改性高钛渣中金红石相的分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金红石是制取金属钛及钛白粉的重要原料。虽然钛铁矿精矿可以制备钛渣,但品位低,难以作为氯化法制备钛白的原料,需富集处理获得高品位的富钛料—高品位钛渣或人造金红石。为实现低品位高钛渣的富集与分离,东北大学提出了电炉钛渣改性处理金红石化的选择性分离技术。
     在前期改性实验过程中,实现了钛组分的选择性富集与长大。改性后仅含有两个钛矿物相:金红石,硅酸盐玻璃相(Ti02<5%),实现了富集。
     本课题以改性高钛渣(高钛渣:以钒钛磁铁精矿为原料,通过转底炉-电炉还原制备的高钛渣,35-50% Ti02)为原料,通过选矿分离方法,完成电炉钛渣金红石化的选择性分离技术的第三个环节—改性高钛渣中钛组分-金红石相的选择性分离。
     在重选抛尾实验中,确定最佳磨矿粒度为38μm,且通过重选改性高钛渣粗精矿Ti02品位由35.72%提高到56.55%。
     在粗精矿浮选实验中,以烷基羟肟酸钠为捕收剂,当硫酸用量1000g/t(pH=2.8),捕收剂用量800g/t,活化剂硝酸铅用量200g/t,抑制剂淀粉用量800g/t时,浮选精矿Ti02品位从56.55%提高到61.69%。
     在浮选精矿的常压酸浸出实验中,主要研究常压酸浸出过程的影响因素:酸浸剂、浸出时间、浸出温度、矿液比,并分析精矿经酸解过滤后滤液中钛的含量。实验结果表明,当用稀盐酸作为酸浸剂,浸出温度为65℃,浸出时间为3小时,矿液比为1:20时,酸浸效果最佳,其浸出后金红石精矿Ti02品位可高达96.56%。
     本研究根据改性钛渣的矿物组成相对简单,目的矿物与其硅酸盐矿物在比重上的差异更加明显,从而利用重选进行初步富集,然后通过浮选、常压酸浸出进行精选,即采用“重选—浮选—酸浸出”的联合工艺,有效地提高了改性钛渣的金红石品位,得到合格精矿(Ti02品位97.45%)。
Although ilmenite concentration can be directly used as raw materials for titania slag, due to low grade, it is difficult that titania slag used as raw materials for chloride method. Hence it is necessary to obtain high-grade titanium slag or man-made rutile through metallurgy method. Northeastern University presented selective separation technology for making the low-grade modified titania slag to be rutile.
     During the process of modified experiments at the early time, the modification made Ti components selectively enrichment into rutile phase, which could be growth and coarsen. Modified slag only had two titanium minerals phase:rutile, silicate glass (TiO2<5%), and then achieved the enrichment.
     This subject uses the modified titanium slag as the raw materials (titania slag:vanadium and titanium magnetite concentrate for raw materials, through the rotary hearth furnace-electric furnace reduction of the titania slag,35-50% TiO2), processing through the mineral separation method, completed the third session of the selective separation technology for preparing rutile from electric furnace titanium slag.
     Throw ore tailing experiment during the gravity dressing is to determine the optimal size for the grinding 38μm. Through the gravity dressing of the modified titanium slag, the crude concentrate can be increased from 35.72 percent to 56.55 percent.
     In the flotation experiments of the crude concentrate, the alkyl hydroxamic sodium was employed as collector, when the amount of sulfate is 1000g/t(pH=2.8), collector 800g/t, activation of lead nitrate 200g/t, inhibitors of amylase 800g/t, the flotation concentrate grade of TiO2 from 56.55 percent to 61.69 percent.
     In the experiments of atmospheric acid leaching, the crude concentrate from gravity dressing, the effect factors on atmospheric acid leaching process were studied, such as acid leaching agent, leaching time, leaching temperature, the ratio of slag to acid, and analysising the content of titanium of the acid solution in the filter after filtrating. The results show that, when dilute hydrochloric acid as the acid leaching agent, leaching temperature of 65℃, leaching time of three hours, the ratio of slag to acid of 1:20, acid leaching effect was best, after leaching, the TiO2 grade in rutile concentrate can reach to 96.56 percent.
