溶胶凝胶法制备银—钛酸铅复合薄膜及其电学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,金属-介电体复合材料由于具有渗流效应,在高介电常数材料方面具有良好的应用潜力,获得了研究者广泛的关注。随着微电子器件向小型化发展,具有高介电常数的金属-介电体复合薄膜的制备研究也逐渐成为材料科学及固体物理学领域的一个重要研究热点。然而,对于金属-介电体复合薄膜,一方面薄膜在厚度方向上的尺度有时仅为几百纳米,如果薄膜内的金属颗粒尺寸较大,导电相颗粒就很容易在薄膜厚度方向上形成导电通路而将上下电极导通;另一方面由于渗流效应的产生本质是通过金属颗粒在材料中形成一系列表面面积大、间距相对较小的微电容器结构,以使材料表观介电常数大大增加,微电容器结构能否达到这一要求决定于薄膜内金属颗粒的形貌。可见,在薄膜材料中,寻找更有效的技术和方法对薄膜中金属相的含量和粒度进行控制,对渗流型高介电常数薄膜材料的成功突破将具有十分重要的意义。
     本论文研究目的在于采用溶胶凝胶法,对渗流型高介电常数的Ag-PbTiO_3复合薄膜进行制备研究。探讨薄膜内金属颗粒和介电基质的形成和结晶规律,控制在薄膜中形成纳米量级的金属颗粒和合适的颗粒分布;引入渗流理论的思想,掌握薄膜中渗流效应的产生原理,为高性能薄膜的制备打下坚实的基础。
     本文全面回顾了高介电常数复合材料、导体-介电体复合薄膜的研究进展,比较了常用导体-介电体复合薄膜的性能和制备方法,总结了制备导体-介电体复合薄膜的影响要素。用XRD、SEM、EDS、TG/DTA、FTIR、阻抗分析仪和高阻仪等分析了Ag-PbTiO_3复合薄膜的制备、微观结构、介电和电导性能。对Ag~+的引入对钛酸铅晶相形成的影响、复合薄膜中金属银颗粒的形成机理、金属-介电体复合薄膜介电驰豫机制和电导机制进行了详细的研究,具体研究内容及研究结论如下:
     (1)研究了Ag~+的引入对钛酸铅晶相形成的影响。制备掺银钛酸铅薄膜时,Ag~+的引入对钛酸铅晶相形成的形成,主要表现为以下两个方面:一方面,硝酸银分解原位生成单质银晶相时,会优先消耗薄膜中的铅,造成钛酸铅晶相结晶时缺铅,促使薄膜中生成焦绿石相钛酸铅;另一方面,硝酸银在溶胶中能够发生醇交换反应生成Ag-O-Ti键,使Ag~+在薄膜晶化过程中保持较高的价态,而进入钛酸铅晶格中。综合考虑不同热处理温度和不同升温过程对薄膜中相形成的影响时发现:快速升温过程对薄膜进行热处理有利于调节薄膜中的银含量和得到钙钛矿相较多的钛酸铅基质的晶相结构,热处理温度应该选择在600℃左右为宜。
     (2)研究了溶胶中过量铅的引入对银-钛酸铅复合薄膜晶相形成的影响。溶胶配方中引入过量铅后,有更多的Pb~(2+)参与钛酸铅晶相形成,因而抑制了焦绿石相钛酸铅的形成,薄膜中生成了晶格完整的钙钛矿相钛酸铅;同时还降低了溶胶中Ag~+的活度,减少钙钛矿相钛酸铅中固溶的Ag~+量。溶胶中引入的过量铅,在热处理过程中会固溶入微米级单质银颗粒的晶格形成银铅合金,降低了微米级银颗粒的熔点,导致它们在远低于纯单质银熔点的温度下就开始挥发。对Pb/Ti=1.3,Ag/Ti=0.5时,薄膜中生成的银铅合金颗粒的挥发过程进行了具体研究,计算得到其挥发的活化能为88.69kJ/mol,表观频率因子为68.007s~(-1)。过量铅配方制备的薄膜中,固溶有铅的微米级银挥发后,钙钛矿相钛酸铅晶格中固溶的Ag~+会被继续还原形成纳米银颗粒。纳米银颗粒的生成量受薄膜中银挥发量以及热处理温度两个因素影响。在600℃下热处理时,纳米银颗粒的生长机制介于颗粒与基体边界扩散控制的机制和基体内部体相扩散控制的机制之间。根据这一结果,通过在后处理过程中控制低熔点银铅合金的挥发过程,能够在薄膜中原位形成纳米银颗粒,得以避免在制备纳米银-介电体复合薄膜时为实现纳米银颗粒的形成而需要对溶胶条件进行繁杂的控制,为制备纳米银-介电体复合薄膜提供了一个简单的方法及一个新思路。
     (3)研究了络合剂及水解条件对银-钛酸铅复合薄膜晶相形成的影响。分别在溶胶中引入LA,DEA和CA这三种多配位基络合剂后,均能够增强Pb~(2+)与Ti-O网络的结合,抑制焦绿石相钛酸铅的生成,促进钙钛矿相钛酸铅的生成。薄膜内形成的银颗粒的大小,受Ag~+与Ti-O的结合能力影响,随着Ag~+与Ti-O网络的结合能力按CA>DEA>LA的次序减弱,薄膜中银颗粒的大小按CA<DEA<LA的次序减小。不同水解条件下,薄膜内单质银颗粒的粒径随凝胶网络结构致密度的减小而增大。
     (4)研究了热处理气氛对Ag-PbTiO_3复合薄膜中银颗粒形成的影响:对不同热处理条件下,薄膜内银颗粒的形成机制进行了分析,发现在空气气氛和还原气氛中单次热处理时,单质银颗粒均通过Ag~0的扩散而成核和长大;在空气气氛中600℃先处理,再在还原气氛中后处理时,单质银颗粒通过形成Ag3~(2+)为成核中心而长大。对还原气氛和空气气氛单次热处理下,银颗粒形成的热力学条件进行了理论计算,得到了不同热处理气氛下薄膜中银颗粒生成的热力学必要条件。同时对银颗粒形成的动力学条件进行了理论计算,指出还原气氛下薄膜中银颗粒的成核密度远大于空气气氛,因而在相同热处理条件下,还原气氛下形成的银颗粒尺寸远小于空气气氛下形成的银颗粒,为纳米金属-介电体复合薄膜的制备提供了理论依据。
     (5)研究了Ag-PbTiO_3复合薄膜电导机制:银-钛酸铅复合薄膜直流和交流电导机制主要受不同热处理气氛的影响,与银含量的大小无关。在空气气氛热处理的情况下,薄膜的直流电导在低电压和高电压下分别受局域化跃迁载流子导电机制和隧道电流机制控制;薄膜的交流电导在所研究的频率范围内均随着温度的增加从偶极子德拜弛豫跃迁向肖特基电流机制转化。在还原气氛热处理的情况下,薄膜的直流电导在低电压和高电压下同样也分别受局域化跃迁载流子导电机制和隧道电流机制控制,但局域化跃迁载流子导电所产生的电流要比空气气氛热处理情况制备的薄膜要大好几个数量级。受局域化跃迁载流子所引起的电导率增加的影响,还原气氛中制备的薄膜交流电导机制随温度的变化规律受测量频率的影响:当测量频率较低时,交流电导机制随着温度的升高先增加后减小最后增加,在相应的阶段分别受载流子跃迁电导、钙钛矿相再氧化以及肖特基势垒电流控制;当测量频率较高时,在较低温度下,交流电导受弛豫时间分布较宽的偶极子德拜弛豫电流控制,在此之后,随着温度的升高,分别经历载流子跃迁电导、钙钛矿相再氧化以及肖特基势垒电流的控制。对于不同银含量的薄膜,薄膜的电导机制随电压和温度的变化规律相同,但漏电流的大小随银含量的增加而增加,同时薄膜直流电导中载流子跃迁电导机制向Fower-Nordheim隧穿电导机制转换的临界电压随着银含量的增加而减小。
     (6)研究了Ag-PbTiO_3复合薄膜介电驰豫机制:空气气氛热处理制备的薄膜介电弛豫机制为德拜弛豫机制,而还原气氛热处理制备的薄膜介电弛豫机制在低频下受局域化载流子极化机制控制,在高频下则受德拜弛豫机制控制。两种热处理气氛下制备的薄膜,介电驰豫机制均不随着银含量的增加而发生改变。
     (7)研究了Ag的引入对Ag-PbTiO_3复合薄膜介电和电导性能的影响:空气气氛下热处理和还原气氛下热处理的银-钛酸铅复合薄膜中,薄膜的介电和电导性能随着银含量的变化具有相似的变化规律:在银含量较低时,由于Ag~+进入钛酸铅晶格,薄膜的电导率和介电常数随银含量的增加而略有减小;在银含量大于Ag~+在钛酸铅晶格中的固溶度后,Ag~+进入钛酸铅晶格造成电导率和介电常数降低的作用逐渐可以忽略不计,薄膜的电导率和介电常数在银含量较大时均按照渗流理论的规律随银含量的增加而增加。空气气氛下热处理的薄膜渗流阈值为0.04左右,渗流阈值附近薄膜的介电常数最高可以达到纯钛酸铅薄膜的1.27倍;而还原气氛下热处理的薄膜渗流阈值在0.17附近,渗流阈值附近薄膜的介电常数最高可以达到纯钛酸铅薄膜的4.13倍。
Metal-dielectric composite material is a novel kind of high-dielectric composite materials. It is widely researched because of its percolation phenomenon. With the miniaturization of electronic devices, metal dispersed dielectric film with a high dielectric constant has attracted many interests in material science and modern physics area. However, since the thickness of film is in several nanometers range, and metal particles can easily aggregate and form a conducting path perpendicular to the film, it is hard to prepare metal dispersed dielectric film with a percolation phenomenon. Therefore, it is very meaningful to investigate the prepartion of metal dispersed dielectric film, and take good control of the size and content of metal particles in the films.
