微细粒钛铁矿浮选理论与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国90%以上的钛资源蕴藏于钒钛磁铁矿中。该类型矿石中微细粒钛铁矿的回收一直是矿物加工领域公认的难题,但总体来看,长期存在着资源利用率偏低和浮选基础理论研究薄弱等问题。本文采用多种现代测试技术,结合理论分析和试验研究,对该体系中矿物表面组分与性质、浮选剂分子间的界面组装及矿物颗粒间的界面作用等内容进行了细致系统的研究,形成了钛铁矿浮选体系“固液界面离子选择性迁移-表面组分可控组装”的浮选分离调控机制,并以此为基础开发了攀枝花微细粒钛铁矿浮选新技术原型。主要研究内容和创新如下:
     (1)固液界面离子的选择性迁移与捕收剂定向吸附
     采用XPS、红外光谱和动电位等表面分析方法,发现了钛铁矿浮选体系固液界面离子迁移选择性、捕收剂吸附定位的差异性及二者之间的关联,深入揭示了钛铁矿浮选体系的内在机制。
     攀枝花钛铁矿与脉石矿物钛辉石表面均含有Ti、Fe、Ca、Mg等元素,两种矿物表面Ca、Mg的溶解行为显著强于Ti和Fe。弱酸性矿浆环境中,固液界面发生离子选择性迁移与捕收剂定向吸附两个过程。对于钛铁矿,表面溶解过程中Fe2+被大量氧化为Fe3+,后者与油酸钠作用能力更强,进而有利于油酸钠的吸附;对于钛辉石,在表面溶解过程中Ca2+、Mg2+大量迁移至矿浆中,而Ca2+、Mg2+是钛辉石与油酸钠作用的主要活性质点,导致油酸钠的吸附减弱。在弱碱性矿浆环境中,两种矿物表面离子迁移行为较弱,而且均以钙镁为主要活性质点与油酸钠作用。
     基于以上结果,提出了低pH环境强化溶解与弱酸性环境中超声助溶两种矿物界面性质强化调控措施,以增大二者的可浮性差异。
     (2)固液界面多组分浮选剂分子间组装机制
     通过对组合药剂的表面活性、吸附机制以及矿物可浮性的研究,探讨了矿物表面捕收剂分子间组装的协同作用与调整剂分子间组装的竞争吸附,为浮选药剂制度的制定提供依据。
     螯合剂、阴离子表面活性剂以及非离子型表面活性剂三类浮选剂与油酸钠组合使用可以增强对钛铁矿的捕收性能。苯甲羟肟酸与油酸钠的组合使药剂降低表面张力的能力减弱,但二者均可在钛铁矿表面发生化学作用,使组合药剂吸附更牢固;十二烷基硫酸钠使药剂降低表面张力的能力略有增强,可以依靠静电作用与油酸钠共同吸附于钛铁矿表面;TX-100自身难以在钛铁矿表面吸附,但可以提高药剂降低表面张力的效率,在与油酸钠共同作用时在钛铁矿表面发生共吸附。
     一定条件下,调整剂水玻璃、CMC与捕收剂油酸钠在两种矿物表面发生竞争吸附。在钛铁矿表面三种药剂的吸附能力强弱顺序为油酸钠>CMC>水玻璃;而在钛辉石表面则是水玻璃>CMC>油酸钠。
     (3)同异相矿物颗粒间的界面交互作用与调控
     利用浮选与沉降试验、粒度分析和扫描电镜等方法,结合颗粒间相互作用能理论计算,考查了矿物颗粒间的异相凝聚、选择性絮凝与载体作用等界面作用,及其与强化微细粒矿物回收的关系。
     细粒钛辉石可与钛铁矿发生异相凝聚而严重影响钛铁矿的可浮性,水玻璃对二者的异相凝聚具有良好的分散作用;水玻璃与CMC共同作用可以实现微细粒钛铁矿的选择性絮凝,形成的钛铁矿絮团可与捕收剂作用进行絮团浮选;油酸钠可以使矿物颗粒产生疏水聚团,钛铁矿粗细粒共存体系存在白载体作用,控制载体比例,进行载体/聚团浮选可显著提高细粒钛铁矿的回收率。
     DLVO和EDLVO理论计算表明,钛铁矿与钛辉石颗粒间异相凝聚的产生及分散的本质在于矿物表面电性的调控,钛铁矿自载体作用产生的前提是调控矿物表面润湿性,使颗粒间产生疏水作用能。
     (4)攀枝花钛铁矿浮选技术研究
     开发了两种钛铁矿浮选新技术,为攀枝花钛铁矿资源的高效利用提供了技术支撑。
     针对原矿品位9.00%左右的攀枝花钛铁矿,采用“全粒级絮团浮选”新技术进行直接浮选,开路试验得到Ti02品位47.90%,回收率35.07%的钛精矿,尾矿Ti02品位降低到2.07%;采用“分级磁选-载体/聚团浮选"新技术,闭路试验Ti02品位47.93%,回收率高达52.11%。
In china, more than90percent titanium resources are reserved in vanadic titano-magnetite deposit. The flotation treatment of ilmenite in this type of ore has always been the world-class problem and research emphasis in mineral processing field. In general, there are still some deficiencies needed to be improved, such as the low efficiency of resource utilization and weak theoretical research. Using various modern analysis technologies and combining theoretical investigation with experimental study, this dissertation has done detailed and systematical researches in ilmenite flotation system, including the interfacial composition and properties, the interfacial assembly of the flotation reagents and the interface interaction between particles, etc.. Basing on above-mentioned researches, this dissertation resultantly has established a novel separation principle of "ion selective migration and components controllable assembly on solid-liquid interface", and proposed innovative technical prototypes to process Panzhihua ilmenite. Main conclusions and innovations of this dissertation are listed as follows:
     1. Ion selective migration and collector directional adsorption on solid-liquid interface
     Adopting the surface analysis methods such as X-ray photoelectron spectroscopy(XPS), infrared spectroscopic(FTIR) and zeta potential, this dissertation has discovered the selectivity of ion migration behavior, the difference of collector adsorption location, and the connection between these two processes, well revealing the internal mechanism of the collector adsorption process in ilmenite flotation.
