半导体氧化物ZnO和CdO纳米材料的光学非线性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文概述了非线性光学、激光防护及光限幅的发展,系统总结了近年来国内外关于半导体纳米材料的光学非线性特性的研究成果、研究方法及相应的理论分析方法。并详细介绍了单光束激光Z扫描技术。
     利用单光束激光Z扫描技术在波长532 nm处研究了粒子形状对三阶光学非线性特性的影响,对比了ZnO纳米棒和ZnO纳米粒子在水中悬浮液的实验。实验结果显示ZnO纳米棒的三阶非线性光学特性强于ZnO纳米粒子的三阶非线性光学特性,并显示三阶非线性光学与粒子形状有很大关联,用有效介质理论进行了解释。
     研究了CdO纳米线在水和乙醇悬浮液中的光限幅特性,发现在波长为532 nm的激光脉冲作用下,CdO纳米线乙醇悬浮液的光限幅特性强于CdO纳米线水悬浮液,认为其主要机制是非线性散射。
In this dissertation, the development of nonlinear optics,laser protection and optical limiting are reviewed. The result of recent years, analysis methods of semiconductor materials and principle are summarized systemically. A kind of sensitive measurement of optical nonlinearities using a single beam Z-scan technique and its theoretical analysis are reviewed in details.
     Effects particle shape on the third-order optical nonlinearities of ZnO nanorods and ZnO nanoparticles are studied by using Z-scan technique with nanosecond pulses at 532nm.The experiment results show that the third-order optical nonlinearities of ZnO nanorods are stronger than that of ZnO nanoparitcles. Experimental results show that the third-order nonlinear optical performances strongly dependent on the shape of the nanomaterials as described by the Maxwell-Garnett Effective Medium Theory,MGT.
     Optical limiting(OL) properties of CdO nanowires in water and ethanol were investigated by using nanosecond laser pulses at 532nm.Experimental results show that suspension of CdO nanowires in ethanol exhibits better OL property than suspension of CdO nanowires in water.The dominant mechanism for the observed enhanced optical limiting in ethanol suspensions of CdO nanowires is due to nonlinear scattering.
引文
[1]钱士雄,王恭明。非线性光学原理与进展。复旦大学出版社,2001,1:2.
    [2]肖胜利,朱锋,郑好望.克尔效应与光开关。现代物理知识, 2006,01
    [3]邹英华,孙陶亨。激光物理学。北京大学出版社,1991,3~4.
    [4] J.A.Giordmaine and R. C. Miller. Tunable Coherent Parametric Oscillation in Linbo3 At Optical Frequencies. Phys. Rev. Lett. 1965, 14: 973~975.
    [5] P.A.Franken, A. E. Hill, C. W. Peters and G. Weinreich, Phys. Rev. Lett., 1961,19: 556~560.
    [6] J.A.Giordmaine and R. C. Miller. Tunable Coherent Parametric Oscillation in LiNbO3 at Optical Frequencies. Phys. Rev. Lett. 1965, 14: 973~975.
    [7] R.Y.Chiao, E. Garmire and C. H. Townes. Self-Trapping of Optical Beams. Phys. Rev. Lett. 1964, 13: 479~483.
    [8] M.Gibbis, S. L. McCall and T. N. C. Venkatesan. Differential Gain and Bistability Using a Sodium-Filled Fabry-Perot Interferometer. Phys. Rev. Lett. 1974, 36: 1135~1142.
    [9] W. Blau, H. Burne, W. M. Dennis and J. M. Kelly. Reverse Satuable Absorption in Tetraphenylporphyrins. Opt. Comm. 1985, 56: 25~29.
    [10] M.S.Dresselhaus, Y.M.Lin, O.Rabin et al.,Nanowires and nanotubes.Materials Science Engineering,2003,23:129~140.
    [11] S.T.Yang , R. C. Eckardt and R .L. Byer, The elements of nonlinear optics. Opt.Lett. 1993,18:971.
    [12] S.T.Yang, C .C . Pohalski, E. K. Gustafson,R. L. Byer, R. S. Feigelson, R.J .Raymakers,J. Optical nonlinearities in GaP induced by photo-excited free carriers Opt. Soc. Am. 1993,B10:1695.
    [13] R.Danielius,A. Piskarskas,D. Podenas,P. DiTrapani,A. Varanavicius and G. P.Banfi, Femtosectond pulse propagation near a two-photo transition in s semiconductor quantum-dot waveguide. Opt.Commun. 1992,87:23 .
    [14] M. Hercher, W. Chu and D. L. Stockman. An Experimental Study of Saturable Absorbers for Ruby Lasers. IEEE J. Quantum Electronics, 1968, QE-4: 954~959.
    [15] Y. R. Shen. The Principle of Nonlinear Optics.John Wiley & Sons, 1984: 130~141.