    The aim of this work is to fabricate Ag dispersed PbTiO_3 film via. sol-gel method, which follow the rules of percolation law and performs a high dielectric constant. Efforts have been devoted to control the size and dispersity of Ag particles and the crystallization of PbTiO_3 phase. Effect of dispersed Ag particles on the dielectric properties of the film has been investigated.
    (1) the effect of Ag~+ on the phase formation of lead titanate has been investigated. After Ag~+ has been introduced into the sol, Pb~(2+) will be consumed during Ag particle formation, which will facilitate the formation of pyrochlore lead titanate. Moreover, Ag~+ will form Ag-O-Ti bond in the sol, which will make Ag~+ dissolutes into the crystalline lattice of PbTiO_3. After comparing the effect of heating temperature and heating process on phase formation in the films, a rapid heating process and a heating temperature of 600℃ is the most ideal condition for PbTiO_3 phase formation.
    (2) the effect of excess Pb on the phase formation of Ag dispersed PbTiO_3 film has been investigated. With excess Pb in the sol, more Pb~(2+) can take part in the phase formation of lead titanate, therefore formation of pyrochlore lead titanate can be inhibited. Moreover, the dissolution of Ag~+ into PbTiO_3 phase can be lowered. The excess Pb will dissolve into Ag particle phase and as a result form Ag-Pb alloy. which will evaporate at a much lower temperature than the melting point of Ag. Detailed investigation of Ag-Pb alloy evaporation in the film with a content of Pb/Ti=1.3 Ag/Ti=0.5 has been conducted, and the activation energy is calculated to be 88.69kJ/mol, apparent frequency factor is calculated to be 68.007s~(-1). In the films prepared with exess Pb, after the evaporation of Ag-Pb alloy, Ag~+ dissolved in PbTiO_3 lattice will transform into Ag nanoparticles. The transformation is controlled by evaporation of Ag-Pb alloy and the heating temperature. At a heating temperature of 600℃, the growth mechanism is either a interfacial diffusion of particle and matrix boudary, or a bulk diffusion in the matrix.
    (3) The effect of complexing agent and hydrolysis condition on the formation of Ag
    dispersed lead titanate has been investigated. After LA, DEA, DA has been introduced into the sol, the interaction between Pb2+ and Ti-0 can be enhanced, therefore the formation of pyrochlore lead titanate can be inhibited. The size of Ag particle is controlled by the interaction between Ag~+ and Ti-O. As the interaction increases in a sequece of CA>DEA>LA, the size of Ag particle decreases in a sequence of CA    (4) The effect of heating atmosphere on the formation of Ag particles has been investigated. The formation mechanism of Ag particles under different heating process has been discussed. During direct heating process in ambient or reducing atmosphere, Ag particle is formed by diffusion and congregration of Ag~0; during a 600°C preannealing in ambient atmosphere + a postannealing in reducing atmosphere, Ag_32+ nuclei will be formed before the growth of Ag particle. For direct heating in ambient or reducing atmosphere, the Gibbs energy for Ag particle formation has been calculated, and the necessary thermodynamic condition for Ag particle formation has been provided. Dynamic condition of Ag particle formation has been calculated. It is pointed out that the reason for Ag particle size difference in the films prepared under different atomphere originates from the nucleation density inequality, which provide a theoretical foundation for the preparation of metal nanoparticle dispersed dielectric film.
    (5) The conduction mechanisn of Ag dispersed PbTiO_3 film has been discussed. DC and AC conduction mechanism of the film is controlled by the heating atmosphere and has no relationship with Ag content. For the films prepared under ambient atmosphere, DC conductivity of the film is controlled by localized hopping electron mechanism and Fowler-Nordheim tunneling mechanism at low V and high V region respectively. As the measruing temperature increases, the AC conductivity shifted from a Debye relaxation current mechanism to a Schottky emission mechanism. For the films prepared under reducing atmosphere, DC conductivity of the film is controlled by localized hopping electron mechanism and Fowler-Nordheim tunneling mechanism at low V and high V region respectively, but the contribution of localized hopping electron is much larger than the films prepared under ambient atmosphere. For this reason, the AC conduction mechanism of the films prepared in reducing atmosphere is different at a low measuring frequecy and a high measuring frequency. When the measuring frequecy is low, with the increase of measuring temperature, the conduction mechanism shift from localized hopping electron mechanism to reoxidation mechanism and finally to Schottky emission mechanism. When the measuring frequecy is high, with the increase of measuring temperature, the conduction mechanism shift from Debye relaxation mechanism, to localized hopping electron mechanism, then to reoxidation mechanism and finally to Schottky emission
    mechanism. The varaition tendency of condution mechanism with voltage and temperature didn't change with the Ag content. But the value of leakage current increase as the Ag content increases. Moreover, the transition voltage in DC conduction between localized hopping carrier mechanism and Fowler-Nordheim tunneling mechanism increases as the Ag content increases.
    (6) The dielectric relaxation mechanism of Ag dispersed PbTiO_3 film has beeen investigated. For films prepared in ambient atmosphere, the dielectric relaxation mechanism is controlled by Debye relaxation mechanism. For films prepared in reducing atmosphere, the dielectric relaxation is controlled by localized hopping electron mechanism at a low measuring frequency, and is controlled by Debye relaxation mechanism at a high measuring frequency. Ag content has no effect on the dielectric relaxation mechanism of the films.
    (7) The effect of dispersed Ag on the dielectric constant and conductivity of Ag dispersed PbTiO_3 film has been discussed. When Ag content is low, the conductivity and dielectric constant will decreased since a small amout of Ag~+ is dissolved into the lattice of PbTiO_3 phase. But after the Ag content exceeds the solid solubility, the conductivity and dielectric constant of Ag dispersed PbTiO_3 film will both increase, following the percolation law. For films prepared under ambient atmosphere, the dielectric constant can be increased to 1.27 times of that of the pure lead titanate, around a percolation threshold of 0.04. For films prepared under reducing atmosphere, the dielectric constant can be increased to 4.13 times of that of the pure lead titanate, around a percolation threshold of 0.17.
引文
[1] Jonscher AK. Dielectric relaxation in solids. J Phys. D: Appl. Phys., 1999, 32: R57-R70.
    [2] Yu JD, Ishikawa T, Arai Y, Yoda S, Itoh M. Extrinsic origin of giant permittivity in hexagonal BaTiO_3 single crystals: Contributions of interracial layer and depletion layer. Appl. Phys. Lett., 2005, 87: 252904.
    [3] 王君达,谈慕华,吴科如.无宏观缺陷水泥基复合材料的介电性能.同济大学学报(自然科学版),2000,28(2):168-171.