     Same elements such as Ti、Fe、Ca、Mg exist on the surface of both ilmenite and titanaugite (the gangue mineral), and the dissolution behavior of the Ca、 Mg is much more remarkable than that of Ti and Fe. In a weak acid environment, ion migration and collector adsorption on solid-liquid interface would take place. On the surface of ilmenite, surface dissolution is beneficial to the oxidation from Fe2+to Fe3+which has a much stronger reaction with oleat, therefore the adsorption is strengthened. As for titanaugite, Ca2+and Mg2+substantially transform into the pulp during surface dissolution process, while Ca2+and Mg2+are the main active points reacting with sodium oleate, so the absorption would be weakened. In a weak alkalic pulp environment, the ion migration trend becomes weakly, and Ca and Mg play a leading role in the adsorption of the both minerals.
     Based on the above results, to enlarge the floatability difference between these two minerals, pre-treatment methods of strengthening dissolution in lower pH environment and assistant dissolution by ultrasonic were proposed.
     2. Assembly mechanism of multicomponent flotation reagents on the surface of minerals
     By studying the surface activity, adsorption mechanism, and flotation performance of combined reagents, the synergistic effect of collectors and competitive adsorption of regulators were discussed, providing a basis for establishing flotation reagent system.
     Combining sodium oleate with some flotation reagents could enhance their collection property on ilmenite, such as chelating agent, anionic surfactant and nonionic surfactant. Although the combination of benzyl hydroxamic acid and sodium oleate would weaken the ability for reducing the surface tension, both of them could form chemical absorption on the mineral surface, which could fasten the absorption. Sodium dodecyl sulfate could slightly enhance the ability for reducing the surface tension, and it can be absorbed on the mineral surface together with sodium oleate by electrostatic interaction. TX-100can't be adsorbed on the surface of ilmenite by itself, but coadsorption could occur when it is combined with sodium oleate, and TX-100could significantly improve the efficiency for reducing the surface tension.
     Under certain condition, competitive absorption would take place on the two mineral surfaces when waterglass, CMC and sodium oleate are in coexistence. The intensity sequence of absorption ability on surface of ilmenite is:sodium oleate>CMC>waterglass; while for titanaugite, the sequence would be:waterglass> CMC> sodium oleate.
     3. Interface interaction and regulation between homophase/ heterogeneous particles
     By flotation and sedimentation test, particle size analysis and scanning electron microscope (SEM) combining the interaction energy calculation, heterocoagulation, selective flocculation and carrier effect were studied, and the relationship with the enhancement of fine particles flotation was also analysed.
     Heterocoagulation between fine titanaugite particles and ilmenite particles, having an adverse impact on the floatability of ilmenite, could be dispersed by waterglass. Selective flocculation flotation could be realized by the combination of water glass and CMC. Hydrophobic agglomeration would be observed when sodium oleate is added, as for ilmenite, it is found that autogenous-carrier effect exerts between fine and coarse particles, and the floatability of fine particles could be increased significantly when carrier proportion is well controlled.
     The calculations from DLVO and EDLVO theory show that, the essence of generation and dispersion of heterocoagulation is the regulation of surface electricity, and the precondition of autogenous-carrier effect is the regulation of surface wettability, which brings about the hydrophobic property among particles.
     4. Flotation technology of Panzhihua ilmenite
     Two novel flotation technologies developed for Panzhihua ilmenite ore, greatly enhance the resource utilization of Panzhihua ilmenite.
     The Panzhihua ilmenite with TiO2grade about9.00%is used as raw material for flotation tests. By open circuit test of "Whole size fraction flocculation flotation" technology process, the grade and recovery of obtained concentrate (calculated by TiO2) are47.90%and35.07%, respectively, the grade of TiO2in tailing as low as2.07%. By close circuit test of "coarse and fine particles classification, respective magnetic separation, and mixed flotation" technology process, the grade and recovery of obtained concentrate (calculated by TiO2) are47.93%and52.11%, respectively.
