掺杂铬酸镧基复合材料的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬酸镧材料具有独特的晶体结构和优异的物理、化学性能,已经在高温电热材料和固体氧化物燃料电池等方面得到了广泛应用。A位掺杂Ca或Sr离子可以系统调整铬酸镧材料的性能(如提高烧结体致密度,改善电性能),使铬酸镧材料基本满足了高温电热元件和固体氧化物燃料电池连接体的使用要求,但仍然存在组分(CrO_3)挥发,阳离子扩散等问题。国产铬酸镧电热元件的恒温持续使用寿命等指标已经达到国际同类产品水平,但元件的循环使用次数远低于国外产品,抗热震性能差是根本原因。针对掺杂铬酸镧等直径电热元件不同部位烧结收缩存在差异,抗热震性能差及传统工艺Cr挥发严重等问题,本研究通过B位Li掺杂调节元件各部分的烧结收缩率;通过添加骨料改善组织,提高元件的抗热震性能;通过添加氧化铝稳定铬酸镧结构,抑制Cr挥发;通过添加氧化锆进一步改善铬酸镧的力学性能。借助X射线衍射仪,扫描电子显微镜,万能试验机和四探针测试仪等设备对材料进行了相应的组织性能测试和分析。具体研究内容如下:
     (1)用Pechini法制备了掺Li铬酸镧超细粉体,在系统分析Pechini法工艺的基础上,找出了影响粉体形貌的关键因素,即柠檬酸量、乙二醇量、凝胶干燥温度、加热速率和煅烧温度,并确定了最佳工艺参数。使用该工艺参数可以获得均匀、极少团聚的铬酸镧超细粉体,平均粒径约为40nm。研究了掺Li铬酸镧烧结过程中掺Li量和烧结温度对粉体烧结行为及烧结体组织的影响。结果表明,在特定烧结温度下掺Li铬酸镧烧结体收缩率随掺Li量的增加而升高;当掺Li量为0.20时收缩率达到最大;此后随着掺Li量增加而降低。就相同掺Li量的烧结体而言,烧结温度越高组织越致密。烧结体的断口特征为穿晶和沿晶混合断裂,这表明晶界结合强度接近晶内。烧结过程中晶粒不断合并、长大,长大机制为台阶方式。掺Li铬酸镧在空气中放置一段时间后会出现粉化现象,其原因与烧结体中析出La_2O_3有关。
     (2)在固相法合成铬酸镧微粉中添加一定比例的大尺寸骨料,研究了不同骨料添加方案对材料组织及各项性能的影响,通过对主要工艺参数的优化确定出可以获得最佳综合性能的铬酸镧材料(La_(0.9)Ca_(0.1)CrO_3,La_(0.974)Ca_(0.026)CrO_3)的制备工艺。研究发现,骨料对基体晶粒的长大存在阻碍作用,并使烧结体气孔率增大,且骨料尺寸越大、添加量越高效果越明显。La_(0.9)Ca_(0.1)CrO_3材料添加5%的55μm(260目)以下骨料后抗热震性能最佳,而La_(0.974)Ca_(0.026)CrO_3材料的最佳配方则是添加10%的380μm(40目)以下骨料。材料抗热震性能提高的主要原因是气孔率的增大和骨料的桥接效应。随骨料添加量的增加,试样的相对密度减小,致密度下降,室温抗弯强度降低而电阻率增大。添加骨料的铬酸镧电热元件在高温使用过程中骨料会抑制基体晶粒的长大,防止长时间使用后性能劣化。
     (3)研究了氧化铝对氧化铝/铬酸镧复合材料显微组织,烧结性能及电性能的影响。试验证实Al_2O_3/La_(0.9)Ca_(0.1)CrO_3系统是热力学不稳定的,高温烧结过程中阳离子存在显著的扩散现象,系统最终相组成决定于氧化铝含量。当Al_2O_3含量≤20mol%时,烧结体由La_(0.9)Ca_(0.1)Cr_(1-x)Al_xO_3和Al_(2(1-x))Cr_(2x)O_3两相组成,当氧化铝添加量达到20mol%及以上时,试样中的铬酸镧固溶体变为菱形结构。当Al_2O_3含量为30mol%时,烧结体中除了存在La_(0.9)Ca_(0.1)Cr_(1-x)Al_xO_3和Al_(2(1-x))Cr_(2x)O_3两相外,还有六铝酸镧固溶体生成。氧化铝含量为50mol%~80mol%时,试样主要由菱形结构的钙钛矿相和六铝酸镧固溶体组成。氧化铝含量为90mol%和95mol%时,烧结体则主要由刚玉相和六铝酸镧固溶体组成,此时由于钙钛矿相含量较低,在XRD图谱中未检测到。用能谱仪研究了复合材料在烧结过程中发生的阳离子互扩散现象,发现每向铬酸镧中扩散1个Al~(3+),必有1个Cr~(3+)扩散到氧化铝中。复合材料中Al_2O_3含量较低时(≤20mol%)可以提高铬酸镧粉体的烧结活性,降低Cr挥发,显著促进致密化;当Al_2O_3量较高时(30mol%~70mol%),由于生成相互交错的层片状六铝酸镧,复合材料的致密度有所减小,并在Al_2O_3量为70mol%时达到最低值,随后试样的致密度又随Al_2O_3量的增大逐渐增大。1450℃烧结的复合材料导电率与Al_2O_3量的关系符合通用有效介质(GEM)方程;1650℃烧结的试样由于离子扩散导致复合材料的电导率在Al_2O_3摩尔含量为20%时发生突变,Al_2O_3摩尔含量在0~10%与20~50%之间时,复合材料的电导率分段符合GEM方程。添加Al_2O_3后由于材料致密度减小,气孔率增大,材料的抗弯强度有所减小,抗弯强度和气孔率的关系符合Ryskewitsch经验公式。
     (4)研究了氧化锆对氧化锆/铬酸镧显微组织和性能的影响。发现氧化锆与铬酸镧在高温下能稳定共存,基本不存在阳离子扩散,组织稳定性好。氧化锆颗粒阻碍了铬酸镧晶粒的长大、熔合,使烧结体致密度降低。烧结体的电阻率随氧化锆含量的增加而增大,并且变化规律符合GEM方程,这将有益于其在电热材料等领域的应用。氧化锆/铬酸镧复合材料的抗弯强度随氧化锆含量的增加而下降,但抗热震性能有所提高。该复合材料除可以应用于高温电热元件外,其性能完全满足连铸用特种耐火材料的要求,有望开发成新型高品质耐火材料。
Lanthanum chromites materials have been widely applied in the fields of electric heating materials and solid oxide fuel cells(SOFCs) due to their unique crystal structure and excellent physical and chemical performances.Although the properties (such as density of sintered body and electrical conductivity) of lanthanum chromites materials can be systematically adjusted by Ca or Sr doping at A site to basically satisfy the criteria of interconnector of SOFCs,the problems still remain to be solved, such as CrO_3 volatilization and cation diffusion,etc..The service life of homemade lanthanum chromites heating elements at a constant temperature has international level; however,the cycled usage times of the homemade products are extremely lower than that of the foreign products,fundamentally resulting from the poor thermal shock resistance.In order to solve the problems,such as inconsistent shrinkage ratios of different parts of a lanthanum chromites constant-diameter heating element,poor thermal shock resistance and the serious CrO_3 volatilization in traditional process,the sintering shrinkage ratios were modified by Li doping at B site,the microstructure and thermal shock resistance was improved by aggregate addition,the lanthanum chromites crystal structure was stabilized and the CrO_3 volatilization was inhibited by alumina addition and the mechanical properties of lanthanum chromites were further improved by zirconia addition in this study.The corresponding microstructure and property were analyzed by X-ray diffractometer,scanning electron microscope,universal testing machine, four-point probe arrangement and so on.The whole contents are summarized as follows:
     (1) Li doped lanthanum chromites superfine powders were prepared by Pechini method.Based on the systematical analysis of the process,the key factors,i.e.,content of citric acid and ethylene glycol,drying and calcining temperature and heating rate, were detected and the optimum processing parameters were determined.Through the process,uniform and rarely aggregative superfine powders of lanthanum chromites were obtained,whose mean particle size was about 40 nm.The influence of Li content and sintering temperature on sintering behavior and microstructure was investigated during sintering process.The results show that the shrinkage ratio of LaCr_(1-y)Li_yO_3 sintered body rises with the increasing of the Li content y under the condition of y<0.2, at a certain sintering temperature;and approaches the maximum value near y=0.2;and then decreases with y>0.2.For the samples of LaCr_(1-y)Li_yO_3 with the same Li content, the higher the sintering temperature is,the denser the sintered body becomes.The sectional sintered body shows a mixed mode of transgranular and intergranular fracture, which indicates that the strength of grain boundary is close to that of the bulk.The grains grow in stage mode,and merge with each other during sintering process.Li doped lanthanum chromites sintered bodies collapsed after a period of time in air due to the precipitation of La_2O_3.
     (2) The effect of different aggregate reinforcing schemes on performances of the sintered bodies was investigated for lanthanum chromites micron powders with particular aggregate content and the process for preparing La_(0.9)Ca_(0.1)CrO_3 and La_(0.974)Ca_(0.026)CrO_3 materials with optimum performance was determined by optimizing the main processing parameters.The results show that the aggregate particles retard the grain growth of the matrix grains and cause higher degree of porosity in the sintered bodies;the larger the particle size is and the higher the content of aggregate is,the more remarkable the effect is.The optimum addition strategy to obtain best thermal shock resistance performance for La_(0.9)Ca_(0.1)CrO_3 and La_(0.974)Ca_(0.026)CrO_3 materials is adding 5%minus-260-mesh aggregate and 10%minus-40-mesh aggregate, respectively.The improvement of thermal shock resistance lies in the higher degree of porosity and bridge effect of aggregate.With the increasing amount of aggregate content,the relative density of the sample is decreased,the flexural strength at room temperature decreases and the electrical resistivity increases.The grain growth of lanthanum chromites heating elements added with aggregate is restricted during the operation at high temperature,which will be useful to prevent performance degradation after a long time.
     (3) Investigations were made on the microstructure,sintering characteristics and electrical properties of Al_2O_3/La_(0.9)Ca_(0.1)CrO_3 composites.The results show that the system of Al_2O_3/La_(0.9)Ca_(0.1)CrO_3 results in thermodynamic unstablity with visible cation diffusion at high temperature,and the final phase composition of sintered bodies depend on the alumina content.When Al_2O_3 content≤20 mol%,the sintered body comprises lanthanum chromite solid solution and Al_(2(1-x))Cr_(2x)O_3 and when Al_2O_3 content≥20 mol%,lanthanum chromite solid solution transfers to rhombohedral structure.When Al_2O_3 content reaches 30 mol%,a new phase of lanthanum hexaaluminate solid solution is observed besides the two phases mentioned above. When Al_2O_3 content is between 50mol%and 80mol%,the sintered body comprises perovskite phase with rhombohedral structure and lanthanum hexaaluminate solid solution.When Al_2O_3 content reaches between 90mol%and 95mol%,the samples comprise corundum phase and lanthanum hexaaluminate solid solution,while perovskite phases are not detected for their low concentration.Cation diffusion between the two components was studied by Energy Dispersive X-ray analysis.It can be considered that when one Al~(3+) transfers to lanthanum chromite,one Cr~(3+) transfers to alumina.Alumina addition improves the sintering activity of La_(0.9)Ca_(0.1)CrO_3 powders, restricts the chromium volatilization and thus improves the sintering densification process of the composite when Al_2O_3 content≤20mol%.When Al_2O_3 content is between 30mol%and 70mol%,plate-like lanthanum hexaaluminate is formed by solidstate reaction between the two components,which causes the higher degree of porosity to the sintered bodies.The relative density reaches its minimum value when Al_2O_3 content is 70mol%and gradually increases with the increasing ofα-Al_2O_3 content.The conductive behavior of composites sintered at 1450℃is in conformity with the general effective media(GEM) equation in the whole composition range.However,for the samples sintered at 1650℃,the conductivity mutates at the Al_2O_3 content of 20 mol%because of interdiffusion of the two components.As a result,the conductivity of the composites is partially in conformity with the GEM equation.Porosity is the principal factor affecting the flexural strength of Al_2O_3/La_(0.9)Ca_(0.1)CrO_3 composite;the relationship between flexural strength and porosity is in conformity with the Ryskewitsch empirical equation.