    [4] Mitoseriu L, Marte D, Siri AS, Stancu A, Fedor CE, Nanni P. Magneto electronic coupling in the multiferroic PbFe_(2/3)W_(1/3)O_3 -PbTiO_3 system. J. Optoelectro. Advan. Mater., 2004, 6: 723-728.
    [5] 沃丁柱.复合材料大全.北京:化学工业出版社,2000.
    [6] 阮立坚,李龙土,桂治轮.铌镁酸铅系低烧高介XR7瓷料的研究.功能材料,1997,28(2):140-142.
    [7] 杨祖培.屈绍波,崔斌,高峰,侯育冬,田长生.PMN和PZN基复相陶瓷的制备及其介电温度稳定性的研究.材料工程,2001,(4):22-24.
    [8] Van Den Boomgaard J, Van Run AMTG, Van Sunchtelen J. Magnetoelectricity in piezoelectric-magnetostrictive composites. Feeroelectrics, 1976, 10: 295-298.
    [9] Ryu J, Carazo AV, Uchino K. Kim HE. Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate composites. J. Electroceram., 2001, 7: 17-24.
    [10] Ryu J, Carazo AV, Uchino K, Kim HE. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Phys., 2001, 40: 4948-4951.
    [11] Pecharroman C, Moya JS. Experimental Evidence of a Giant Capacitance in Insulator-Conductor Composites at the Percolation Threshold. Adv. Mater., 2000, 12(4): 294-297.
    [12] Yang CF. Improvement of the Sintering and Dielectric Characteristics of Surface Barrier Layer Capacitor by CuO Addition. Japn. J. Appl. Phys., 1996, 35: 1806-1813.
    [13] Jayanthi S, Kutty TRN. Giant dielectrics from modified boundary layers in n-BaTiO_3 ceramics involving selective melting reactions of silver/glass composites at the grain boundaries. J. Mate. Sci.-Mate. Electron., 2005, 16 (5): 269-279.
    [14] Xu YX, Tang ZL, Zhang ZT, Luo SH, Zhang XY, Yah JP, Dong LM. Study of electrical properties of Sr1-x-yBaxCayTiO+3 capacitor-varistor ceramics doped with Mn. Rare Met. Mater. & Eng., 2003, 32: 628-631.
    [15] Capsoni D, Bini M, Massarotti V, Chiodelli G, Mozzatic MC, Azzoni CB. Role of doping and CuO segregation in improving the giant permittivity of CaCu_3Ti_4O_(12). J. Solid State Chem., 2004, 177: 4494-4500.
    [16] Yang XS, Wang Y, Dong L, Chert M, Zhang F, Qi LZ. Effect of CeO_2 on the microstructure and electrical properties of WO_3 capacitor-varistor ceramics. Mate. Sci. Eng., B-Solid State Materials For Advanced Technology, 2004, 110 (1): 6-10.
    [17] Yang XS, Wang Y, Zhao Y. Effect of Dy_2O_3 and La_2O_3 on the microstructure and electrical properties Of WO3 ceramics. Materials Chem. Phys. 2006, 98 (2-3): 225-230.
    [18] Lin YH, Zhao RJ, Wang JF, Cai JN, Nan CN, Wang YT, Wei L. Polarization of high-permittivity dielectric NiO-based ceramics. J. Am. Ceram. Soc., 2005, 88(7): 1808-1811.
    [19] 黄集权,杜不一,翁文剑,韩高荣.超高介电常数钛酸钡/乙炔黑复相材料的制备研究.无机材料学报,2005.20(5):1106-1112.
    [20] 李言荣,挥正中.材料物理学概论.北京:清华大学出版社,2000.
    [21] Clerc JP, Giraud G, Laugier JM. The electgrical conductivity of binary disordered systems, percolation clusters, fractals and related models. Adv. Phys., 1990, 39(3): 191-309.
    [22] Duan N, Elshof JE ten, Verweij H. Sintering and electrical properties of PZT/Pt dual-phase composites. J. Euro. Ceram. Soc., 2001, 21: 2325-2329.
    [23] Pecharroman C, Esteban-Betegon F, Bartoiome JF, Lopez-Esteban S, Moya JS. New Percolative BaTiO_3-Ni Composites With a High and Frequency- independent Dielectric Constant (εr≈800000). Adv. Mater., 2001, 13(20): 1541-1544.
    [24] 王玉成,傅正义.导电体与绝缘体复相陶瓷中的渗流现象.武汉理工大学学报,2001,23(2):29-31.
    [25] Scher H, Zailen R. Critical density in percolation processes. J. Chem. Phys., 1970, 53: 3759-3761.
    [26] Stauffer D, Zabolitzky JG. Re-examination of 3D percolation threshold estimates. J. Phys. A: Math. Gen., 1986, 19: 3705-3706.
    [27] Ziff. Stell. Exact consequence of the duality symmetry. Monte Carlo simulation, 1988.
    [28] Kauly T, Keren B, Siegrnann A, Narkis M. Highly filled thermoplastic composites. Ⅱ: Effects of particle size distribution on some properties. Polym. Compos., 1996, 17: 806-815.
    [29] Chodak I, Krupa I. "Percolation effect" and mechanical behavior of carbon black filled polyethylene. J. Mater. Sci. Lett., 1999, 18: 1457-1459.
    [30] Corsi A, Gujrati PD. Percolation of particles on recursive lattices using a nanoscale approach Ⅱ, the effect of size and shape disparities. Phy. Rev. E., 2006, 74: 061122.
    [31] 王岚,党智敏.碳纳米管/聚偏氟乙烯复合材料的制备及其介电性能.四川大学学报(自然科学版),2005,S1.
    [32] Sheppard LM. Advanced in Processing of Ferroelectric Thin Films. Ceram. Bull., 1992, 71: 85-95.
    [33] Kozuka H, Sakka S. Preparation of Gold Colloid-Dispersed Silica Coating Films by the Sol-Gel Method. Chem. Mater., 1993, 5: 222-228.
    [34] Lakeman CDE, Campion JF, Payne DA. Factors affecting the sol-gel processing of PZT thin layers. Ceram. Trans. 1992, 5: 413-415.
    [35] Wang HW, Hall DA, Sale FR. Phase homogeneity and segregation in PZT powers prepared by thermal decomposition of metal-EDTA complexes derived from nitrate and chloride solutions. J. Am. Ceram. Soc., 1992, 75: 124-130.
    [36] Chandler CD, Roger C, Hampden-Smith MJ. Chemical Aspects of Solution Routes to Perovskite-Phase Mixed-Metal Oxides from Metal-Organic Precursors. Chem. Rev., 1993, 93: 1205-1241.
    [37] Schwartz RW. Chemical Solution Deposition of Perovskite Thin Films. Chem. Mater., 1997, 9: 2325-2340.
    [38] Brunckova H, Medvecky L, Briancin J, Saksl K. Influence of hydrolysis conditions of the acetate sol-gel process on the stoichiometry of PZT powders. Ceram. Int., 2004, 30: 453-460.
    [39] Wang GS, Meng XJ, Yu J, Sun JL, Lai ZQ, Guo SL, Chu JH. Effect of hydrolysis on properties of PbZr_(0.50)Ti_(0.50)O_3 ferroelectric thin films derived from a modified sol-gel process. J. Crys. Growth, 2001, 233: 269-274.
    [40] Li AD, Wu D, Ge CZ, Lu P, Ma WH, Zhang MS, Xu CY. Zuo J, Ming NB. Raman spectroscopy and x-ray diffraction study of PbTiO_3 thin films prepared by sol-gel technique. J. Appl. Phys., 1999, 85(4): 2146-2150.
    [41] Park YI, Kim CE. Effects of Catalyst and Solvent on PbTiO_3 Fibers Prepared from Tfiethanolamine Complexed Titanium Isopropoxide. J. Sol-Gel Sci. Technol., 1999, 14: 149-162.
    [42] Hsueh CC, Mecartney ML. Microstructural development and electrical properties of sol-gel prepared lead zirconate-titanate thin films, J. Mater. Res., 1991, 6(10): 2208-2217.
    [43] Yang WD. PZT/PLZT ceramics prepared by hydrolysis and condensation of acetate precursors. Ceram. Int., 200l, 27: 373-384.
    [44] Leite ER, Paris EC, Longo E, Varela JA Direct amorphous-to-cubic perovskite phase transformation for lead titanate. J. Am. Ceram. Soc., 2000, 83(6): 1539-1541.