引文
[1]K·Hanumantha Rao,郑听.水溶液中油酸盐在萤石表面吸附的研究.国外金属矿选矿,1992,(10):6~12
    [2]Young C A, Miller J D. Effect of temperature on oleate adsorption at a calcite surface:an FT-NIR/IRS study and review. International Journal of Mineral Processing,2000,58 (2):331-350
    [3]Peck A S, Raby L H, Wadsworth M E. An infrared study of the flotation of hematite with oleic acid and sodium oleate. Transactions of the Society of Mining Engineers of American Institute of Mining, Metal and Petroleum Engineers, 1966,235 (3):301-307
    [4]叶志平.苯甲羟肟酸对黑钨矿的捕收机理探讨.有色金属(选矿部分),2000,(5):35-39
    [5]Somasundaran P, Huang L. Adsorption/aggregation of surfactants and their mixtures at solid-liquid interfaces. Advances in Colloid and Interface Science, 2000,88 (1-2):179-208
    [6]Somasundaran P, Fuerstenau D W. Mechanism of alkyl sulfonate adsorption at alumina-water interface. Journal of Physical Chemistry,1966,70 (1):90-96
    [7]胡为柏.浮选.北京:冶金工业出版社,1989.
    [8]林强.浮选药剂活性-选择性原理与活性屏蔽-恢复假说.第二届全国青年选矿学术会议论文集.无锡:中国金属学会,1990:222~225
    [9]赵国玺,朱步瑶.表面活性剂作用原理.北京:中国轻工业出版社,2003:330-331
    [10]朱建光.浮选药剂的组合使用.北京:冶金工业出版社,1988.
    [11]弗利波夫.非硫化矿物浮选中混合捕收剂的协同作用.国外金属矿选矿,2007,(10):13~16
    [12]吴多才.国外混合用药及其协同效应的研究.国外金属矿选矿,1983,(1):24-26
    [13]江庆梅.混合脂肪酸在白钨矿与萤石、方解石分离中的作用:[硕士学位论文].长沙:中南大学,2009
    [14]Pustovalov A L. Mining Magazine,1981, (1):104-105
    [15]李冬莲,彭儒.胶磷矿、方解石捕收剂研究.化工矿山技术,1991,20(5):22-24
    [16]张晶.表面活性剂在油酸钠浮选一水硬铝石中的作用:[硕士学位论文].长 沙:中南大学,2010
    [17]张忠汉,曾少雄,张先华.GY法浮钨新工艺在柿竹园选厂的工业实践.有色金属,2000,52(4):146-148
    [18]卢毅屏,谭燕葵,冯其明,张国范,欧乐明.8-羟基喹啉在微细粒铝硅矿物浮选分离中的作用.中国有色金属学报,2007,17(8):1353-1359
    [19]Sis H, Chander S. Improving froth characteristics and flotation recovery of phosphate ores with nonionic surfactants. Minerals Engineering,2003,16(7): 587-595
    [20]李冬莲,卢寿慈,谢恒星.磷灰石常温浮选溶液化学的研究.矿冶工程,1999,19(1):35~37
    [21]周强,卢寿慈.萤石浮选增效剂及其应用.化工矿山技术,1995,24(2):22-25
    [22]陈远道.高效铝土矿浮选捕收剂的研究与应用:[博士学位论文].长沙:中南大学,2006
    [23]Gaudin A M. Transactions of the American Institute of Mining, Metal and Petroleum Engineers.1934, (112):319-347
    [24]Cooke M A, Nixon J C. Journal of Physical Chemistry,1950, (54):445-459
    [25]Kulkarni R D, Somasundaran P. Flotation chemistry of hematite/oleate system. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1980,1 (3-4):387-405
    [26]Somasundaran P.以离子分子络合物为基础的浮选机理.中南矿冶学院学报,1983,8(S2):59-68
    [27]Fuerstenau M C, Atak S. Lead activation in sulfonate flotation of quartz. Transactions of the American Insitute of Mining, Metal and Petroleum Engineers,1965, (232):24-28
    [28]Fuerstenau M C, Cummins J R. The role of basic complexes in anionic flotation of quartz, Transactions of the American Insitute of Mining, Metal and Petroleum Engineers,1967, (238):196-200
    [29]Fuerstenau M C, Palmer B R. Anionic flotation oxides and silicates in flotation, In:Fuerstenau M C, Flotation-Gaudin A M Memorial. New York:AIME,1976
    [30]Fuerstenau M C. Some aspects of the thermodynamics of flotation, Flotation-Gaudin A M Memorial. New York:AIME,1976.21-65
    [31]James R O, Healy T W. Adsorption of hydrolyzable metal ions at the oxide-water interface 1:Co(Ⅱ) adsorption on SiO2 and TiO2 as model systems. Journal of Colloid and Interface Science,1972,40 (1):42-52
    [32]胡岳华,王淀佐.金属离子在氧化矿物/水界面的吸附及浮选活化机理,中南矿冶学院学报,1987,18(5):501-508
    [33]董宏军.兰晶石累同质异相矿物结构与浮选行为的研究及产品开发:[博士学位论文].长沙:中南大学,1993:42-49.