     (4) The influence of zirconia on microstructure and properties of ZrO_2/La_(0.9)Ca_(0.1)CrO_3 composites was investigated.The results reveal that the ZrO_2 and La_(0.9)Ca_(0.1)CrO_3 can co-exist stably at high temperature and no cation diffusion was detected.The zirconia particles restrict the growth and merging of the lanthanum chromite grains,which results in fine crystalline structure and low density of sintered bodies.The electrical resistivity of the composite increases as the zirconia content increases and the conductive behavior conforms well to the GEM equation,which will benefit its application in electrical heating materials.The flexural strength of ZrO_2/La_(0.9)Ca_(0.1)CrO_3 composite decreases with the increasing of zirconia content; however,the thermal shock resistance improves during the process.By adding zirconia, the microstructure of lanthanum chromites was optimized and the thermal shock resistance was improved consequently.Besides being used as high temperature heating elements,the composite of lanthanum chromites added with zirconia can be developed as new type refractory materials as they can meet the requirements of special refractory materials for continuous metal cast process.
引文
[1]Weinberg I,Lassen P.Electron paramagnetic resonance and antiferromagnetism in LaCrO_3[J].Nature,1961,192(4801):445-446.
    [2]Goodenough J B.Localized versus collective electrons and neel temperatures in perovskite and perovskite-related structures[J].Physical Review,1967,164(2):785-789.
    [3]Meadowcroft D B.Electronically-conducting,refractory ceramic electrodes for open cycle MHD power generation[J].Energy Conversion,1968,8(4):185-190.
    [4]Meadowcroft D B.Some properties of strontium-doped lanthanum chromite[J].British Journal of Applied Physics(Journal of Physics D),1969,2(9):1225-1233.
    [5]张天瑞,贾文武,范淑琴,等.铬酸钙镧的合成[J].稀土,1980,3,22-26.
    [6]Kleinschmager H,Reich A.Allox-leiter zur electrischen serienschaltung von Hochtemperatur-Brennstoffzellen,(All-ox conductor for series connection of high-temperature fuel Cells)[J].Z.Naturforsch.A,1972,27(2):363-365.
    [7]Andrianov M A,Balkevich V L,Sotnikov V E.Use of lanthanum chromite for making electric heaters[J].Refractories and Industrial Ceramics 1980,21(11-12):592-596.
    [8]孙良成,徐晓刚,廖晓丽,等.铬酸镧发热元件的性质[J].工业加热,1999,(2):37-39.
    [9]Zhu W Z,Deevi S C.Development of interconnect materials for solid oxide fuel cells[J].Materials Science and Engineering:A,2003,134(1-2):227-243.
    [10]Tilset B G,Fjellv(?)g H,Kjekshus A,et al.Properties of LaCo_(1-t)Cr_tO_3 Ⅲ.Catalytic activity for CO oxidation[J].Applied Catalysis A:General,1996,147(1):189-205.
    [11]Russo N,Fino D,Saracco G,et al.Studies on the redox properties of chromite perovskite catalysts for soot combustion[J].Journal of Catalysis,2005,229(2):459-469.
    [12]Fino D,Russo N,Cauda E,et al.La-Li-Cr perovskite catalysts for diesel particulate combustion[J].Catalysis Today,2006,114(1):31-39.
    [13]Ueda K,Tabata H,Kawai T.Ferromagnetism in LaFeO_3-LaCrO_3 superlattices[J].Science.1998,288(5366):1064-1066.
    [14]章天金,刘树英,周东祥.LaCrO_3-NiMn_2O_4复合陶瓷材料结构与性能的研究[J].湖北大学学报(自然科学版),2000,22(2):154-159.
    [15]潘儒宗,蔡中伟.铬酸镧质红外辐射导电材料的研制[J].红外技术,1993,15(5):8-11.
    [16]潘儒宗,蔡中伟.铬酸镧基材料的结构及其与红外辐射性能的关系[J].武汉理工大学学报,1993,15(3):13-19.
    [17]Sakai N,Fjellv(?)g H,Hauback B C.Structural,magnetic,and thermal properties of La_(1-t)Ca_tCrO_(3-δ)[J].Journal of Solid State Chemistry,1996,121(1):202-213.
    [18]Geller S,Raccah P M.Phase transitions in perovskitelike compounds of the rare earths[J].Physical Review B,1970,2(4):1171-1172.
    [19]梁丽萍,高荫本,陈诵英.固体氧化物燃料电池与陶瓷材料[J].材料科学与工程,1997,15(4):9-13.
    [20]Hashimoto T,Tsuzuki N,Kishi A,et al.Analysis of crystal structure and phase transition of LaCrO_3 by various diffraction measurements[J].Solid State Ionics,2000,132(3):183-188.
    [21]Hashimoto T,Matsushita N,Murakami Y,et al.Pressure-induced structural phase transition of LaCrO_3[J].Solid State Communications,1998,108(9):691-694.