     Because the mineral phases in the modified slag is relatively simple, and the density difference between the tutile phase and silicate mineral phase is very obvious, gravity dressing is firstly used, and then concentrating through flotation and atmospheric acid leaching, that is to say, the j oint process of "gravity separation-flotation-acid leaching", can obtain eligible rutile concentrate (TiO2 concentrate 96.56 percent).
引文
1.杨遇春.钛—跨入新千年的金属巨人[J],中国工程科学,2002,4(3):21-31.
    2.莫畏等.钛冶金[M],北京:冶金工业出版社,1998,120-124.
    3.朱建光.浮选金红石用的捕收剂和调整剂[J],国外金属矿选矿,2008,2:3-8.
    4.朱建光.金红石和钛铁矿的浮选[J],有色矿冶,1997(3):29-33.
    5.彦令.用苄基胂酸和油酸混合捕收金红石[J],矿产综合利用,1991,(3):51-52.
    6.彭勇军,李哗,许时.苯乙烯磷酸与脂肪醇对金红石浮选的影响[J],中国有色金属学报,1996,9(2):358-361.
    7.李哗,许时.提高胂酸对金红石浮选性能的研究[J],中国矿业,1997(2):58-61.
    8.王宝嫺.涞水金红石选矿实验研究[J],建材地质,1997,(4):20-25,43-45.
    9.马俊伟,隋智通,陈炳辰.用重选或浮选方法从改性炉渣中分离钛的研究,有色金属,2000,52(2):28-30.
    10.赵廉奇.新型螺旋选矿机在攀枝花选钛厂应用研究[J],矿产保护与利用,1996,(3):38-40.
    11.李斌,刘学海.多段螺旋溜槽回收钛的实验研究[J],金属矿山,1998(3):23-24.
    12.刘惠中.BL1500螺旋溜槽的研制及应用[J],有色金属(选矿部分),2000(3):29-32.
    13.张锢,洪家凯.高梯度磁选一浮选选别攀枝花选钛厂微细粒级钛铁矿实验研究[J],江西有色属,1995,9(4):24-26.
    14.丁斯华.强磁选机在钒钛磁铁矿选钛工艺中的应用[J],矿冶工程,1996,16(4):25-28.
    15.岳铁兵,魏德州,曹进成等.细粒金红石矿浮选工艺研究[J],化工矿物与加工,2005,3:1-6.
    16.刘付毓.金红石的选矿工艺[J],广东有色金属,1997,4:14-17.
    17.王占歧.海滨砂矿中金红石矿综合利用研究[J],地球科学—中国地质大学学报,1998,23(6):624-628.
    18.胡爱珍,田光耀.金红石最终精矿提纯方法的探索[J],地质实验室,1992,8(3):153-157.
    19. QI Li, Yong Jun Peng. The development of a composite collector for the flotation of rutile.Minerals Engineering,1999,12(12):1419-1430.
    20.马光荣.变质岩微细粒金红石浮选研究[J],有色金属(选矿部分),1989(3):12-13.
    21.刘奇,许时.钛矿石的选矿工艺,国外金属矿选矿,1991,28(10):1-8.
    22.朱建光.浮选药剂的化学原理(修订版)[M],北京:中南大学出版社,1996,12.
    23.布拉托维奇.处理复合的钙钛矿、钛铁矿和金红石矿石的方法,国外金属矿选矿,2000,(3):27-31.
    24.莫畏等.钛冶金[M],北京:冶金工业出版社,1998,133-149.
    25.汪镜辆.钛白生产中废弃物的处置和再利用[J],钛工业进展,1999,3:1-4.
    26.裴润等.硫酸法钛白生产[M],北京:化学工业出版社,1982:4-7.
    27.邓国珠.富钛料的生产现状及今后发展[J],钛工业进展,2000,4:1-3.
    28.邓朝枢.含钒电熔钛渣的物相组成[J],钢铁钒钛,1985,2:22-29.