    [45] Kakihana M, Okubo T, Arima M, Uchiyama O, Yashima M, Yoshimura M, Nakamura Y. Polymerized complex synthesis of perovskite lead titanate at reduced temperatures: Possible formation of heterometallic Pb, Ti citric acid complex. Chem. Mater., 1997, 9: 451-456.
    [46] HubertPfalzgraf LG. Metal alkoxides and β—diketonates as precursors for oxide and non-oxide thin films. Appl. Organomet. Chem., 1992, 6: 627-643.
    [47] Lakeman CDE, Xu Z, Payne DA. On the Evolution of Structure and Composition in Sol-Gel-Derived Lead Zirconate Titanate Thin Layers. J. Mater. Res., 1995, 10(8): 2042-2051.
    [48] Turtle BA, Schwartz RW. Solution Deposition of Ferroelectric Thin Films. MRS Bull., 1996, 21(6): 49-54.
    [49] Breitscheidel B, Zieder J, Schubert U. Metal Complexes in Inorganic Matrices. 7. Nanometer-sized, Uniform Metal Particles in a SiO_2 Matrix by sol-gel processing of metal complexes. Chem. Mate.. 1991, 3: 559-566.
    [50] Trimmel G, Lembacher C, Kickelbick G, Schubert U. Sol-gel processing of alkoxysilyl-substituted nickel complexes for the preparation of highly dispersed nickel in silica. New J. Chem., 2006, 26 (6): 759-765.
    [51] Trimmel G, Schubert U. Sol-gel processing of tethered metal complexes: influence of the metal and the complexing alkoxysilane on the texture of the obtained silica gels. J. Non-Crystall. Solids, 2001, 296: 188-200.
    [52] Epifani M, De G, Licciulli A, Vasanelli L. Preparation of uniformly dispersed copper nanocluster doped silica glasses by the sol-gel process. J. Mater. Chem., 2001, 11: 3326-3332.
    [53] Lambert S, Cellier C, Grange P, Pirard JP, Heinrihcs B. Synthesis of Pd/SiO_2, Ag/SiO_2, and Cu/SiO_2 cogelled xerogel catalysts: study of metal dispersion and catalytic activity. J. Catal., 2004, 221: 335-346.
    [54] Lambert S, Polard JF, Pirard JP, Heinrichs B. Improvement of metal dispersion in Pd/SiO_2 cogelled xerogei catalysts for 1, 2-dichioroethane hydrodehlorination. Appl. Catal. B: Environmental, 2004, 50: 127-140.
    [55] Schubert U, Tewinkel S, Moiler F. Metal complexes in inorganic matrices. 13. Nickel complexes with iysinate-substituted tiatanium alkoxides as ligands. X-ray structure analysis of [(EtO)_3Ti(glycinate)]_2", Inorg. Chem., 1995, 34: 995-997.
    [56] De G. Sol-gel synthesis of metal nanoclusters-silica composite films. J. Sol-gel Sci. Tech.. 1998, 11: 289-298.
    [57] Takahashi R, Sato S, Sodesawa T, Suzuki M, Ichikuni N. Ni/SiO_2 prepared by sol-gel process using citric acid. Microporous and Mesoporous Mater., 2003, 66: 197-208.
    [58] Villegas MA, Garcia MA, Paje SE, Llopis J. Parameters controlling silver nanoparticle growth in sol-gel silica coatings. Mater. Res. Bulle.,2005, 40: 1210-1222.
    [59] De G, Gusso M, Tapfer L, Catalano M, Gonella F, Mattei G, Mazzoidi P, Battaglin G. Annealing behavior of silver, copper, and silver-copper nanoclusters in a silica matrix synthesized by the sol-gel technique. J. Appl. Phys., 1996, 80: 6734-6739.
    [60] Wu F, Mclaurin AW, Henson KE, Managhan DG, Thomasson SL, The effects of the process parameters on the electrical and microstructure characteristics of the CrSi thin resistor films: part 1. Thin Solid Films, 1998, 332: 418-422.
    [61] Kim JS, Lee KS, Kim SS. Third-order optical nonlinearity of Cu nanoparticle-dispersed Ba_(0.5)Sr_(0.5)TiO_3 films prepared by alternating pulsed laser deposition. Thin Solid Films, 2006, 515: 2332-2336.
    [62] 王伟田,杨光,关东仪,吴卫东,陈正豪.金属纳米团簇复合薄膜Au/BaTiO_3与 Fe/BaTiO_3的PLD制备及其光吸收特征.物理学报,2004,53(3):932-935.
    [63] 王伟田,孙玉明,戴振宏,关东仪.Au-BaTiO_3复合薄膜的脉冲激光沉积制备及其非线性光学效应.光学学报,2006,26(8):1265-1268.
    [64] 张超,吴卫东,陈正豪,周岳亮,程新路,杨向东,何英杰,孙卫国,唐永建.Co:BaTiO_3纳米复合薄膜的制备及其结构.物理学报,2005,54(2):982-986.
    [65] Gangopadhyay P, Kesavamoorthy R, Bera S, Magudapathy P, Nair KGM, Panigrahi BK, Narasimhan SV. Optical Absorption and photoluminescence spectroscopy of the growth of silver nanoparticles. Phys. Rev. Lett., 2005, 94:047403.
    [66] Wang QF, Yu H J, Zhong L, Liu JQ, Sun JQ, Shen JC. Incorporation of silver ions into ultrathin titanium phosphate films: In situ reduction to prepare silver nanoparticles and their antibacterial activity. Chem. Mater., 2006, 18: 1988-1994.
    [67] Roiz J, Oliver A, Mufioz, Rodriguez-Fernaindez L, Hernandez JM, Cheang-Wong JC. Modification of the optical properties of Ag-implanted silica by annealing in two different atmospheres. J. Appl. Phys., 2004, 95: 1783-1791.
    [68] Jiang CZ, Fan X. In-situ TEM observation of silver nanocrystals in an Ag-implanted SiO_2 film. Surf. Coating Tech., 2000, 131:330-333.
    [69] Oliver A, Cheang-Wong JC, Roiz J, Rodriguez-Fernandez L, Hernandez JM, Crespo-Sosa A, Munoz E. Metallic nanoparticle formation in ion-implanted silica after thermal annealing in reducing or oxidizing atmospheres. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interactions with Materials and Atoms, 2002, 191: 333-336.
    [70] 孙兆奇,何玉平,宋学萍,孙大明.Cu-MgF_2复合纳米金属陶瓷薄膜的电导特性研究.物理学报,2003,52(6):1455-1460.
    [71] 孙兆奇,李爱侠,徐志元,孙大明.Ag-MgF_2金属陶瓷体的烧结条件与微观结构.功能材料,2000,31(3):308-310.
    [72] 孙大明,孙兆奇,黄小涛,刘同旵,李爱侠,徐志元.Al-MgF_2金属陶瓷薄膜的微观结构与光学特性.真空,1999,(6):11-14.
    [73] TK Kundu, chakravorty D. Nanocomposite films of lead zirconate titanate and metallic nickel by sol-gel method. Appl. Phys. Lett., 1995, 66: 3576-3578.
    [74] Ginzburg VV, Myers K, Malowinski S, Cieslinski R, Elwell M, Bernius M. High-dielectric-constant self-assembled nodular structures in polymer/gold nanoparticle films. Macromolecules, 2006, 39: 3901-3906.
    [75] Ravindran R, Gangopadhyay K, gangopadhyay S, Mehta N, Biswas N. Permittivity enhancement of aluminum oxide thin films with the addition of silver nanoparticles. Appl. Phys. Lett., 2006, 89:263511.
    [76] Gridnev S, Gorshkov A, Sitnikov A, Kalinin YE. Charge transfer and dielectric properties of granular nanocomposites Co_x(LiNbO_3)_(100-x). Phys. Solid State, 2006, 48:1186-1188.
    [77] Rice MJ, Bernasconi J. Gorkov-Eliashberg effect in one-dimensional metals. Phys. Rev. Lett., 1972, 29: 113-116.
    [78] Kundu TK, Chakaravorty D. Nanocomposites of lead-zirconate-titanate glass ceramics and metallic silver. Appl. Phys. Lett., 1995, 61: 2732-2734.
    [79] S Kirkpatrick. Percolation and Conduction. Rev. Mod. Phys., 1973, 45, 574-588.