    [34]Moon K S, Fuerstenau D W. Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) from other aluminosilicates. International Journal of Mineral Processing,2003,72 (1-4):11-24
    [35]谭燕葵.微细粒一水硬铝石和高岭石的浮选研究:[硕士学位论文].长沙:中南大学,2007
    [36]胡岳华,王淀佐.盐类矿物的溶解、表面性质变化与浮选分离控制设计.中南工业大学学报,1992,23(3):273-279
    [37]秦奇武,胡岳华.半可溶性盐类矿物溶液化学行为及其对矿物可浮性的影响.矿冶工程,1999,19(2):30-33
    [38]胡岳华.螯合剂中性油浮选细粒黑钨矿的研究:[硕士学位论文].长沙:中南矿冶学院,1984
    [39]Gaudin A M. Flotation. Mcgraw:hill Book Company,1995:1-7.
    [40]Miettinen T, Ralston J. The limits of fine particle flotation. Minerals Engineering,2010,23 (5):420-437
    [41]Joanne V, Stearnes B. Fine particle flotation and the influence of dissolved gas on interparticle interactions:[Thesis of Ph.D]. Ian Wark Research Institute,2000
    [42]Nguyen A V, George P, Jameson G J. Demonstration of a minimum in the recovery of nanoparticles by flotation:theory and experiment. Chemical Engineering Science,2006,61 (8):2494-2509
    [43]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选.长沙:中南工业大学出版社,1993:7-9
    [44]Koh P T L, Schwarz M P. CFD modelling of bubble-particle collision rates and dfficiencies in a flotation cell. Mineral Engineering,2003,16(11):1055-1059
    [45]Mathur S, Singh P, Moudgil B M. Advances in selective flocculation technology for solid-solid separations. International Journal of Mineral Processing,2000, 58 (1-4):201-222
    [46]Dogu I, Arol A I. Separation of dark-colored minerals from feldspar by selective flocculation using starch. Powder Technology,2004,139 (3):258-263
    [47]Huang Chuanbing, Wang Yuhua. Removal of aluminosilicates from diasporic-bauxite by selective flocculation using sodium polyarylate. Separation and Purification Technology,2008,59 (3):299-303
    [48]Hampton M A, Nguyen A V. Nanobubbles and the nanobubble bridging capillary force. Advances in Colloid and Interface Science,2010,154 (1-2):30-55
    [49]Ushikubo F Y, Furukawa T. Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,361 (1-3):31-37
    [50]Mishchuk N, Ralston J. Influence of very small bubbles on particle/bubble heterocoagulation. Journal of Colloid and Interface Science,2006,301 (1): 168-175
    [51]William B Z, Vaclav Tesar. Microbubble Generation.2008
    [52]Cho S H, Kim J Y. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,269 (1-3):28-34
    [53]Kobayashi D, Hayashida K, Sano K. Terasaka, Agglomeration and Rapid Ascent of Microbubbles by Ultrasonic Irradiation. Ultrasonics Sonochemistry,2010
    [54]Warren L J. Shear-flocculation of ultrafine scheelite in sodium oleate solutions. Journal of Colloid and Interface Science,1975,50 (2):305-318.
    [55]Srinivas K, Sreenivas T, Natarajan R, Padmanabhan N P H. Studies on the recovery of tungsten from a composite wolframite-scheelite concentrate. Hydrometallurgy,2000,58 (1):43-50
    [56]Trahar W J, Warren L J. The flotability of very fine particles-A review. International Journal of Mineral Processing,1976,3 (2):103-131
    [57]Wang Qun, Heiskanen. Selective hydrophobic flocculation in apatite-hematite system by sodium oleate. Minerals Engineering,1992,5 (3-5):493-501
    [58]Samygin V D. Colloid Journal,1968, (4):581