    29.邹建新,杨成,彭富昌.我国钛白生产技术现状与发展趋势[J],稀有金属快报,2007,26(4):7-12.
    30. TJVeasey. Metal recycling, Proceedings of 34 th annual conference of metallurgists of CIM[M], Vancouver, British Columbia:1995,20-24.
    31. Alessandra Bonol. Solid waste process, a case study for an integrated waste treatment plant project[M], Proceeding of global symposium on recycling waste treat ment and clean technology, San Sebastian: 1999,5-9.
    32. Sui Zhitong. Precipitation selectivity of boron components from slags, Proceedings of the annual conference of metallurgists of CIM[M], Vancouver, British columbia:1995,20-24.
    33. Sui Zhitong. A novel technique to recovery value nonferrous metal compounds from metallurgical slags, Proceeding of global symposium on recycling waste treatment and clean technology, San Sebastian, Spain: 1999,5-9.
    34.蒋含勇.论我国矿产资源的综合利用[J],矿产综合利用,2001,(4):28-30.
    35.傅文章.攀西钒钛磁铁矿资源特征及综合利用问题的基本分析[J],矿产综合利用,1996,(1):27-32.
    36.李辽沙.五元渣(CMSTA)中钛选择性富集的基础研究[D],沈阳:东北大学,2001.
    37.隋智通.硼渣中硼组分选择性析出行为[J],金属学报,1997,33(9):943-948.
    38.隋智通、付念新.一种资源综合利用的增值技术[J],中国稀土学报,1998,16:731-733.
    39.张培新.硼渣中含硼组分析出行为的研究[D],沈阳:东北大学,1994.
    40.张勇维.钛渣中钙钛矿相选择性析出行为研究[D],沈阳:东北大学,1997.
    41. J P VAN DYK and P C PISTORIUS. Evaluation of a process that uses phosphates additions to upgrade titania slag[J], Metallurgical and Materials Tracsactionns B,1999,30:823-826.
    42.#12
    43. G W Elger and D E Kirby S C.Bureau of Mine Report RI,79-85.
    44. Sui Zhitong. Study on crystallization kinetics of the component containing boron in MgO-B203-SiO2 Slag, Proceedings of metallurgical process for the early twenty-first century[M], San Diego, California: 1994,20-23.
    45.莫畏等.钛冶金[M],北京:冶金工业出版社,1998,133-149.
    46.杜鹤桂等著.高炉冶炼钒钛磁铁矿原理[M],北京:科学出版社,1996,1-12.
    47.傅念新、隋智通.高钛高炉渣中钙钛矿的析出行为[J],钢铁研究学报,1998,10(3):70-74.
    48.隋智通等.选择性析出分离技术处理攀钢高炉渣可行性论证报告,内部资料,1999:4-7.
    49.杜鹤桂等著.高炉冶炼钒钛磁铁矿原理[M],北京:科学出版社,1996,2-6.
    50.陈朝华、刘长河.钛白粉生产与应用技术[M],化学工业出版社,2006:571-572.
    51.林亢.无碱硼铝硅酸盐密度的计算[J],科学通报,1997, (07):240-246.
    52.干福熹.硅酸盐玻璃物理性质新的计算体系[J],硅酸盐学报,1996, (02):56-76.
    53.贺智明等.铅离子对水杨氧肪酸浮选金红石的活化作用[J].有色金属,1994(11):43-45.
    54.丁浩.金红石浮选中消除Ca2+对石英活化作用的研究[J],矿物保护与利用,1994,1,40-42.
    55.丁恬.金红石与石榴石浮选分离的新药剂制度及机理研究.建材地质,1991(2):31-33.
    56.胡熙庚等.浮选理论与工艺[M].湖南:中南工业大学出版社,1991,227-244.
    57. SmaniMet.Trans. SME - AIME, Vol.258:176-182.
    58.朱建光,朱玉霜.浮选药剂[M].长沙:中南工业大学出版社,1982,318-320.
    59.戴朝嘉等.用稀盐酸酸洗富钛料制取人造金红石的实验研究[J],钢铁钒钛,1994,3:31-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700