    [80] Wang LS, Barnett SA. Ag-perovskite cermets for thin film solid oxide fuel cell air-electrode applications. Solid State Ionics, 1995, 76:103-113.
    [81] Maxwell-Garnet JC. Coiours in metal glasses and in metal films. Philos. Trans. Roy. Soc. Lond. A, 1904, 203: 385-420.
    [82] Bruggeman DAG. Berechnug verschiedener physikalischer konstanten yon heterogen substanzen. Annalen der physik, 1935, 24: 636-644.
    [83] 刘恩科,朱秉升,罗晋生.半导体物理学(第四版).北京:电子工业出版社,2003.
    [84] Hwang CS, Lee BT, Kang CS, Lee KH, Cho HJ, Hideki H, Kim WD, Lee SI, Lee MY. Depletion layer thickness and Schottky type carrier injection at the interface between Pt electrodes and (Ba, Sr)TiO_3 thin films. J. Appl. Phys., 1999, 85: 287-295.
    [85] Guido WD, Rainer W. Charge injection in SrTiO_3 thin films. Thin solid films, 1997, 299: 53-58.
    [86] Shin JC, Park J, Hwang CS, Kim HJ. Dielectric and electrical properties of sputter grown (Ba, Sr)TiO_3 thin films. J. Appl. Phys., 1999, 86: 506-513.
    [87] 张开彪,马书懿,马自军,陈海霞.Au/(Si/SiO_2)/p-Si薄膜中电流及电致发光机制的分析.光电子激光.2006,17(2):135-138.
    [88] Baniecki JD, Shioga T, Kurihara K, Kamehara N. A study of current transport in (Ba_xSr_(1-x))Ti_(1+y)O_(3+z), thin-film capacitors containing a voltage-dependent interface state charge distribution. J. Appl. Phys., 2005, 97:114101.
    [89] 高观志,黄维.固体中的电输运.北京:科学出版社,1991.
    [90] Pandey SK, Kumar S, Chatterjee SN, Kumar U. Growth and characterization of Sm~(3+)-substituted PZT thin films. Physica B, 2007, 388:404-411.
    [91] Saha S, Krupanidhi SB. Microstructure related influence on the electrical properties of pulsed laser ablated (Ba, Sr)TiO_3 thin films. J. Appl. Phys., 2000, 88(6): 3506-3513.
    [92] Morrison FD, Zubko P, Jung D J, Scott JF. High-field conduction in barium titanate. Appl. Phys. Lett., 2005, 86: 2903-2905.
    [93] Wang CC, Zhang LW. Oxygen-vacancy-related dielectric anomaly in CaCu_3Ti_4O_(12): pos-sintering annealing studies. Phys. Rev. B, 2006, 74:024106.
    [94] Bernhard R. Hopping dynamics of ions and polarons in disordered materials: On the potential of nonlinear conductivity spectroscopy. J. Chem. Phys., 2002, 117:1320-1327.
    [95] Chen JG, Johnson WB. Non-ohmic Ⅰ-Ⅴ behaviour of random metal insulator composites near their percolation threshold. J. Mater. Sci., 27: 5497-5503.
    [96] Sodolski H, Zielinski R, Siupkowski T, Jachym B. Metallic conductivity of polester resin-acetylene carbon black compounds. Phys. Status Solidi a, 1975, 32: 603-608.
    [97] Kwan SH, Shin FG, Tsui WL. Direct current, electrical conductivity of silver-thermosetting polyester. Composites. J. Mater. Sci., 1980, 15: 2978-2984.
    [98] de Araujo FFT, Rosenberg HM. Switching behaviour and DC electrical conductivity of epoxy-resin/metal-powder composites. J. Phys. D: Appl. Phys., 1976, 9:1025-1030.
    [99] 陈敏,王豫.压敏电阻非线性电输运理论研究进展.湖南理工学院学报,2004,17(3):20-25.
    [100] Chung SY, Kim ID, Kang SJL. Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate. Nature Mater., 2004, 3: 774-778.
    [101] Kim YS, Lee YH. Sung MY. Electrical characteristics of rf-magnetron sputtered BaTa_2O_6 thin film. Solid State Electron., 1999, 43:1189-1193.
    [102] Simmons JG.. Low-voltage current-voltage relationship of tunnel junctions. J. Appl. Phys., 1963,34, 238-242.
    [103] Simmons JG, Generalized formula for the electric tunnel elect between similar electrodes separated by a thin insulating film. J. Appl. Phys., 1963, 34: 1793-1799.
    [104] Carmona F. Percolation in short fibers epoxy resin composites: Conductivity behavior and finite size effects near threshold. Solid State Commun., 1984, 51: 255-257.
    [105] Toker D, Azulay D, Shimoni N, Balberg I, Millo O. Tunneling and percolation in metal-insulator composite materials. Phys. Rev. B, 2003, 68(4): 1403-1406.
    [106] Kreibig U, Vollmer M. Optical properties of metal cluster (Spring series in materials science vol. 25). Berlin: Springer, 1995.
    [107] Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Jone Wiley&Sons, 1983. 102-110.
    [108] Yanase A, Komiyama H. In situ optical observation of oxygen adsorption induced reversible change in the shape of small supported silver particles, Surf. Sci., 1992, 264:147-156.
    [109] 王取泉.(Au,Ag)/Si纳米复合颗粒薄膜的微结构与光谱特性.物理学报,1999,48(3):539-543.
    [110] 干福熹.用溶胶凝胶方法制备的有机-无机复合材料和纳米复合材料的非线性光学性质.自然科学进展,1999,9(4):289-295.
    [111] Chen SW. Alkanethiolate protected palladium nanoparticles. Chem. Mater., 2000, 12: 540-547.
    [112] Sheng P. Theory for the dieletric constant of granular composite media. Phys. Rev. Lett., 1980, 45: 60-63.
    [113] Hornyak GL. Fabrication, characterization and optical theory of aluminum nanometal/nanoporous membrane thin film composites. Nanostruct. Mater., 1995, 6: 839-84.
    [114] Tanahashi I, Mitsuyu T. Preparation and optical properties of uniaxially oriented polyethylene silver nanocomposites. J. Mater. Sci., 1999, 34: 3859-3866.
    [115] 张兆艳,李钱陶.纳米银粒子的着色与发光.玻璃与搪瓷,2002,30(3):25-28.
    [116] Gil C, Villegas MA, Fernandez Navarro JM.Superficial colouring of lead crystal glass by sol-gel coatings. J. Euro. Ceram. Soc., 2005, 25, 711-718.
    [117] 王传义,刘春艳,刘云,张志颖.Ag/TiO_2复合纳米粒子的表面增强Raman散射效应.科学通报,1999,44(18):1955-1958.
    [118] 赵军武,王永昌,朱键.金纳米薄膜的荧光光谱特性.光谱学与光谱分析,2004,24(12):
    [119] Richard D, Roussignol P, Flytzanis C. Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt. Lett., 1985, 10:511-513.
    [120] Tanahashi I, Manabe Y, Tohda T, Sasaki S and Nakamura A. Optical nonlinearities of Au/SiO_2 composite thin films prepared by a sputtering method. J. Appl. Phys., 1996, 79: 1244-1249.
    [121] Ballesteros M, Serna R, Solis J, Afonso CN, Pet-ford-Long AK, Osborne DH, Haglund RF. Pulsed laser deposition of Cu:Al_2O_3 nanocrystal thin films with high third-order optical susceptibility. Appl. Phys. Lett., 1997, 71:2445-2447.
    [122] Siu WH, Yu KW. Enhanced nonlinear response of superconductor-normal -conductor composite wires and strips. Phys. Rev. B, 1996, 53: 9277-9285.
    [123] Yuen KP, Law MF, Yu KW, Sheng P. Optical nonlinearity enhancement via geometric anisotropy. Phys. Rev. E, 1997, 56:R1322-1325.
    [124] Helman JS, Abeles B. Tunneling of spin-polarized electrons and magnetoresistance in granular Ni films. Phys. Rev. Lett.. 1976, 37: 1430-1432.
    [125] Barzilai S, Goldsteni Y, Balberg I, Helman JS. Magnetic and transport properteis of granular cobalt films. Phys. Rev. B, 1981, 23: 1809-1817.
    [126] Berkowitz AE, Mitekell JR, Corey MJ. Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys. Rev. Lett., 1992, 68(22): 3745-3748.