    [59]Hu Weibai, Wang Dianzuo, Qiu Guanzhou. Principle and application of pamification carrier flotation. Journal of Central South Intitute of Mining and Metallurgy,1987,18 (4):408-414
    [60]Valderrama L, Rubio J. High intensity conditioning and the carrier flotation of gold fine particles. International Journal of Mineral Processing,1998,52 (4): 273-285
    [61]Lange A G, Skinner W M, Smart R S C. Fine:coarse particle interactions and aggregation in sphalerite flotation. Mineral Engineering,1997,10(7):681- 693
    [62]郭建斌.东鞍山赤铁矿载体浮选试验研究.矿冶工程,2003,23(3):29-31
    [63]Atesok G, Boylu F, Celik M S. Carrier flotation for desulfurization and deashing of difficult-to-float coals. Mineral Engineering,2001,14 (6):661-670
    [64]Rubio J, Capponi F, Rodrigues R T, Matiolo E. Enhanced flotation of sulfide fines using the emulsified oil extender technique. International Journal of Mineral Processing,2007,84 (1-4):41-50
    [65]韦大为,丘继存.中性油在油团聚中的作用机理.有色金属,1988,9(4):41-45
    [66]Wei Dawei, Wei Kewu, Qiu Jicun. Hydrophobic agglomeration and spherical agglomeration of wolframite fines. International Journal of Mineral Processing, 1986,16 (3):261-271
    [67]Hu Yuehua. Role of neutral oil in wolframite floatation with chelating collector. Journal of Central-South Institute of Mining and Metallurgy,1986, (2):31-36
    [68]Bandopadhyay P,戴子林.用油团聚和絮凝-浮选法选别超细粒的研究.国外金属矿选矿,1988,(6):1-6
    [69]余洪.金属钛及其合金.汽车工艺与材料,2004,(12):6-9
    [70]轻金属-钛.中国有色冶金.2006,(5):59-60
    [71]《有色金属提取冶金手册》编辑委员会,稀有高熔点金属.北京:冶金工业出版社.1999:439~440
    [72]杨佳,李奎,汤爱涛,潘复生.钛铁矿资源综合利用现状与发展.材料导报,2003,17(8):44-46
    [73]郭建军.2005年世界钛工业发展状况及展望.稀有金属快报,2006,25(7):6-10
    [74]逯福生.世界钛工业现状及今后发展趋势.世界有色金属,2000,(12):16-21
    [75]胥力.中国钛工业发展回顾.钛工业进展,2009,26(4):1-4
    [76]李东英.我国的钛工业.有色冶炼,2000,29(3):1-6
    [77]Ken Salazar, Marcia K Mcnutt. Mineral commodity summaries. U.S. Geological Survey,2010:172-175
    [78]邓国珠.世界钛资源及其开发利用现状.钛工业进展,2002,19(5):9-12
    [79]吴贤,张健.中国的钛资源分布及特点.钛工业进展,2006,23(6):8-12
    [80]王立平,王镐,高颀,李献军,陈战乾,窦永庆.我国钛资源分布和生产现状.稀有金属,2004,28(1):265-267
    [81]段成龙.钛资源形势分析及评价.四川有色金属,2000,(2):31-36
    [82]朱俊士,中国钒钛磁铁矿选矿.北京:冶金工业出版社,1996
    [83]邓君,薛逊,刘功国.攀钢钒钛磁铁矿资源综合利用现状与发展.材料与冶金学报,2007,6(2):83-86
    [84]吴本羡.攀西地区钛铁矿的工艺特征.矿产综合利用,1987(1):74~79
    [85]Finn W K. Titanium minerals and their benefication. India Min J Spec Iss,1957: 95-105
    [86]Viswanath P. Studies on Travancore beach sands. India Min J Spec Iss,1957: 109-121
    [87]崔广仁.稀有金属选矿,北京:冶金工业出版社,1975.209-210
    [88]戴新宇.原生钛铁矿选矿技术的进展.中国矿业,2002,11(2):40~42
    [89]傅文章,洪秉信.攀西钒钛磁铁矿资源中钛铁矿的综合利用,第五届全国矿产资源综合利用学术会议论文集.北京:冶金工业出版社.1996
    [90]许向阳.攀枝花细粒钛铁矿浮选组合捕收剂的研究:[硕士学位论文].长沙:长沙矿冶研究院,2000.
    [91]魏民.新型钛铁矿浮选捕收剂的研究:[硕士学位论文].长沙:长沙矿冶研究院,2006.
    [92]尹志福.微细粒原生钛铁矿浮选新药剂研究:[硕士学位论文].昆明:昆明理工大学,2005.
    [93]张渊.攀枝花选铁尾矿中钛铁矿回收利用工艺技术研究:[硕士学位论文].成都:四川大学,2003
    [94]Gutierreza C. Influence of previous aeration in water or heating in air of ilmenite on its flotation with oleic acid. International Journal of Mineral Processing, 1976, (3):247-256
    [95]Parkins E J, Shergold H L. The effect of temperature on the conditioning and flotation of an ilmenite ore. In:Fuerstenau M C, Flotation-Gaudin A M Memorial. New York:AIME.1976,561-579
    [96]Shergold H L. Trans. IMM,1977, (3):41-43