    [22]李胜利,刘伟明,孙良成,等.铬酸镧的晶体结构与生长机制[J].中国稀土学报,2003,21(5):534-536.
    [23]Oikawa K,Kamiyama T,Hashimoto T.Structural phase transition of orthorhombic LaCrO_3 studied by neutron powder diffraction[J].Journal of Solid State Chemistry,2000,154(2):524-529.
    [24]Mirth N Q,Takahashi T.Science and technology of ceramic fuel cells[M].Amsterdam:Elsever,1995.
    [25]衣宝廉.燃料电池:原理·技术·应用[M].北京:化学工业出版社,2003:484-490.
    [26]Berjoan R.Contribution to the study of the interactions between oxygen and lanthanum oxide,chromic oxide,or lanthanum chromite right bracket[J].Revue Internationale des Hautes Temperatures et des Refractaires,1976,13(2):119-135.
    [27]杨国武,张昂,李忠升,等.LaCrO_3导电陶瓷的研制[J].河北陶瓷,2000,28(1):11-14.
    [28]Sakai N,Horita T,Kawada T,et al.Thermodynamic properties of lanthanum calcium chromite.The Proceedings of the Fourth International Symposium on SOFC,1995,Vol.95-1,895-904.
    [29]Attfield J P.'A' cation control of perovskite properties[J].Crystal Engineering,2002,5(3-4):427-438.
    [30]Peck D H,Miller M,Hilpert K.Phase diagram study in the CaO-Cr_2O_3-La_2O_3 system in air and under low oxygen pressure[J].Solid State Ionics,1999,123(1):47-57.
    [31]Yang Y,Wen T,Tu H.Characteristics of lanthanum strontium chromite prepared by glycine nitrate process[J].Solid State Ionics,2000,135(1-4):475-479.
    [32]Arao M,Shindo H,Asada T,et al.Crystallographic features of La_(1-x)Sr_xMO_3 with M=Cr and Fe in the vicinity of the R-3c/Pbnm phase boundary[J].Physica C,2002,378-381:137-141.
    [33]Tezuka K,Hinatsu Y,Nakamura A,et al.Magnetic and neutron diffraction study on perovskites La_(1-x)SrCrO_3[J].Journal of Solid State Chemistry,1998,141(2):404-410.
    [34]Mori M,Hiei Y,Sammes N M.Sintering behavior of Ca-or Sr-doped LaCrO_3perovskites including second phase of AECrO_4(AE=Sr,Ca) in air[J].Solid State Ionics,2000,135(1-4):743-748.
    [35]Mathews M D,Ambekar B R,Tyagi A K.Dilatometric and high temperature Xray diffractometric studies of La_(1-x)M_xCrO_3(M=Sr~(2+),Nd~(3+),x=0.0,0.05,0.10,0.20and 0.25) compounds[J].Thermochimica Acta,2002,390(1-2):61-66.
    [36]Subasri R,Mathews T,Swaminathan K,et al.Microwave assisted synthesis of La_(1-x)Sr_xCrO_3(x=0.05,0.15 and 0.30) and their thermodynamic characterization by fluoride emf method[J].Journal of Alloys and Compounds,2003,354(1-2):193-197.
    [37]Liu X M,Su W H,Lu Z,et al.Mixed valence state and electrical conductivity of La_(1-x)Sr_xCrO_3[J].Journal of Alloys and Compounds,2000,305(1-2):21-23.
    [38]Simner S,Hardy J,Stevenson J,Armstrong T.Sinter mechanisms in strontium doped lanthanum chromite[J].Journal of Materials Science,1999,34(23):5721-5732.
    [39]Anderson H U.Fabrication and property control of LaCrO_3 based oxides[J].Materials Science Research,1978,11:469-477.
    [40]张昂.LaCrO_3基导电材料的研制[J].陶瓷工程,1996,30(1):13-16.
    [41]郭存济.Ca~(2+)对低温烧结LaCrO_3陶瓷烧结性和导电性的影响[J].上海硅酸盐,1989.1:31-34.
    [42]Sammes,N M,Ratnaraj R,Fee M G.Effect of sintering on the mechanical properties of SOFC ceramic interconnect materials[J],Journal of Materials Science,1994,29(16):4319-4324.
    [43]Chakraborty A,Basu R N,Maiti H S.Low temperature sintering of La(Ca)CrO_3prepared by an autoignition process[J].Materials Letters,2000,45(9):162-166.
    [44]Rivas-Vazquez L P,Rend6n-Angeles J C,Rodiguez-Galicia J L,et al.Hydrothermal synthesis and sintering of lanthanum chromite powders doped with calcium[J].Solid State Ionics,2004,172(1-4):389-392.
    [45]Chick L A,Baates J L,Maupin G D.Air-sintering mechanisms of chromites,in Proceedings of the Second International Symposium on Solid Oxide Fuel Cells[C].Athens,Greece.1991,621-28.
    [46]Zupan,K,Pejovnik S,Macek J.Synthesis of nanometer crystalline lanthanum chromite powders by the citrate-nitrate autoignition reaction[J].Acta Chimica Slovenica,2001,48(1):137-145.
    [47]Duran P,Tartaj J,Capel F,et al.Formation,sintering and thermal expansion behaviour of Sr- and Mg-doped LaCrO_3 as SOFC interconnector prepared by the ethylene glycol polymerized complex solution synthesis method[J].Journal of European Society,2004,24(9):2619-2629.
    [48]Chick L A,Liu J,Stevenson J W.Phase transitions and transient liquid-phase sintering in calcium-substituted lanthanum chromite[J].Journal of the American Ceramic Society,1997,80(8):2109-2120.
    [49]Sakai N,Kawada T,Yokokawa H,et al.Liquid-phase-assisted sintering of calcium-doped lanthanum chromites[J].Journal of the American Ceramic Society,1993,76(3):609-616.