    [127] Xiao JQ, Jiang JS, Chien CL. Giant magnetoresistance in nonmultilayer magnetic systems. Phys. Rev. Lett., 1992, 68(25): 3749-3752.
    [128] Fujimori H, Mitani S, Ohnuma S. Tunnel-type GMR in metal-nonmetal granular alloy thin films.Mater. Sci. Engin. B, 1995, 31:219-223.
    [ 129] Milner A, Gerber A, Groisman B, Karpovsky M, Gladkikh A. Spin-Dependent Electronic Transport in Granular Ferromagnets. Phys. Rev. Lett., 1996, 76(3): 475.
    [130] Honda S, Okada T, Nawate M, Tokumoto M. Tunneling giant magnetoresistance in heterogenerous Fe-SiO2 granular films. Phys. Rev. B, 1997, 56: 14566-14573.
    [131] Huang YH, Hsu JH, Chen JW. Thickness dependence of tunneling magneto-resistance effect in granular Fe-Al2O3 films. IEEE Trans. Magn. ,1997, 33: 3556-3558.
    [132] Hsu JH, Huang YH, Tseng PK, Chen DE. Mossbauer studies of Fe-Pb-0 granular films with enhanced tunnelingmagnetoresistance effect. IEEE Trans. Magn. 1998,34: 909-911.
    [133] Mitani S,Shintani Y, Ohnuma S, Fujimori H. Giant magnetoresistance and Hall effect in Fe-based metal-oxide granular thin films. J. Magn. Soc. Japan, 1997,21: 465-468.
    [1] 陈允魁编著.仪器分析.上海交通大学出版社,1992.11.
    [2] 杨南如主编.无机非金属材料测试方法.武汉工业大学出版社,1994.2
    [3] 廖乾初,蓝芬兰主编,扫描电镜原理及应用技术,冶金工业出版社,1990.7
    [4] 王成国,丁洪太.侯绪荣编.材料分析测试方法.上海交通大学出版社,1994.10.
    [1] Mitani S, Takahashi S, Takanashi K, Yakushiji K, Maekawa S, Fujimori H. Enhanced Magnetoresistance in Insulating Granular Systems: Evidence for Higher-Order Tunneling. Phys. Rev. Left., 1998, 81:2799-2802.
    [2] Otsuki S, Nishio K, Kineri T, Watanabe Y, Tsuchiya T. Optical properties of gold-dispersed barium titanate thin films prepared by sol-gel processing. J. Am. Ceram. Soc.,1999, 82 (7):1676—1680.
    [3] 翟继卫,师文生.杨合情,张良莹.姚熹.Au掺杂TiO_2/SiO_2薄膜的光学非线性特性研究.压电与声光,1997,19(5):340-342.
    [4] Epifani M, Giannini C, Tapfer L, Vasanelli L. Sol-gel synthesis and characterization of Ag and Au nanoparticles in SiO_2, TiO_2, and ZrO_2 thin films. J. Am. Ceram. Soc., 2000, 83(10): 2385-2393.
    [5] Tang LW, Du PY, Han GR, Weng WJ, Zhao GL. Preparation of silver dispersed PbTiO_3 film by sol-gel method. Mat. Sci. Eng. B, 2003, 99(1-3): 370-373.
    [6] Zhou J, Li LT, Gui ZL, Zhang XW. Ferroelectric thin films embedding nanoscale metal particles: A novel class of functional composites. Ferroelectrics, 1997, 196(2): 405-408.
    [7] Kundu TK, Chakravorty D. Nanocomposite films of lead zirconate titanate and metallic nickel by sol-gel route, Appl. Phys. Lett., 1995, 66(26): 3576-3578.
    [8] Tang LW, Du PY, Han GR, Weng WJ, Zhao GL, Shen G. Effect of dispersed Ag on the dielectric properties of sol-gel derived PbTiO_3 thin films on ITO/glass substrate. Surf. Coat. Tech., 2003, 167(2-3): 177-180.
    [9] J.A.迪安,魏俊发.兰氏化学手册.北京:科学出版社,2003.
    [10] 朱涛,韩高荣,赵高凌.溶胶凝胶法制备PbTiO_3薄膜的研究.硅酸盐通报,1998,1:29-32.
    [11] 于艳菊,王福平,姜兆华,李益民,赵连城.Pb_(1-3x/2)Eu_x(Zr_(0.52)Ti_(0.48))O_3纳米粉的溶胶凝胶合成.无机材料学报,2002,17(1):154-158.
    [12] 从秋滋.多晶二维X射线衍射.北京:科学出版社,1997.
    [13] 刘世宏,王当憨,潘承璜.X射线光电子能谱分析.北京:科学出版社,1998:292-294.
    [14] Chen HY, Lin J, Tan KL, Feng ZC. Characterization of lead lanthanum titanate thin films grown on fused quartz using MOCVD. Thin Solid Films, 1996, 289: 59-64.
    [15] Serezhkina SDV, Tyavlovskaya EA, Shevchenko GP, Rakhmanov SK. Investigation of structural and compositional changes in silver-doped GeO_2 thin films. J. Non-Crystal. Solids, 2005, 351: 35-40.
    [16] Pederson LR. Two-dimensional chemical-state plot for lead using XPS. J. electron spectrosc. Relat. Phenom., 1982, 28 (2): 203-209.
    [17] Jovalekic C, Pavlovic M, Osmokrovic P, Atanasoska L. X-ray photoelectron spectroscopy study of Bi_4Ti_3O_(12) ferroelectric ceramics. Appl. Phys. Lett., 1998, 72: 1051-1053.
    [18] Brunckova H, Medvecky L, Briancin J, Saksl K. Influence of hydrolysis conditions of the acetate sol-gel process on the stoichiometry of PZT powders. Ceram. Int., 2004, 30: 453-460.
    [19] Chen YZ, Ma J, Zhang JX. Thermal analysis of the seeded lead zirconate titanate sol-gel system. Mater. Lett., 2003, 57: 3392-3396.
    [20] 戚绍祺,胡萍春.晶粒大小的测定.广州化学,2000,25(3):33-40.
    [21] Sengupta SS, Ma L, Adler DL, Payne DA. Extended x-ray absorption fine structure determination of local structure in sol-gel-derived lead titanate, lead zirconate, and lead zirconate titanate. J. Mater. Res., 1995, 10 (6): 1345-1348.
    [22] Calzada ML, Mendiola J, Carmona F, Sirera R, Pyrochlore-perovskite phase development of sol-gel derived modified lead titanate thin films. Microelectron. Eng., 1995, 29: 197-200.
    [23] Lai YC, Gong YS, Lee C. Effect of precursor solution composition on lead titanate thin films prepared by a sol-gel method. Mater. Chem. Phys., 1997, 51 (2): 147-151.
    [24] 顾庆超,楼书聪,戴庆平,黄炳荣,李乔钧.化学用表.江苏:江苏科学技术出版社,1979.
    [25] 何超,于云,周彩华,胡行方.Ag/TiO_2薄膜结构和光催化性能研究.无机材料学报,2002,17(5):1025-1034.
    [26] Fabbrini L, Kryukov A, Cappelli S, Chiarelloa GL, Rossettia I, Olivaa C, Fomi L. Sr_(1-x)Ag_xTiO_3(x=0,0.1) perovskite-structured catalysts for the flameless combustion of methane. J. Catal., 2005, 232: 247-256.
    [27] Sih B, Jung A, Ye ZG. Effects of silver doping on ferroelectric SrB_(i2)Ta_2O_9. J. Appl. Phys., 2002, 92(5): 3928-3935.
    [28] Cahn JW. Spinodal decomposition. Trans. Met. Soc. Am. Inst. M. Eng., 1968, 242: 166.
    [29] Sleight AW. AgSbO_3: Chemical characterization and structural considerations. Mater. Res. Bull., 1969, 4: 377-380.
    [30] Ramadass N. ABO_3-type oxides-their structure and properties- a bird's eye view. Mater. Sci. Eng., 1978, 36: 231-239.
    [31] David RL. CRC Handbook of Chemistry and Physics. USA: CRC Press Inc., 2006.
    [32] De G Gusso M, Tapfer L, Catalano M, Gonella F, Mattei G, Mazzoldi P, Battaglin G Annealing behaviour of silver,copper, and silver copper nanoclusters in silica matrix synthesized by the sol-gel technique. J. Appl. Phys., 1996,80( 12): 6734-6739.