    [16] M. Gibbs. Optical Bistability: Controlling Light with Light. Academic Press, 1985, 123~175.
    [17]罗振坤.激光辐射防护与光电对抗技术研究进展.激光技术2003,127(5): 423~427.
    [18]余大斌,孙晓泉,王自荣.光限幅材料的研究现状及其在激光防护中的应用.激光技术.1999,23(5):151~157.
    [19]胡江华,周建勋,张保民. IEC(国际电工技术委员会)标准.光学技术,1995 ,3 :37~40.
    [20]施德恒,许启富.基于线性光学原理的激光防护镜近况(J).光学技术.1991, 4: 16~20.
    [21] M. Gibbs. Optical Bistability: Controlling Light with Light. Academic Press, 1985,123~175.
    [22]刘大军,何兴权激光防护材料的研究现状,激光杂志2002,23(6):5~6.
    [23] Lee W. Tutt, Thomas F. Boggess. A Review of Optical Limiting Mechanisms and Devices Using Organics, Fullerenes, Semiconductors and Other Materials. Prog. Quant. Electr. 1993, 17: 299~338.
    [24]高亚臣,过渡金属纳米体系的非线性吸收及光限幅研究,哈尔滨工业大学博士论文,2005,33~34.
    [25] W. E. Lamb, Phys. Rev. A, 1964,134:1429.
    [26] W. Kaiser and C. G. B. Garret. Two-Photon Excitation in CaF2: Eu2+. Phys. Rev.Lett, 1961,7:229.
    [27]王占国,陈涌海,叶小玲,纳米半导体技术,化学工业出版社,2006,1:1.
    [28] Wu X Ch, Tang G Q, Zhang G L et al. The effect of heat treatment on the optical properties of nanometer-sized In2O3 capped by surfactans, Chin Sci Bull, 1996, 41(8): 635~640.
    [29] C. T. Chen and L. Z. Liu. Nonlinear Optical Properties in Inorganic Materials. Ann. Rev. Mater. Sci. 1986, 16: 203~225.
    [30] Wu X Ch, Tang G Q, Zhang G L et al. The effect of heat treatment on the optical properties of nanometer-sized In2O3 capped by surfactans, Chin Sci Bull, 1996,41(8): 635~640.
    [31] Yu B L, Zhang G L, Tang G Q et al. Third-order nonlinear optical properties of SnO2 nanoparticles. Acta Physica Sinica, 1996,5(5): 377~383.
    [32]余保龙,张桂之,汤国庆等.纳米微粒SnO2的光限幅特性.科学通报,1996, 41(11): 993~996.
    [33] J. Shi , K. Zhi , and L. Zhang. Preparation and Optical Properties of a SiO2 Film Containing In0.2Ga0.8As Nanocrystals by Radio-Frequency Magnetron Co-Sputtering. Thin Solid Films. 1998, 335: 64~69.
    [34] Y. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru. Strong optical limiting of siver-containing nanocrystalline particles in stable suspensions. J. Phys. Chem. B 1999, 103: 77~82.
    [35] Y. Sun and J. E. Riggs. Organic and inorganic optical materials: From fullerene to nanoparticles. International review in physical chemistry, 1999, 18(1): 43~90.
    [36] S. Link and M. A. El-Sayed. Spectral properties and relaxation dynamics of surface plasmon electronic oscillation in gold and silver nanodots and nanorods. J. Phys. Chem. B .1999, 103: 8410~8426.
    [37] Y. Morel, P. Najechalski, N. Sanz, A. Ibanez, C. Nguefack, C. Andraud. Optical Power Limiting Properties of Organic Crystals and Nanocrystals in an f/5 Optical System. Synthetic Metals, 2000, 109: 215~218.
    [38] I. Y. Gerlovin, V. V. Ovsyankin, B. V. Stroganov, V. S. Zapasskii. Nonlinear Optical Dynamics of Semiconductor Nanostructures: Feasibility of the Photonic Quantum Gate. J. Luminescence. 2000, 87-89: 421~422.
    [39] V. V. Nikesh, Aditya Dharmadhikari, Hiroshi Ono, Shinji Nozaki, G. Ravindra Kumar,Shailaja Mahamuni.Optical Nonlinearity of Monodispersed, Capped ZnS Quantum Particles. Appl. Phys. Lett, 2004, 84 (23): 4602~4604.
    [40] W. L. Jia, Elliot P. Douglas, F. Guo, W. F. Sun. Optical Limiting of Semiconductor Nanoparticles for Nanosecond Laser Pulses, Appl. Phys. Lett. 2004, 85(26): 6326~6328.
    [41]杨恢东,丁瑞钦,王浩.激光Z-扫描测量技术.激光技术. 2000, 24(4): 195-202.