    [50]Anthony A M,Benezech G,Cabannes F,et al.in Proceedings of the IUPAC 3rd International Symp[C].High Temperature Technology.Butterworths,London,1969,213.
    [51]Tresvyatskii S G.Inventor's Certificate 132,347;Byull.Izobret.,1960,No.19.
    [52]Berjoan R.SoL Ceram.Proc.7-th Int.Conf.Juan-Pins,1973,Vol.7.
    [53]Mizusaki J,Yamauchi S,Fueki K,et al.Nonstoichiometry of the perovskite-type oxide La_(1-x)Sr_xCrO_(3-δ)[J].Solid State Ionics,1984,12:119-124.
    [54]宋慎泰,刘开珙.特种陶瓷与耐火材料[M].北京:冶金工业出版社,2004:33-50.
    [55]Karim D P,Aldred A T.Localized level hopping transport in La(Sr)CrO_3[J]Physical Review B,1979,20(6):2255-2263.
    [56]佐多敏之.耐火物,1982,34:45-84.
    [57]Mori M,Yamamoto T,Itoh H,et al.Compatibility of alkaline earth metal(Mg,Ca,Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells[J].Journal of Materials Science,1997,32(9):2423-2431.
    [58]Liu X M,Su W H,Lu Z.Study on valence state and electrical conductivity of La_(1-x)Ca_xCrO_3[J]. Journal of Physics and Chemistry of Solids, 2001, 62(11): 1919- 1921.
    
    [59] Mori M, Hiei Y, Yamamoto T. Control of the thermal expansion of strontium- doped lanthanum chromite perovskites by B-site doping for high-temperature solid oxide fuel cell separators[J]. Journal of the American Ceramic Society, 2001, 84(4): 781-786.
    [60] Simmer S, Hardy J, Stevenson J. Sintering of non-stoichiometric strontium doped lanthanum chromite[J]. Journal of Materials Science Letters, 2000, 19(10): 863- 865.
    [61] Simmer S P, Hardy J S, Stevenson J W. Sintering and properties of mixed lanthanide chromites[J]. Journal of the Electrochemical Society, 2001, 148(4): A351-A360.
    [62] Sakai N, Yokokawa H, Horita T, et al. Lanthanum chromite-based interconnects as key materials for SOFC stack development[J]. International Journal of Applied Ceramic Technology, 2004,1(1): 23-30.
    [63] Fergus W J. Lanthanum chromite-based materials for solid oxide fuel cell interconnects[J]. Solid State Ionics, 2004,171 (1-2): 1-15.
    [64] Paulik S W, Baskaran S, Aamstrong T R. Mechanical properties of calcium-and strontium substituted lanthanum chromite[J]. Journal of Materials Science, 1998, 33 (9): 2397-2404.
    [65] Zuev A, Singheiser L, Hilpert K. Defect structure and isothermal expansion of A- site and B-site substituted lanthanum chromites[J]. Solid State Ionics, 2002, 147(1-2): 1-11.
    [66] Hayashi H, Watanabe M, Ohuchida M, et al. Thermal expansion of La_(1-x)Sr_xCrO_(3-δ)[J], Solid State Ionics, 2001, 144(3-4): 301-313.
    [67] Sakai N, Kawada T, Yokokawa H, et al. in Proceeding of the 57th Meeting of the Electrochemical Society of Japan[C]. Japan, 1990,270.
    [68] Sakai N, St(?)len S. Heat capacity and thermodynamic properties of Ianthanum(III) chromate(III): LaCrO_3, at temperatures from 298.15 K. Evaluation of the thermal conductivity [J]. The Journal of Chemical Thermodynamics, 1995,27(5): 493-506.
    [69] Yokokawa H, Sakai N, Kawada T, et al. Chemical thermodynamic considerations in sintering of LaCrO_3-based perovskites [J]. Journal of the Electrochemical Society, 1991,138 (4): 1018-1027.
    
    [70] Srilomsak S, Schilling D P, Anderson H U. in Proceedings of the First International Symposium on Solid Oxide Fuel Cells, The Electrochemical Society[C]. Pennsylvania, US, 1989,129-140.
    [71] Yasuda I, Hishinuma M, in Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells[C]. The Electrochemical Society, Pennington, NJ, 1995.
    [72] Mori M, Hiei Y, Sammes N M. Sintering behavior and mechanism of Sr-doped lanthanum chromites with A site excess composition in air[J]. Solid State Ionics, 1999, 123(1): 103-111.
    [73] Oishi M, Yashiro K, Hong J, et al. Oxygen nonstoichiometry of B-site doped LaCrO_3[J]. Solid State Ionics, 2007, 178(3-4): 307-312.
    [74] Devi P S, Rao M S. A new perovskite series based on lanthanum chromite [LaCr_(1-x)M_xO_(3-δ)][J]. Materials Research Bulletin, 1993, 28 (10): 1075-1082.
    [75] Hayashi S, Fukaya K, Saito H. Li-doped LaCrO_3 ceramics[J]. Journal of the Ceramic Society of Japan, 1992,100 (8): 1078-1081.
    [76] Zhou H, Taira H, Takagi H, et al. Chemical stability of Ca or Sr doped lanthanum chromites under high temperature reduced atmosphere[J]. Journal of the Society of Materials Science, 1996,45 (6): 604-608.
    [77] Vashook V, Vasylechko L, Zosel J, et al. Synthesis, crystal structure, and transport properties of La_(1-x)Ca_xCr_(0.5)Ti_(0.5)O_(3-δ) [J]. Solid State Ionics, 2003, 159 (3- 4): 279-292.
    [78] Mori M, Sammes N M. Sintering and thermal expansion characterization of Al- doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method[J]. Solid State Ionics, 2002,146(3-4): 301-312.
    [79] Yashima M, Ali R, Yoshioka H. High-temperature X-ray diffraction study of the lanthanum aluminium titanate perovskite La_(0.683)Ti_(0.95)Al_(0.05)O_3[J]. Solid State Ionics, 2000,128(1-4): 105-110.