    [33] Dana SS, Etzold KF, Clabes J. Crystallization of sol-gel derived lead zirconate titanate thin films. J. Appl. Phys.. 1991, 69(8), 4398-4403.
    [34] Calzada ML, Mendiola J, Carmona F, Sirera R, Pyrochlore-perovskite phase development of sol-gel derived modified lead titanate thin films. Microelectron. Eng., 1995, 29: 197-200.
    [35] Carmona F, Calzada ML, Roman E, Sirera R, Mendiola J. Influence of thermal treatment on the properties of Ca-modified lead titanate thin films. Thin Solid Films, 1996, 279: 70-74.
    [1] Brunckova H, Medvecky L, Briancin J, Saksl K. Influence of hydrolysis conditions of the acetate sol-gel process on the stoichiometry of PZT powders. Ceram. Int.1, 2004, 30: 453-460.
    [2] Polli AD, Lange FF, Levi CG. Metastability of the Fluorite, Pyrochlore, and Perovskite Structures in the PbO-ZrO_2-TiO_2 System. J. Am. Ceram. Soc., 2000, 83 (4): 873-881.
    [3] Lakeman DE, Xu ZK, Payne DA. On the Evolution of Structure and Composition in Sol-Gel Derived Lead Zirconium Titanate Thin Layers. J. Mater. Res., 1995, 10(8): 2042-2051.
    [4] Aggarwal S, Madhukar S, Nagaraj B, Jenkins IG, Ramesh R, Boyer L, Evans JT. Can Lead Stoichiometry Influence Ferrolectric Properties of Pb(Zr, Ti)O_3 Thin Films. Appl. Phys. Lett., 1999, 75 (5): 716-718.
    [5] Shannon RD, Prewitt JT. Effective Ionic Radii in Oxides and Fluorides. Acta Crystallogr., 1969 B25 (5): 925-946.
    [6] Eisa MA, Abadir MF, Gadalla AM. The System of TiO_2-PbO in Air. Trans, J. Br. Ceram. Soc., 1980, 79: 100-104.
    [7] De G, Gusso M, Tapfer L, Catalano M, Gonella F, Mattei G, Mazzoldi P, Battaglin G Annealing behaviour of silvencopper, and silver copper nanoclusters in silica matrix synthesized by the sol-gel technique. J. Appl. Phys., 1996,80 (12): 6734-6739.
    [8] Huang F, Zhang HZ, Banfield JF. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalHne ZnS. Nano Letters, 2003, 3 (3): 373-378.
    [9] Arnold GW, Near-surface nucleation and crystallization of an ion-implanted lithia-alumina-silica glass. J. Appl. Phys., 1975, 46 (10): 4466-4473.
    [1] Leite ER, Paris EC, Longo E, Varela JA. Direct amorphous-to-cubic perovskite phase transformation for lead titanate. J. Am. Ceram. Soc., 2000, 83 (6): 1539-41.
    [2] Kakihana M, Okubo T, Arima M, Uchiyama O, Yashima M, Yoshimura M, Nakamura Y. Polymerized complex synthesis of perovskite lead titanate at reduced temperatures: Possible formation of heterometallic Pb,Ti citric acid complex. Chem. Mater., 1997, 9: 451-456.
    [3] Chandler CD, Hampden SM J. Formation of crystalline, integral, and nonintegral stoichiometry perovskite-phase comolex metal oxide powders from metal-organic precursors. Chem. Mater., 1992, 4: 1137.
    [4] Kim SH, Kim CE, Young JO. Preparation of PbTiO_3 thin films using an alkoxide-alkanolamine sol-gel system. Journal of Materials Science, 1995, 30: 5639-5643.
    [5] Bao DH, Wu XQ, Zhang LY, Yao X. Preparation, electrical and optical properties of (Pb,Ca)TiO_3 thin films using a modified sol-gel technique. Thin Solid Films, 1999, 350: 30-37.
    [6] Kessler VG, Gohil S, Parola S. Interaction of some divalent metal acetylacetonates with Al, Ti, Nb and Ta isopropoxides. Factors influencing the formation and stability of heterometallic alkoxide complexes. Dalton Trans., 2003, 4: 544-550.
    [7] HubertPfalzgraf LG. Metal alkoxides and β—diketonates as precursors for oxide and non-oxide thin films. Applied Organometallic Chemistry, 1992, 6: 627-643.
    [8] Xue LH, Li Q, Zhang YL, Liu R, Zben XH. Synthesis, sintering and characterization of PLZST perovskite prepared by a lactate precursor route. J. Euro. Ceram. Soc., 2006, 26: 323-329.
    [9] Yu DS, Hart JC, Liu B. PbTiO3 nanosized ceramics. American Ceramic Society Bulletin, 2002, 81 (9):38-39.
    [10] Kellati M, Sayoufi S, EIMoudden N, Elaatmani M, Kaal A, Taibi M. Structural and dielectric properties of La-doped lead titanate ceramics. Materials Research Bulletin, 2004, 39: 867-872.
    [11] Mauro E, Cinzia G, Leander T, Lorenzo V. Sol-gel synthesis and characterization of Ag and Au Nanoparticles in SiO_2, TiO_2 and ZrO_2 thin films. J. Am. Ceram. Soc., 2000, 83 (10): 2385-2393.
    [12] Trimmel G, Lembacher C, Kickelbick G, Schubert U. Sol-gel processing of alkoxysilyl- substituted nickel complexes for the preparation of highly dispersed nickel in silica. New Journal of Chemistry, 2006, 26 (6): 759-765.
    [13] Seifert A, Lange FF, Speck JS. Epitaxial growth of PbTiO_3 thin films on (001) SrTiO_3 from solution precursors. Journal of materials research, 1995,10 (3): 680-691.
    [14] Ban T, Ohya Y, Takahashi Y. Reaction of titanium isopropoxide with alkanolamines and association of the resultant Ti species,. Journal of sol-gel science and technology, 2003, 27(3): 363-372.
    [15] 吴湘伟,段学臣,陈振华.溶胶-凝胶法制备PZT纳米晶反应机理.中国有色金属学报,2003,13(1):127-131.
    [16] Milanova MM, Arnaudov MG, Getsova MM, Todorovsky DS. Preparation and characterization of solid state lanthanum-titanium citrate complexes. Journal of Alloys and Compounds, 1998, 264: 95-103.
    [17] Schubert U. Chemical modification of titanium alkoxides for sol-gel processing. J. Mater. Chem., 2005, 15: 3701-3715.
    [18] Takahashi R, Sato S, Sodesawa T, Kawakita M, Ogura K. High Surface-Area Silica with controlled Pore Size Prepared form Nanocomposite of Silica and Citric Acid. J. Phys Chem B, 2000, 104(51): 12184-12191.
    [19] Olivier P, Liliane G H, Loic T, Jean CD. Molecular precursors of alkaline earths: Synthesis and structure of [N(C_2H_4O)(C_2H_4OH)_2]_2Ba·2EtOH. The first structurally characterized barium alkoxide. Polyhedron, 1991, 10 (17): 2045-2050.
    [20] Iler RK. The Chemistry of Silica. New York: Wiley, 1979.
    [21] Tartaj J, Moure C, Duran C. Influence of seeding on the crystallisation kinetics of PbTiO_3 from gel-derived precursors. Ceram. Int., 2001, 27: 741.
    [22] Sakka S, Kozuka H. Rheology of sols and fiber drawing. J. Non-Crys Solids, 1988, 100: 142.
    [23] Kaiser A, Gorsmann C, Schubert U. Influence of the Metal Complexation on Size and Composition of Cu/Ni Nano-Particles Prepared by Sol-Gel Processing. J. Sol-Gel Sci. Technol., 1997, 8: 795-799.
    [24] Epifani M, De G, Licciulli A, Vasanelli L. Preparation of uniformly dispersed copper nanocluster doped Silica glasses by the sol-gel process. J. Mater. Chem., 2001, 11: 3326-3332.
    [25] Huang WM, Shi JL. Synthesis and Properties of ZrO_2 films dispersed with Au Nanoparticles. J. Sol-Gel Sci. Technol., 2001, 20: 145-151.
    [26] 徐相凌,倪永红,殷亚东,葛学武,叶强,张志成.水溶液中银团簇的生长,稳定与物化性质——脉冲辐解研究进展.化学进展,1999,11(3):239.