    [42]余力,陈谋智,黄美纯,黄文达,朱子忠.测量光学非线性的Z-扫描方法.量子电子学报.1998, 15(5): 433~440.
    [43] M.Sheik-Bahae, A. A. Said, T.H. Wei, D. J. Hagan, E. W. Van Stryland. Sensitive Measurement of Optical Nonlinearities Using A Single Beam. IEEE J. Quantum. Elect. 1990, 26(4): 760~769.
    [44] M. Sheik-Bahae, A. A. Said, E. W. Van Stryland. High-sensitivity Single-beam n2 Measurements. Opt. Lett. 1989, 14: 955~957.
    [45] T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda. Measurement of Nonlinear Refractive Index by Time-resolved Z-scan Technique. Opt. Commun. 1999, 160:125~129.
    [46]曹晓晖,唐兆麟,黄荣芳等.金属薄膜形成过程中电导特性变化的有效媒质理论.金属学报,1996,32(4):404~407.
    [47]王取泉,赵同云,杨柏峰等.(Au ,Ag)/Si复合纳米颗粒薄膜的微结构与光谱特性.物理学报,1999,48(3):539~544.
    [48]杜昊,肖金泉,谭明晖等.利用有效媒质理论对纳米金属薄膜介电函数的初步分析.金属学报,2000,36(11):1165~1168.
    [49] Kürbitz S , Porstendorfer J ,Berg KJ et al . Determination of size andconcentration of copper nanoparticles dispersed in glasses using spectroscopic ellipsometry . Appl Phys B ,2001 ,73 :333~337.
    [50] J. C. Maxwell-Garnett. Colours in metal glasses ,in metallic films ,and in metallic solutions. Phil Trans Roy London ,1904 ,203A:385~420.
    [51] Bruggeman D A G. Effective medium model for the optical properties of composite materials. Ann Phys Leipzig ,1935 ,24 :636~642.
    [52] Norris A N ,Callegari A T,Sheng P. A generalized differential effective medium theory. J Mech Phys Solids ,1985 ,53 :525~543.
    [53] Sheng Ping. Theory for the dielectric function of granular composite media. Physical Review Letters ,1980 ,45(1) :60~63.
    [54]曹海霞.有效介质近自洽条件的研究.苏州大学学报(自然科学). 2002,18(2): 55~61.
    [55] X. H. Gao,R. F. Huang,L. S.Weng, C. G. .Shi, ActaMater.Compos.Sin. 1996,13: 60.
    [56] S. Giordano, J. Electrostat. 2003,58~59.
    [57] H.R. Ma, P. Sheng, G.K.L. Wong, Appl. Phys. 2002,82:41.
    [58] L.Belleguie and L. banyai. Third-order nonlinear susceptibility of large semiconductor microcrystallites. Phy. Rev. B,1993(47):4498.
    [59] H. Shinjima, J. Yumoto and N. Uesugi. Size dependence of optical nonlinearity of CdSSe microcrystallites doped in glass. Appl.Phys.Lett. 1992(60):298-300.
    [60] T. Ishiwata and T. Tanaka, Stepwise Two-Ponton of Cl 2 To The E(0 g + ) Ion-Pair State. Chem. Phys. Lett, 1984, 107:434~441.
    [61]查子忠,王骐.激光防护技术新进展.激光技术. 1997, 21(4): 246~250.
    [62] A. Shkin, G. D. Boyel, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein and K.Nassan. Optically Induced Refractive Index Inhomogenities in LiBbO3. Appl. Phys. Lett, 1996, 9(1): 72~74.
    [63]宋瑛林,李淳飞.非线性光学限幅技术与激光防护.物理. 1996, 25(6): 354~357.
    [64]曲士良,宋瑛林,王玉晓,高亚臣.新型纳米合成物的光限幅特性研究.光学技术. 2001,26(4): 383~384.
    [65]李俊寿,新材料概论,国防工业出版社:1999,286~296.
    [66] R. de Nalda, R. del Coso, J. Requejo-Isidro, J. Olivares, A. Suarez-Garcia. Limitsto the determination of the nonlinear refractive index by the Z-scan method .Nalda et al 2002,2(19):289~293.
    [67] C. F. Jin,X. Yuan,W. W. Ge ,J. M. Hong, X. Q. Xin, Nanotechnology 2003,14:667.
    [68] Y. Yang, D. Z. Jia ,X. Q. Xin, Chinese J.Inorg.Chem. 2004,20:881.
    [69]王取泉,赵同云,熊贵光,周正国.Z扫描技术及其应用。1998,27(9):541~543.
    [70]黄晓琴,崔一平.Z - scan的理论及技术研究进展.激光杂志2001 ,22 (6 ):1~4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700