, N. Shehu, Int. J. Miner. Process. 1998,53:145-156
    [8]胡克俊,姚娟,席歆.攀枝花钛资源经济价值分析.世界有色金属.2008,(1):36—42
    [9]汪镜亮.国外钒钛磁铁矿的开发利用.钒钛.1993,(5):1—11
    [10]李金河.承德市钒钛磁铁矿资源现状及开发利用前景.金属矿山.2005,(增刊):21—25
    [11]朱俊士.钒钛磁铁矿选矿及综合利用.金属矿山.2000,(1):1—5
    [12]李朝柱.构建节约型社会打造环境友好产业与时俱进地深化攀西钒钛磁铁矿综合利用.四川有色金属.2005,(3):1—6
    [13]张建廷,陈碧.攀西钒钛磁铁矿主要元素赋存状态及回收利用.矿产保护与利用.2008,(5):38—41
    [14]徐全斌,兰尧中.对钒钛磁铁矿选矿的研究.钒钛.1993,(1):81—83
    [15]郭明彬.钒钛磁铁矿提铁稳钛扩能技术研究及应用.攀枝花科技与信息.2007,32(2):6—10
    [16]Lazarenko, E. K., and Kurs, M., Izd. Wyssaya Skola, Moscow, Sec. Edit. Russian text,1971
    [17]Reaveley BJ, Scanlon TJ. Murray basin ilmenite-Realising the value. INTERNATIONAL HEAVY MINERALS CONFERENCE 2001, PROCEEDINGS.2001, (3):187-191
    [18]Gonzalez LM, Forssberg KSE. Utilization of a vanadium-containing titanomagnetite:possibilities of a beneficiation-based approach. Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy.2001,110:63-72
    [19]Pol'kin, S. I., Naifonov, T. B., Puryskin, E. D., Floatation of Ilmenite from Native Titanomagnetite Ores. Izv Vyssh Uchebn Zaved Tsvetn Metallurgy.1977, (3):10-13
    [20]Smirnov LA, Tret'yakov MA, Gladyshev VI. Processing vanadium-bearing and titanomagnetite iron ores. METALLURGIST.2000,44(5):230-232
    [21]郭建军.2005年世界钛工业发展状况及展望.稀有金属快报.2006,(7):6—10
    [22]董香山.承德地区低品位钒钛磁铁矿开发和利用的经济思路.2005年中国钢铁年会论文集.北京:中国金属学会,2005
    [23]于元进.毕机沟钒钛磁铁矿选钛试验和设计研究.金属矿山.2000,(增刊):87—89
    [24]许新邦.磁一浮选流程回收攀钢微细粒钛铁矿的试验研究.矿冶工程.2001,21(2):37-40
    [25]周晋.磁选厂尾矿回收二氧化钛的研究.新疆有色金属.2008,(2):27—28
    [26]王兆元.从太和铁矿选铁尾矿中回收钛铁矿的工业试验研究.江西有色金属.2004,18(3):16—18
    [27]余德文.从钛浮选尾矿中回收钛铁矿的试验研究.矿业快报.2003,(1):40—42
    [28]龙运波,张裕书.低品位钒钛磁铁矿选铁尾矿综合回收钛试验研究.矿业快报.2007,(7):22—24
    [29]任金菊,崔恩静,马晶等.低品位钒钛磁铁矿综合回收选矿工艺研究.矿产保护与利用.2005,(1):25—28
    [30]丁运清,钟宏,叶红齐等.哈密钛铁矿选矿与综合利用研究.矿冶工程.1997,17(1):29—33
    [31]勾树山,石云良,陈正学.黑山钛铁矿工艺特性与选矿工艺流程试验研究.金属矿山.2001,(9):34—36
    [32]王广瑞,谭凤林.黑山铁矿选钛工艺改进方案探讨.承钢技术.2002,(3):1—4
    [33]刘兰花,刘桂红.黑山选钛工艺确定及生产实践.承钢技术.2004,(3):62—65
    [34]张田,银纪普.会理白草选钛厂选钛工艺优化试验研究.四川有色金属.2002,(2):29—32
    [35]刘万峰,于梅花,滕根德.河北某钛铁矿选矿试验研究.有色金属(选矿部分).2008,(4):10—14
    [36]袁国红.重钢太和铁矿选钛流程技术改造.金属矿山.2001,(6):39—40
    [37]Cavanough G, Holtham PN. On-line measurement of magnetic susceptibility for titanium minerals processing. INTERNATIONAL HEAVY MINERALS CONFERENCE 2001, PROCEEDINGS.2001, (3):95-100
    [38]Tegist Chernet. Mineralogical and textural constraints on mineral processing of the Koivusaarenneva ilmenite ore, Kalvia, western Finland. Int. J. Miner. Process.1999, (57):153-165