    [27] Miki-Yoshida M, Tehuacanero S, Jose-Yacaman M. On the high temperature coalescence of metallic nanocrystals. Surf. Sci. Lett., 1992, 274: L569-576.
    [28] Breitscheidel B, Zieder J, Schubert U. Metal Complexes in Inorganic Matrices. 7. Nanometer-sized, Uniform Metal Particles in a SiO_2 Matrix by sol-gel processing of metal complexes. Chem. Mater., 1991, 3: 559-566.
    [29] Kozuka H, Sakka S. Preparation of Gold Colloid-Dispersed Silica Coating Films by the Sol-Gel Method. Chem. Mater., 1993, 5: 222-228.
    [1] Villegas MA, Garcia MA, Paje SE, Llopis J. Parameters controlling silver nanoparticle growth in sol-gel silica coatings. Mater. Res. Bulle.,2005, 40: 1210-1222.
    [2] Paje SE, Lopis JL, Villegas MA, Garcyal MA, Fernandez Navarro JM. Thermal effects on optical properties of silver ruby glass. Appl. Phys. A, 1998, 67: 429-433.
    [3] Breitscheidel B, Zieder J, Schubert U. Metal Complexes in Inorganic Matrices. 7. Nanometer-sized, Uniform Metal Particles in a SiO_2 Matrix by sol-gel processing of metal complexes. Chem. Mater., 1991, 3: 559-566.
    [4] Bi H J, Cai WP, Kan CX, Zhang LD, Martin D, Trager F. Optical study of redox process of Ag nanoparticles at high temperature. J. Appl. Phys., 2002, 92(12): 7491-7497
    [5] Paje SE, Lopis JL, Villegas MA, Garcyal MA, Fernandez Navarro JM. Thermal effects on optical properties of silver ruby glass. Appl. Phys. A, 1998, 67: 429-433.
    [6] Garcia MA, Paje SE, Llopis J, Villegas MA, Fernandez Navarro JM. Optical spectroscopy of arsenic and silver containing sol-gel coatings. J Phys D: Appl. Phys., 1999, 32: 975-980.
    [7] Borsella E, Cattaruzza E, De Marchi G, Gonella F, Mattei G, Mazzoldi P, Quaranta A, Battaglin G, Polloni R. Synthesis of silver clusters in silica-based glasses for optoelectronics applications. J. Non-Crys. Solids, 1999, 245: 122-128.
    [8] Kreibig U. Small Silver Particles in Photosensitive Glass: Their Nucleation and Growth. Appl. Phys., 1976, 10: 255-264.
    [9] 徐相凌,倪永红,殷亚东,葛学武,叶强,张志成.水溶液中银团簇的生长,稳定与物化性质——脉冲辐解研究进展.化学进展,1999,11(3):239.
    [10] Garnica-romo MG, Limon Yanez JM, Gonzalez-Hemandea J, Sturcture and electom spin resonance of annealed sol-gel containing Ag, J. Sol-Gel Sci. Technol., 2002, 24: 105-112.
    [11] Borsella E, Battaglin G, Garcia MA, Gonella F, Mazzoldi P, Polloni R, Quaranta A. Structural incorporation of silver in soda-lime glass by the ion-exchange process: a photoluminescence spectroscopy study. Appl. Phys. A: Materials Science & Processing, 2000, 71:125-132.
    [12] 贺可音.硅酸盐物理化学.武汉:武汉理工大学出版社.2003.
    [13] Lewis DJ, Gupta D, Notis M R, Imanaka Y. Diffusion of Ag-110m tracer in polycrystalline piezoelectric ceramics. Diffusion Mater., 2001, 194 (1): 1009-1015.
    [14] Daniel J L, Devendra G, Michael R N, Yoshihiko I. Diffusion of 110mAg Tracer in Polycrystalline and Single-Crystal Lead-Containing Piezoelectric Ceramics. J. Am. Ceram. Soc., 2001, 84 (8): 1777-1784.
    [15] Van Tiggelen A, Vanreusel L, Neven P. Reactions between gases and solids, I. Reactions between silver salts and hydrogen. Bull. Soc. Chim. Belg., 1952, 61: 651-682.
    [16] Halpen J, Czapski G, Jortner J, Stein G Mechanism of the oxidation and reduction of metal ions by hydrogen atoms. Nature, 1960, 186: 629-630.
    [1] Kim YS, Lee YH, Sung MY. Electrical characteristics of rf-magnetron sputtered BaTa_2O_6 thin film. Solid-State Electron. , 1999, 43: 1189-1193.
    [2] Yu JD, Ishikawa T, Arai Y, Yoda S, Itoh M. Extrinsic origin of giant permittivity in hexagonal BaTiO_3 single crystals: Contributions of interracial layer and depletion layer. Appl. Phys. Lett. , 2005, 87: 252904.
    [3] Pendzig P, Dieterich W, Dispersive transport and dipolar effects in ionic glasses. Solid State lonics, 1998, 105: 209-216.
    [4] Shin JC, Park J, Hwang CS, Kim HJ. Dielectric and electrical properties of sputter grown (Ba, Sr)TiO_3 thin films. J. Appl. Phys. , 1999, 86(1) : 506-513.
    [5] 袁战恒,徐友龙,曹婉真,邵祖发.高压铝阳极氧化膜的陷阱浓度与遂穿导电.电子元件与材料,1999,18(6):11-13.
    [6] Sidebottom DL. Dimensionality Dependence of the Conductivity Dispersion in Ionic Material. Phys. Rev. Lett. , 1999, 83 (5) : 983-986.
    [7] Okutan M, Basaran E, Bakan HI, Yakuphanoglu F. AC conductivity and dielectric properties of Co-doped TiO2. Physica B: Physics of Condensed Matter, 2005, 364: 300-305.
    [8] Srivastava A, Vinay Gupta, Sarkar CK, Das R_R, Bhattacharya P, Katiyar RS. Dielectric relaxation in pulsed laser ablated CaCu_3Ti_4O_(12) thin film. J. Appl. Phys. , 2006, 100: 034102.
    [9] Kim YS, Lee YH, Sung MY. Electrical characteristics of rf-magnetron sputtered BaTa_2O_6 thin film. Solid State Electron. , 1999, 43: 1189-1193.
    [10] Hofera C, Meyera R, Ottgera UB, Wasera R. Characterization of Ba(Ti, Zr)O_3 ceramics sintered under reducing conditions. J. Euro. Ceram. Soc. , 2004, 24: 1473-1477.
    [11] Lee SJ, Kang KY, Han SK. Low-frequency dielectric relaxation of BaTiO_3 thin film capacitors. Appl. Phys. Lett. , 1999, 75 (12): 1784-1786.
    [12] Lee EJH, Pontes FM, Leite ER. Longo E, Magnani R, Pizani PS, Varela JA. Effects of post-annealing on the dielectric properties of Au/BaTiO_3/Pt thin film capacitors. Mater. Letter. 2004. 58: 1715-1721.
    [13] Liedtke R, Grossmann M, Waser R. Capacitance and admittance spectroscopy analysis of hydrogen-degraded Pt/(Ba, Sr)TiO_3/Pt thin film capacitors. Appl. Phys. Lett. , 2000, 77 (13) : 2045-2047.
    [14] Nan CW. Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. , 1993, 37: 1-116.
    [15] Jonscher AK. Dielectric relaxation in solids. J Phys. D: Appl. Phys. , 1999, 32: R57-R70.
    [16] Raymond O, Font R, Portelles J, Suarez-Almodovar N, Siqueiros JM. Frequency-temperature response of ferroelectromagnetic Pb(Fe_(1/2)Nb_(1/2))O_3 ceramics obtained by different precursors. Ⅲ. Dielectric relaxation near the transition temperature. J. Appl. Phys. , 2006, 99: 124101.
    [17] Lee SJ, Moon SE. Ryu HC, Kwak MH, KimYT. Low-frequency dielectric responses of barium strontium titanate thin films with conducting perovskite LaNiO_3 electrode. Jpn. J. Appl. Phys. , 2002, 47: 4596-4600.
    [18] Duan N, Elshof JE Ten, Verweij H. Sintering and electrical properties of PZT/Pt dual-phase composites. J. Euro. Ceram. Soc. , 2001, 21: 2325-2329.
    [19] 王玉成.傅正义.导电体与绝缘体复相陶瓷中的渗流现象.武汉理工大学学报,2001,23 (2):29-31,53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700