    [80] Howard S A, Yau Jen-Kuan, Anderson H U. X-ray powder diffraction structural phase-transition study of La(Cr_(1-x)Mn_x)O_3 (x=0 to 0.25) using the Rietveld method of analysis[J]. Journal of the American Ceramic Society, 1992, 75(6): 1685 -1687.
    [81] Saracco G, Scibilia G, Iannibello A, et al. Methane combustion on Mg-doped LaCrO_3 perovskite catalysts[J]. Applied Catalysis B: Environmental, 1996, 8(2): 229-244.
    [82] Armstrong T R, Stevenson J W, Pederson L R, et al. Dimensional instability of doped lanthanum chromite[J]. Journal of the Electrochemical Society, 1996, 143(9): 2919-2925.
    [83] Hayashi S, Fukaya K, Saito H. Sintering of lanthanum chromite doped with zinc or copper[J]. Journal of Materials Science Letters, 1988, 7(5): 457-478.
    [84] Jin F, Endo T, Takizawa H, et al. Effects of divalent cation substitution on sinterability and electrical properties of LaCrO_3 ceramics[J]. Journal of Solid State Chemistry, 1994, 113(1): 138-144.
    [85] Armstrong T R, Hardy J S, Simmer S P, et al. Optimizing lanthanum chromite interconnects for solid oxide fuel cells. in The Proceedings of the 6th International Symposium on Solid Oxide Fuel Cells. The Electrochemical Society, Pennington, NJ, 1999,706-716.
    [86] Ding X, Liu Y, Gao L, et al. Effects of cation substitution on thermal expansion and electrical properties of lanthanum chromites[J]. Journal of Alloys and Compounds, 2006,425(1-2): 318-322.
    [87] Azegami K, Yoshinaka M, Hirota K, et al. Formation, sintering and electrical conductivity of sol-gel-derived LaCr_(0.75)Mg_(0.25)O_3[J]. Solid State Communications, 1999,112(5): 281-284.
    [88] Minh N Q. Ceramic fuel cells[J]. Journal of the American Ceramic Society, 1993, 76(3): 563-588.
    [89] Koc R, Anderson H U. Electrical and thermal transport properties of (La,Ca)(Cr,Co)O_3[J]. Journal of the European Ceramic Society, 1995, 15 (9): 867-874.
    [90] Sakai N, Kawada T, Yokokawa H, et al. Sinterability and electrical conductivity of calcium-doped lanthanum chromites[J]. Journal of Materials Science, 1990, 25 (10): 4531-4534.
    [91] Koc R, Anderson HU. Liquid phase sintering of LaCrO_3[J]. Journal of the European Ceramic Society, 1992,9 (4): 285-292.
    [92] Aydinol M K, Kohan A F, Ceder G. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides[J]. Physical review B, 1997, 56(3): 1354- 1365.
    
    [93] Hiei Y, Mori M, Yamamoto T, et al. CRIEPI Report, W97003,1997.
    [94] Ghosh S, Sharma A D, Basu R N, et al. Influence of B site substituents on lanthanum calcium chromite nanocrystalline materials for a solid-oxide fuel cell[J]. Journal of the American Ceramic Society, 2007, 90(12): 3741-3747.
    [95] Sammes N M, Ratnaraj R. High temperature mechanical properties of La_(1-x)Sr_xCr_(1-y)Co_yO_3 for SOFC interconnect [J]. Journal of Materials Science, 1995, 30 (18): 4523-4526.
    [96] Sammes N M, Ratnaraj R, Hatchwell C. in Proceedings of the International Ceramics Conference[C]. The Australasian Ceramics Society, Sydney, Australia, 1994,515.
    [97]Zhou H,Taira H,Takagi H,et al.in Proceedings of the Fifth Fuel Cell Symposium[C].Fuel Cell Development Information Center,Tokyo,Japan,1998,161.
    [98]张彪,郭景坤,诸培南,等.抗热震陶瓷材料的设计[J].硅酸盐通报,1995,(3):35-40.
    [99]Boroomand F,Wessel E,Bausinger H,et al.Correlation between defect chemistry and expansion during reduction of doped LaCrO_3 interconnects for SOFCs[J].Solid State Ionics,2000,129(1):251-258.
    [100]Yasuda I,Hikita T.Electrical conductivity and defect structure of calcium-doped lanthanum chromites[J].Journal of the Electrochemical Society,1993,140(6):1699-1704.
    [101]Koc R,Anderson H.Effect of cation substitution on the thermal expansion coefficient of LaCrO_3[J].Journal of Materials Science Letters,1992,11(17):1191-1192.
    [102]Mori M,Yamamoto T,T.Ichikawa,Takeda Y.Dense sintered conditions and sintering mechanisms for alkaline earth metal(Mg,Ca and Sr)-doped LaCrO_3perovskites under reducing atmosphere[J].Solid State Ionics,2002,148(1-2):93-101.
    [103]Suda E,Pacaud B,Seguelong T,et al.Sintedng characteristics and thermal expansion behavior of Li-doped lanthanum chromite perovskites depending upon preparation method and Sr doping[J].Solid State Ionics,2002,151(1-4):335-341.
    [104]Goldschmidt V M.Geochemische Verteilungsgesetze der Ele-ments Ⅶ.Skrifter Norske Videnskaps Akademi Matematisk Naturvidensakaplig,1926,K1:2-3.
    [105]于洁,王华,马文会.复合掺杂钙钛矿氧化物催化剂的研究进展[J].昆明理工大学学报,2003,28(1):19-22.
    [106]高西汉.钙钛矿结构[J].压电与声光,1994,16(4):44-48.
    [107]徐政,倪宏伟.现代功能陶瓷[M],北京:国防工业出版社,1998:49-50.