    [39]G. Belardi, L. Piga, S. Quaresima, N. Shehu. Application of pHysical separation methods for the upgrading of titanium dioxide contained in a fine waste. Int. J. Miner. Process.1998, (53):145-156
    [40]陈江安,饶宇欢.Slon磁选机分选攀钢铁矿的工业试验.南方金属.2003,(135):14—16
    [41]熊涛,熊大和,钱枝花.SLon磁选机在攀钢选钛厂扩能改造细粒级钛铁矿中的应用.矿冶工程.2008,28(6):48—53
    [42]敖慧玲.SLon立环脉动高梯度磁选机回收微细粒级钛铁矿的试验研究.南方冶金学院学报.2005,26(6):17—20
    [43]敖慧玲.SLon立环脉动高梯度磁选机在承钢黑山选钛厂的应用.江西有色金属.2005,19(4):43—48
    [44]Dahe Xiong. SLon magnetic separators applied in various industrial iron ore processing flow sheets. Iron Ore Conference 2007 Perth, Australia, Australasian Inst Mining & Metallurgy,2007:245-250
    [45]Xiong Dahe. SLON Magnetic Separators Applied inthe Ilmenite Processing Industry. PHysical Separation in Science and Engineering. 2004, Vol.13, No.3-4, pp.119-126
    [46]Song, Quanyuan etal. Floatation of Ilmenite Using Benzyl Arsonic Acid and Acidified Sodium Silicate. Int. J. Mineral Process.1989, (26):111-121
    [47]Belardi G. Improve TiO2 in the Scrap through PHysical Method [J]. Int. J. Miner. Pro.,1998,53(3):145-146
    [48]Lbrahim, Suzan S, Refining of Silicates by floatation to meet glassmaling applications. E. I. Vol.40, (3)
    [49]Naifonov, V. T. etal., Floatation studies of flotability of titanium minerals using sodium oleate, Tsvetnaja Metalurgia,1980, No.3
    [50]Vikolaeva B. H., Pereverzera, L. I., Floatation studies of pervoskite using emulsions of alipHatic acid collectors:(Vetmetin-Informacia, i.e. Express Information),1986, No.32
    [51]Bulatovic, S., Wyslouzil, D. M., An investigation of floatation of zirconium and titanium minerals from beach sand, Report of Investigation, LR-4162,1991
    [52]周军,钱鑫.攀枝花细粒钛铁矿混合药剂浮选研究.矿冶工程.1996,16(3):35—38
    [53]朱俊士.中国钒钛磁铁矿选矿[M].北京:冶金工业出版社.1996
    [54]张国范,王丽,冯其明.钛辉石对钛铁矿浮选行为的影响.中国有色金属学报.2009,19(6):1124—1129
    [55]陈名洁,文书明,胡天喜.国内钛铁矿浮选研究的现状与进展.国外金属矿选矿.2005,(7):17—22
    [56]Naifonov, V. etal., Floatation of perovskite using complex forming collectors, Tsvetnie Metaly,1966, No.3
    [57]Opavez, etal. Floatation of monazite-zircon-rutile with sodium oleate and hydroxamate. Internation al mineral processing congress, Sydney,1993:1007-1012
    [58]高颖剑,林江顺.国内外羟肟酸的合成及其在浮选中的应用.国外金属矿选矿.1997,(6):54—58
    [59]刘文刚,王本英,代淑娟等.羟肟酸类捕收剂在浮选中的应用现状及发展前景.有色矿冶.2006,22(4):25—27