    [97]Fan X, Rowson N A. The effect of Pb(NO3)2 on ilmenite flotation. Mineral Engineering,2000,13 (2):205-215
    [98]Behera R C, Mohanty A K. Beneficiation of massive ilmenite by froth flotation, International Journal of Mineral Processing,1986,17 (1-2):131-142
    [99]邹贻金.提高攀枝花钛铁矿回收率的途径.矿产综合利用,1996,(3):40-42
    [100]何国伟,梁冬云等.攀枝花粗钛精矿精选工艺流程研究.有色金属(选矿部分),1997,(6):10-13
    [101]唐德身,用阴离子捕收剂浮选原生钛铁矿的几个热力学问题讨论.矿产综合利用,1985(1):67-72
    [102]董宏军,陈正学等.水杨羟肟酸浮选钛铁矿研究.矿冶工程,1991,(1):19-22
    [103]贺智明.金红石和钛铁矿的浮选性能研究.稀有金属,1993,(7):250-254
    [104]任志民.应用强磁-浮选法苯乙烯膦酸做捕收剂浮选攀枝花钛铁矿.矿冶工程,1982,(1):22-29
    [105]许宜蔚.煤油对苯乙烯膦酸浮选钛铁矿的作用.矿冶工程,1981,(4):12-17
    [106]周军,钱鑫.攀枝花细粒钛铁矿混合用药浮选的研究.矿冶工程,1996,(3):35-38
    [107]胡永平,张毅谨.混合捕收剂浮选钛铁矿的研究.有色金属,1994,(3):31-35
    [108]胡永平,梁绪林,崔林.C28捕收剂浮选钛铁矿研究.有色金属,1992,(4):26-30
    [109]Bulatovic S, Wyslouzil D M. Process development for treatment of complex perovskite, ilmenite and rulitle ores. Minerals Engineering,1999,12 (12): 1407-1417
    [110]崔林,郑瞳彬.攀枝花钛铁矿中的苄基胂酸浮选.矿业科技,1994,(2):23-25
    [111]刘均彪,崔林.钛铁矿金红石的浮选理论及时间.有色金属,1987,39(2):34-40
    [112]Song Quanyuan. Flotation of Ilmennite Using Benzyl Arsonic Acid and Acidified Sodium Silicate. International Journal of Mineral Processing,1989, 26 (1-2):111-121
    [113]雷国彬,程希翱等.用苯乙烯膦酸捕收钛铁矿的机理研究.提取冶金和材料科学国际学术会议论文集,长沙:中南工业大学编,1987.121~132
    [114]谢泽君.MOS捕收剂浮选微细粒级钛铁矿的研究.矿冶工程,1998(增刊):78-81
    [115]朱建光,朱玉霜,王升鹤,陈树民.利用协同效应最佳点配置钛铁矿捕收剂.有色金属(选矿部分),2002,(4):39~41
    [116]谢泽君.MOS捕收剂浮选微细粒级钛铁矿的研究.矿冶工程,1998(增刊):78-81
    [117]周友斌.攀枝花细粒钛铁矿浮选工艺在生产中应用探讨.金属矿山,2000(1):32~36
    [118]王洪彬,张红先.MOH捕收剂浮选攀枝花微细粒级钛铁矿试验研究.矿冶工程,2007,27(5):27~30
    [119]朱建光,陈树民,姚晓海,邓清华,王升鹤.用新型捕收剂MOH浮选微细粒级钛铁矿.有色金属(选矿部分),2007,(6):42-45
    [120]袁国红,余德文.R-2捕收剂选别攀枝花微细粒级钛铁矿试验研究.金属矿山,2001,(9):37~39
    [121]朱建光.我国对钛铁矿捕收剂的研究与应用,矿冶工程,2006,26(8):78-84
    [122]谢建国,张泾生,陈让怀,王安五.用新型捕收剂ROB浮选微细粒钛铁矿的试验研究.矿冶工程,2002,22(2):47-50
    [123]许向阳,张泾生,王安五,谢建国,陈让怀.微细粒级钛铁矿浮选药剂ROB的作用机理.矿冶工程,2003,23(6):23~26
    [124]傅文章,张渊,洪秉信,张裕书.攀枝花微细粒钛铁矿选矿试验研究.金属矿山,2000,(2):37-40
    [125]傅文章,张渊,洪秉信,张裕书.攀枝花细粒级钛铁矿选钛扩大试验.矿产综合利用,1999,(4):1-5
    [126]谢建国,陈让怀,曾维龙.新型捕收剂RST浮选微细粒级钛铁矿.有色金属,2002,34(1):58~59
    [127]马忠臣.H717捕收剂选别钛铁的试验研究.有色矿冶,2003(4):18-19
    [128]魏民,TAO系列捕收剂选别攀枝花钛铁矿的研究.广东有色金属学报,2006,16(2):80~83
    [129]何国伟.用乳化塔尔油浮选攀枝花微细粒级钛铁矿的工业试验.广东有色金属学报,2000,10(2):92-95
    [130]余德文,钟志勇.原生细粒钛铁矿无抑制剂浮选.国外金属矿选矿,2000,(3):24~26
    [131]徐翔,章晓林,许炳梁,张文彬.钛铁矿浮选中的抑制剂研究.矿冶,2010, 19(4):21-23
    [132]魏志聪,徐翔,方建军,刘殿文,章晓林,刘洋,张文彬.钛铁矿和钛辉石对羧甲基纤维素的吸附机理研究.矿冶,2011,20(1):8-10
    [133]崔吉让,李睿华,蒋维勤,宋少先,胡永平.微细粒金及钛铁矿石疏水絮凝浮选.有色金属,1996,48(3):43-47
    [134]孙宗华,李睿华,蒋维勤,宋少先,卢寿慈.攀枝花细粒钛铁矿疏水絮凝浮选工艺研究.矿产综合利用,1996,(2):6-10
    [135]Chen Jin, Chen Wanxiong, Xu Zhenghe. Adsorption and flocculationbehaviors of ilmenite and feldspar in the presence of sulphonated polyacrylamide. Journal of Central South Intitute of Mining and Metallurgy,1987,18 (2):222-227
    [136]黄利明,陈万雄,陈荩.钛铁矿、长石絮凝行为及机理研究.中南矿冶学院学报,1982,13(4):55-61
    [137]黄利明,陈万雄,陈荩.钛铁矿-长石体系选择性絮凝特性.有色金属,1982,34(1):51~56
    [138]刘奇,许时,陈吉春.钛矿石的选矿工艺.国外金属矿选矿,1991,(10):1-8
    [139]Dong Hongjun, Chen Jin, Chen Zhengxue. Autogenous carrier flotation of ilmenite. Journal of Central South Intitute of Mining and Metallurgy,1992,23 (4):393-400
    [140]陈树民.攀枝花微细粒级(-19μm)钛铁矿回收探索试验.矿产综合利用,2004,(5):7-11.