    [108]Liu R,Xuan Y,Jia Y Q.Ordering and disordering in(A'A)(B'B)O_3-type perovskite compounds[J].Materials Chemistry and Physics,1998,57(1):81-85.
    [109]Krrger F A.The chemistry of imperfect crystals.NorthHolland,Amsterdam,1974,vol.1-3.
    [110]Stφlen S,Sakai N,Bakken E.Novel calorimetric approach to the redox thermochemistry of non-stoichiometric oxides enthalpy of oxidation of La_(1- y)Ca_yCrO_(3.δ_[J].Journal of Thermal Analysis and Calorimetry,1999,57(3):823-829.
    [111]Cheng J,Navrotsky A.Energetics of La_(1-x)A_xCrO_(3-δ_perovskites(A=Ca or Sr)[J].Journal of Solid State Chemistry,2005,178(1):234-244.
    [112]Bularzik J,Navrotsky A,DiCarlo J,et al.Energetics of La_(2-x)Sr_xCuO_(4-y) solid solutions(0.0≤x≤1.0)[J].Journal of Solid State Chemistry,1991,93(2):418-429.
    [113]DiCarlo J,Bularzik J,Navrotsky A.A thermochemical study of La_(2-x)A_xCuO_(4-y)(A=Ba,Sr,Ca,Pb)[J].Journal of Solid State Chemistry,1992,96(2):381-389.
    [114]Laberty C,Navrotsky A,Rao C N R,et al.Energetics of rare earth manganese perovskites A_(1-x)A prime _xMnO_3(A=La,Nd,Y and A prime =Sr,La) systems[J].Journal of Solid State Chemistry,1999,145(1):77-87.
    [115]Anderson H U.in Processing of Crystalline Ceramics[C].Plenum,New York,1978,467.
    [116]Meadowcroft D B,Wimmer J M.Oxidation and vaporization processes in lanthanum chromite[J].American Ceramic Society Bulletin,1979,58(6):610-612,615.
    [117]Mori M,Itoh H,Mori N.et al.in Proceedings of the 3rd International Symposium on Solid Oxide Fuel Cells[C].The Electrochemical Society,Pennington,NJ,1993,325.
    [118]Sammes N M,Ratnaraj R,Hatchwell C.E.in Proceedings of the 4th International Symposium on Solid Oxide Fuel Cells(SOFC-Ⅳ)[C].The Electrochemical Society,Pennington,NJ,1995,952.
    [119]李再耕.不定形耐火材料粒度组成控制[J].国外耐火材料,1998,5:3-9.
    [120]Furnas C C.Grading aggregates I-Mathematical relations for beds of broken solids of maximum density[J].Industrial and Engineering Chemistry,1931,23(9):1052-1058.
    [121]Andreassen A H M,Andersen J.Kolloid Z.1930,50,217-228.
    [122]Funk J E,Dinger D R.Particle packing[J].Interceram,1992,41(1):10-14.
    [123]Dinger D R,Funk J E.Particle packing[J].Interceram,1992,41(2):95-97.
    [124]Dinger D R,Funk J E.Particle packing[J].Interceram,1992,41(3):176-179.
    [125]Dinger D R,Funk J E.Particle packing[J].Interceram,1992,41(5):332-334.
    [126]焦万丽,刘宜汉,姚广春,等.NiFe_2O_4尖晶石粒度级配对振实效率的影响[J].东北大学学报(自然科学版),2004,25(5):445-448.
    [127]王晓刚,樊子民.电致发热SiC多孔陶瓷制备工艺与性能研究[J].硅酸盐通报,2004,6:106-109.
    [128]史琳琳,曾令可,张 明,等.制备工艺对Si_3N_4-SiC材料生坯性能影响[J].云南大学学报(自然科学版),2002,24(1A):153-157.
    [129]于之东.颗粒组成对硅砖制品出现烧成裂纹的影响[J].河北理工学院学报,1999,21(3):75-78.
    [130]贾堤.颗粒级配MgO/ZrO_2/Mg_2SiO_4材料的制备工艺研究[J].天津城市建设学院学报,1997,3(1):41-46.
    [131]孙戎,周青,王忠,等.粒度组成对莫来石窑具热震稳定性的影响[J].武钢技术,2003,41(2):23-25.
    [132]Yasuda I,Matsuzakia Y,Yamakawa T.Electrical conductivity and mechanical properties alumina-dispersed doped lanthanum gallates[J].Solid State Ionics,2000,135(1-4):381-388.
    [133]Drennan J,Zelizko V,Hay D,et al.Characterization,conductivity and mechanical properties of the oxygen-ion conductor La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_3[J].Journal of Materials Chemistry,1997,7(1):79-84.
    [134]Sammes N M,Keppeler F M,N(a|¨)fe H,et al.Mechanical properties of solid-state-synthesized strontium-and magnesium-doped lanthanum gallate[J].Journal of the American Ceramic Society,1998,81(12):3104-3108.
    [135]Sora I Natali,Pelosato R,Dotelli,G,et al.The system Al_2O_3 and(Sr,Mg)-doped LaGaO_3:Phase composition and electrical properties[J].Solid State Ionics,2005,176(1-4):81-88.
    [136]Delmastro A,Geobaldo F,Vallino M,et al.Solid state equilibria in the system Al_2O_3-La_2O_3-Cr_2O_3:reactivity catalyst/support LaCrO_3/Al_2O_3[J].Journal of the European Ceramic Society,1998,18(6):607-611.
    [137]Garvie R C,Hannink R H,Pascoe R T.Ceramic steel?[J].Nature,1975,258(12):703-704.
    [138]尹衍升,张景德.氧化铝陶瓷及其复合材料[M].北京:化学工业出版社,2001:125-126.
    [139]吕珺,郑治祥,金志浩,等.压痕.急冷法测定增韧氧化铝基陶瓷复合材料的抗热震性能[J].理化检验-物理分册,2003,39:14-18.