    [60]戴新宇.F968捕收剂富集攀枝花细粒级钛铁矿的试验研究.金属矿山.2000,(11):40—43
    [61]马忠臣.H717捕收剂选别钛铁矿的试验研究.有色矿冶.2003,19(4):18 —22
    [62]袁国红,余德文.R—2捕收剂选别攀枝花微细粒级钛铁矿试验研究.金属矿山.2001,(9):37—39
    [63]魏民.TAO系列捕收剂选别攀枝花钛铁矿的研究.广东有色金属学报.2006,16(2):80—83
    [64]谢泽君.XT新型浮钛捕收剂的工业试验.矿产综合利用.2004,(4):22—26
    [65]谢建国,盂长春.新型捕收剂ROB浮选微细粒级钛铁矿的试验研究.矿冶工程.2002,(2):47—51
    [66]朱建光.利用协同效应最佳点配制钛铁矿捕收剂.有色金属(选矿部分).2002,(4):39—41
    [67]王洪彬,张红先.MOH捕收剂浮选攀枝花微细粒级钛铁矿试验研究.矿冶工程.2007,27(5):27—30
    [68]陈树民.CARPCO电选机在攀钢选钛厂的应用及改进.金属矿山.2002,(4):53—57
    [69]刘侥,周友斌.HTP型电选机分选原生钛铁矿存在问题的探讨.攀钢技术.1999,22(3):6—10
    [70]梁冬云,何国伟.攀枝花钛粗精矿分级精选工艺研究.金属矿山.2005,(增刊):351—352
    [71]谢泽君,伍娟娟,张国平.攀钢密地选钛厂细粒级钛铁矿回收工艺的研究与实践.四川有色金属.2003,(1):42—45
    [72]邹建新,杨成,彭富昌等.攀西地区钒钛磁铁矿提钛工艺与技术进展.金属矿山.2007,(7):7—9
    [73]夏志乡,王凯.攀钢选钛微细粒生产改进研究.四川冶金.2001,(4):1—3
    [74]钱伯章.二氧化钛的国内外市场分析.上海涂料.2007,45(2):40—43
    [75]何富本,邹京发.开发新工艺充分回收钒钛磁铁矿中钛资源.攀枝花科技与信息.2006,31(3):11—12
    [76]Gilman SK, Taylor RKA. The future for ilmenite beneficiation technologies. INTERNATIONAL HEAVY MINERALS CONFERENCE 2001, PROCEEDINGS.2001, (3):177-185
    [77]Xianfeng Fan, Kristian E. Waters,Neil A. Rowson etal. Modification of ilmenite surface chemistry for enhancing surfactants adsorption and bubble attachment. Journal of Colloid and Interface Science. 2009,329:167-172
    [78]X. FAN and N. A. ROWSON. The Effect of Pb(NO3)2 on Ilmenite Floatation. Minerals Engineering,2000, Vol.13, No.2, pp.205-215
    [79]Fan X, Rowson NA. Surface modification and column floatation of a massive ilmenite ore. CANADIAN METALLURGICAL QUARTERLY.2002, 41 (2):133-142
    [80]Kothari, N.C., Recent Developments in Processing Ilmenite for Titanimn, Int. J. Moner. Process.,1974,1, pp.287-305
    [81]唐贤容.攀西钒钛磁铁矿综合利用新工艺探讨.矿产综合利用.1990,(3):44—48
    [82]Pryor, E. J., Mineral Processing,3rd edn,1978, Applied Science Publishers Limited, London
    [83]E. J. Pryor, Mineral Processing, third ed., Applied Science Publishers, London,1978
    [84]Runolinna, U. and Rinne, R., Agglomeration Floatation of Ilmenite Ore at Otanmaki, International Mineral Processing Congress,1960, pp.447-475
    [85]Drzymala, J., Luszczkiewicz, A. and Simiczyjew, P., Floatation Study on High-Hercynite Ilmenite Ores, International Journal of Mineral Processing,1982,10, pp.297-308
    [86]Eidsmo,0., and Mellgren,0., Some Factors Which Influence Ilmenite Floatation at Titania A/S, Norway. International Mineral Processing Congr. London,1960, pp.431-444.