    [141]陈万雄,陈荩,朱德庆.细粒钛铁矿—长石油团聚的研究.金属矿山,1989(7):32-36
    [142]Fan X, Kelly R M, Rowson N A. Effect of microwave radiation on ilmenite flotation. Canadian Metallurgical Quarterly,2000,39 (3):247-254
    [143]解振超,谢建国,朱超英,易峦.微波辐射改善钛铁矿可浮性研究.矿冶工程,2010,30(5):52-54
    [144]邹建新,周建国,周友斌.攀枝花钛矿资源选别技术进步与发展趋势.矿冶工程,2006,26(3):39~40
    [145]陈正学,张卫.攀枝花细粒钛铁矿选矿工艺.矿冶工程,1996,16(2):37-39
    [146]陈毓川,我国矿产资源可供性及发展战略研究
    [147]潘兆橹.结晶学与矿物学.北京:地质出版社.1994
    [148]Cameron M, James J.硅酸盐辉石的晶体化学(上).地质科技情报,1985, 4(1):57-69
    [149]Cameron M, James J.硅酸盐辉石的晶体化学(中).地质科技情报,1985,4(2):64~76
    [150]Yoon R H, Salman T, Donnay G. Predicting point of zero charge of oxides and hydroxides. Journal of Colloid and Interface Science,1979,70 (3):483-493
    [151]孙传尧,印万忠.硅酸盐矿物浮选原理.北京:科学出版社.2001
    [152]Zhang Shouliang, David R V. Chemical and structural variations at augite (100) deformation twin boundaries. American mineralogist,2007,92(11-12):1833-1837
    [153]王延忠.稀盐酸选择性浸出改性钛渣制备富钛料的研究:[硕士学位论文].昆明:昆明理工大学,2003
    [154]Marshall R L, Thaung L, Richard R M. The dissolution of iron in the hydrochloric acid leach of an ilmenite concentrate. Hydrometallurgy,1999,51 (11):299-323
    [155]Hazek N, Lasheen T A, Sheikh R, Zaki Salah A. Hydrometallurgical criteria for TiO2 leaching from Rosetta ilmenite by hydrochloric acid, Hydrometallurgy, 2007,87 (2):45-50
    [156]刘琨.氧化硅纳米线及其—维银纳米壳层的制备、表征与消光性能研究:[博士学位论文].长沙:中南大学,2009.
    [157]蔡元峰,薛纪越.坡缕石在HCl溶液中的溶解行为及溶解机制.自然科学进展,2003,13(9):933-938
    [158]黄川徽,凹凸棒石堆重金属的吸附及其酸溶动力学研究:[硕士学位论文].合肥:合肥工业大学,2004.
    [159]席振伟.钛铁矿浮选捕收剂研究:[硕士学位论文].长沙:中南大学,2009.
    [160]王淀佐,胡岳华.浮选溶液化学.长沙:湖南科学技术出版社,1988
    [16l]张国范,冯其明,卢毅屏,欧乐明.油酸钠对—水硬铝石和高岭石的捕收机理.中国有色金属学报,2001,11(2):298-301
    [162]张国范,陈启元,冯其明,张平民.温度对油酸钠在—水硬铝石矿物表面吸附的影响.中国有色金属学报,2004,14(6):1042-1046
    [163]闻辂.矿物红外光谱学.重庆:重庆出版社.1989
    [164]Wang Yuhua, Yu Fushun. Effects of Metallic Ions on the Flotation of Spodumene and Beryl. Journal of China University of Mining & Technology, 2007,17 (1):35-39
    [165]Prakash S, Das B, Mohanty J K, Venugopal R. The recovery of fine mineral from quartz and corundum mixtures using selective magnetic coating. International Journal of Mineral Processing,1999,57 (2):87-103
    [166]尤卡尔,袁小云,林森.萤石浮选中捕收剂的吸附机理.国外金属矿选矿,2003,(7):20-23
    [167]曾能,陈玉坤,王万勋,贾志欣,贾德民,李宗葆,杨第伦.疏松型纳米氢氧化镁阻燃剂的结构表征.华南理工大学学报(自然科学版),2006,34(10):55-61
    [168]盖维尔.生物预处理在菱镁矿尾渣浮选回收上的应用.国外金属矿选矿,1999,(3):9-14
    [169]龚明光.油酸与锆石和榍石的相互作用.国外金属矿选矿,1976,(Z3):85-86
    [170]孙传尧,印万忠.X射线光电子能谱分析.东北大学学报(自然科学版),2002,23(2):156-159
    [171]Zhong Kangnian, Cui Lin. Influence of Fe2+ Ions of Ilmenite on its Flotability. International Journal of Mineral Processing,1987,20(3-4):253-265
    [172]罗荣昌,郭清华.硅酸盐和氧化矿浮选.北京:中国工业出版社,1965.111-138
    [173]文美兰.磁性铁氧体ZnxFe3-xO4的光电子能谱研究:[硕士学位论文].南京:东南大学,2005
    [174]James N Butler.离子平衡及其数学处理.天津:南开大学出版社,1989.299-305
    [175]毛钜凡,张勇.多价金属离子对菱锰矿可浮性的影响.中国锰业,1994,12(6):23-28
    [176]周建国,王洪彬,曾礼国.攀枝花微细粒级钛铁矿的回收,广东有色金属学报,2006,16(1):1-5
    [177]唐淑贞,张荣良,丘克强.超声波强化HCl-NaCl浸出高铅锑吹渣.过程工程学报,2006,6(2):210~213
    [178]范兴祥,彭金辉,张利波,张世敏,樊希安,郭胜惠,秦文峰.超声波强化草酸浸出氧化锌精矿.有色金属,2003,55(1):51-53
    [179]薛娟琴,毛维博,卢曦,李京仙,王玉洁,吴明.超声波辅助硫化镍矿氧化浸出动力学.中国有色金属学报,2010,20(5):1013-1020
    [180]林祚彦,华一新.高硅氧化锌矿硫酸浸出的工艺及机理研究,有色金属(冶炼部分):2003(5):9-11
    [181]李俊.超声波对浸出过程的影响.云南冶金,2001,30(2):28-30
    [182]梁金奎,刘晓荣,罗林根,潘婷,胡鹤炯.粉煤灰中有价元素的强化浸出研究.矿冶工程,2008,28(6):76-78
    [183]Celik M S. Effect of ultrasonic treatment on the floatability of coal and galena. Separation Science and technology,2010,24 (14):1159-1166
    [184]Aldrich C, Feng D. Effect of ultrasonic preconditioning of pulp on the flotation of sulphide ores. Minerals Engineering,1999,12 (6):701-707
    [185]Emin C C, Selcuk O. Effect of ultrasound on separation selectivity and efficiency of flotation. Minerals Engineering.2009,22 (6):1209-1217
    [186]艾纯明,王贻明,吴爱祥,杨盛凯,硫化铜矿的超声波强化浸出.有色金属冶金,2010(6):68~70
    [187]Pradip R B, Rao T K. Molecular Modeling of Interactions of Alkyl Hydroxamates with Calcium Minerals. Journal of Colloid and Interface Science,2002,256 (1):106-113
    [188]Hu Y, Wei S, Hao J. The anomalous behavior of kaolinite flotation with dodecyl amine collector as explained from crystal structure considerations. International Journal of Mineral Processing,2005,76(3):163-172
    [189]Porento M, Hirva P. A theoretical study on the interaction of sulfhydryl surfactants with a covellite (001) surface. Surface Science,2004,555 (1-3): 75-82
    [190]邱显扬,程德明,王淀佐.苯甲羟肟酸与白钨矿作用机理的研究.矿冶工程,2001,21(3):39-42
    [191]邱显扬,高玉德.苯甲羟肟酸与钽铌锰矿作用机理的研究.有色金属(选矿部分),2005,(6):37~40
    [192]吕建晓.表面活性剂SDS胶束聚集行为及其机理的研究:[硕士学位论文].大连:大连理工大学,2007.
    [193]Gaikara V G, Padalkara K V, Aswalb V K. Characterization of mixed micelles of structural isomers of sodium butyl benzene sulfonate and sodium dodecyl sulfate by SANS,FTIR spectroscopy and NMR spectroscopy. Journal of Molecular Liquids,2008,138 (1-3):155-167
    [194]Roy P, Fuerstenau D W. The heat of immersion of alumina into aqueous sodium dedecyl sulfonate solution. Journal of Colloid and Interface Science,1968,26 (1):102-109
    [195]邱冠周,微细粒矿物浮选理论及工艺研究:[博士学位论文].长沙:中南工业大学,1987.
    [196]Israclachvili J N. Intermolecular and Surface Forces. London:Academic Press, 1985.294-295
    [197]Sivamohan R. The problem of recovering very fine particles in processing-A review. International Journal of Mineral Processing,1990,28 (3-4):247-288
    [198]Hogg R, Healy T W, Fuerstenau D W. Mutual coagulation of colloidal dispersions. Transactions of the Faraday Society,1966,62 (62):1638
    [199]邱冠周,胡岳华,王淀佐.微细粒赤铁矿载体浮选机理研究.有色金属,1994,46(4):23-28
    [200]Hu Y, Dai J. Hydrophobic aggregation of alumina in surfactant solution. Mineral Engineering,2003,16 (11):1167-1172
    [201]妹尾学著.李学芬,曹镛译.化学公式手册.北京:科学出版社,1987.85-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700