    [87]Fan, X and Rowson, N. A., Fundamental Investigation of Microwave Pretreatment on the Floatation of Massive Ilmenite Ores, Developments in Chemical Engineering & Mineral Processing,1999
    [88]肖六均.攀枝花钒钛磁铁矿资源及矿物磁性特征.金属矿山.2001,(1):28—30
    [89]周建国,王洪彬,曾礼国.攀枝花微细粒级钛铁矿的回收.广东有色金属学报,2006,16(1):1-5
    [90]王淀佐.浮选理论的新进展.北京:科学出版社.1992:217—220
    [91]J·D·皮斯等.提高细粒矿物回收率的浮选流程设计.国外金属矿选矿. 2006,(9):29—36
    [92]CHEN J, CHEN Z, DONG HJ. Autogenous Carrier Floatation of Ilmenite. XVIII INTERNATIONAL MINERAL PROCESSING CONGRESS, VOL 4-FLOATATION II AND MISCELLANEOUS.1993,93:1031-1036
    [93]朱阳戈,张国范,冯其明等.微细粒钛铁矿的自载体浮选.中国有色金属学报.2009,19(3):554—560
    [94]曹建,姬俊梅.羧甲基纤维素在铌矿物选别中抑制行为的研究.矿业快报.2006.11,(11):24—26
    [95]余德文,钟志勇.原生细粒钛铁矿无抑制活化浮选.矿业快报.2000,(14):16—18
    [96]S. Bulatovic, D. M. Wyslouzil. Process Development for Treament of Complex Perovskite, Ilmenite and Rutile Ores. Minerals Engineering. 1999, (12):1407-1417
    [97]贺智明,董雍赓,孙籍.金红石和钛铁矿的浮选性能研究.稀有金属.1993,17(4):250—254
    [98]JOHNSON N W. Liberated 0-10 μm particles from sulpHide ores, their production and separation—Recent developments and future needs [J]. Mineral Engineering,2006,19:666-674
    [99]RUBJO J, CAPPONI F, RODRIGUES R T, MATIOLO E. Enhanced floatation of sulfide fines using the emulsified oil extender technique [J]. International Journal of Mineral Processing,2007,84:41-50
    [100]林潮,孙传尧.磁铁矿物的磁性及磁团聚对选矿过程的影响[J].矿冶.1997,6(3):25—31
    [101]Zhong, Kangnien, Cui, Lin. Influence of Fe2+Ions of Ilmenite on its Flotability. Int J Miner Process.1987,20(3):253-265
    [102]Carta M., Ferrera G. F., Contribution to the Electrostatic Separation of Minerals,1964:49-80
    [103]谢广元.选矿学[M].江苏:中国矿业大学出版社.2001
    [104]许向阳,张泾生,王安五等.微细粒级钛铁矿浮选捕收剂ROB的作用机理.矿冶工程.2003,23(6):23—26
    [105]朱玉霜,朱建光.浮选药剂的化学原理(修订版)[M].湖南:中南工业大学出版社.1996
    [106]孟书青,刘金华,廖平婴.CMC与方铅矿和闪锌矿作用机理的探讨.矿冶工程.1982,(3):32—36
    [107]苏仲平.1号纤维素在浮选过程中对辉石闪石等的抑制作用.有色金属.1965,(6):20—25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700