    [140]陈德勇,黎俊初,闵嗣林,等.ZrO_2-Al_2O_3两相陶瓷复合材料力学性能与增韧机制的研究[J].南昌航空工业学院学报(自然科学版),2005,19(1):45-48.
    [141]Akcel C.The influence of ziron on the mechanical properties and thermal shock behaviour of slip-cast alumina-mullite refractories[J].Materials Letters,2002,57(4):992-997.
    [142]王守权.ZrO_2粒度对ZrO_2-C质耐火材料耐蚀性的影响[J].国外耐火材料, 2002,1:51-54.
    [143]董艳玲,王为民.陶瓷材料抗热震性的研究进展[J].现代陶瓷技术,2004,(1):37-41.
    [144]严陆光,居滋象,沙次文,等.磁流体发电的估计进展与我国的战略[J].电工电能新技术,1994,(1):9-31.
    [145]Mohan N R,Balachandran R.Preparation and characterization of La(Sr)CrO_3 for MHD electrodes.In Processing of Ninth International Conference on MHD Electrical Power Generation[C].Tsukuba,Ibaraki,Japan,1986,Vol.3,990-997.
    [146]Suresh K,Panchapagesan T S,Patil K C.Synthesis and properties of La_(1-x)Sr_xFeO_3[J].Solid State Ionics,1999,126(1-4):299-305.
    [147]小濑三郎.用稀土化合物作发热体的高温电炉[J].新金属工业,1973,11:265-270.
    [148]黄安荣.铬酸镧电热体及其制造方法:中国,95113375.6[P].1997.
    [149]孙良成,李德辉.铬酸镧加热元件的研究[J].工业加热,2000,(2):17-19.
    [150]郭晓霞,郑文君,孟广耀.固体氧化物燃料电池连接材料的研究进展[J].功能材料,2000,31(1):23-25.
    [151]Mescia D,Cauda E,Russo N,et al.Towards practical application of lanthanum chromite catalysts for diesel particulate combustion[J].Catalysis today,2006,117(1-3):369-375.
    [152]Lee Y K,Park J W.Reactions of(La,Ca)CrO_3 sealants in yttria-stabilized zirconia-(La,Ca)CrO_3 planar solid oxide fuel cell(SOFC) stacks[J].Materials Chemistry and Physics,1996,45(2):97-102.
    [153]Fino D,Russo N,Saracco G,et al.The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot[J].Journal of Catalysis,2003,217(2):367-375.
    [154]Liu S,Zhou D,Tao M,et al.Analysis on high-temperature-resistant characteristics of LaCrNiMnO ceramics[J].Sensors and Actuators A:Physical,1998,69(1):12-15.
    [155]Pechini M P.Method of preparing lead and alkaline earth titanates and niobates and coating methods using the same to form a capacitor:US,3,330,697[P].1967-07-11.
    [156]Cerqueira M,Nasar R S,Leite E,et al.Synthesis and characterization of PLZT (9/65/35) by the Pechini method and partial oxalate[J].Materials Letters,1998,35(3-4):166-171.
    [157]钟子宜.纳米钙钛矿型复合氧化物制备及催化性能研究[D].长沙:湖南师 范大学,1998.
    [158]Chen Fueng-Ho,Koo Homg-Show,Tseng Tseung-Yuen.Characteristics of the high-Tc superconducting Bi-Pb-Sr-Ca-Cu derived from an ethylene diamine tetra-acetic acid precursor[J].Journal of the American Ceramic Society,1992,75(1):96-102.
    [159]Rietveld H M.Line profiles of neutron powder-diffraction peaks for structure refinement[J].Acta Crystallographica,1967,22:151-152.
    [160]Rietveld H M.Profile refinement method for nuclear and magnetic structure[J].Journal of Applied Crystallography,1969,2:65-71.
    [161]Chakraborty A,Basu R N,Maiti H S.Low temperature sintering of La(Ca)CrO_3prepared by an autoignition process[J].Materials Letters,2000,45(3-4):162-166.
    [162]果世驹.粉末烧结理论[M].北京:清华大学出版社,1998:11-12.
    [163]郝虎在,田玉明,黄平.电子陶瓷材料物理[M].北京:中国铁道出版社,2002:132-134.
    [164]黄继民,沈雷军,韩莉,等.La_2O_3在空气中稳定性的研究.稀土,2002,23(3):72-73.
    [165]Termokeramika.Mechanical and physical properties of lanthanum chromite.www.lanterm.ru/nagrev3_e.shtml.
    [166]周玉,雷廷权.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社.1995:229-235.
    [167]刘铭,肖俊明,林峰.提高Si_3N_4结合SiC制品抗热震性的研究[J].耐火材料,1996,30(2):74-76.
    [168]王晓敏.工程材料学[M].北京:机械工业出版社,1999:284-320.
    [169]金志洁,周敬恩.工程陶瓷材料[M].北京:机械工业出版社,1986:100-102.
    [170]Hasselman D P H.Strength behavior of polycrystalline alumina subjected to thermal shock[J].Journal of the American Ceramic Society,1970,53(9):490-495.
    [171]Lu T J,Fleck N A.The thermal shock resistance of solids[J].Acta Materialia,1998,46(13):4755-4768.
    [172]Delmastro A,Geobaldo F,Vallino M,et al.Solid state equilibria in the system Al_2O_3-La_2O_3-Cr_2O_3:reactivity catalyst/support LaCrO_3/Al_2O_3[J].Journal of the European Ceramic Society,1998,18(6):607-611.
    [173]Bates J L,Chick L A,Weber W J.Synthesis.Air sintering and properties of lanthanum and yttrium chromites and manganites[J].Solid State Ionics,1992, 52(1-3):235-242.
    [174]Sakai N,Horita T,Yamaji K,et al.Material transport and degradation behavior of SOFC interconnects[J].Solid State Ionics,2006,17(19-25):1933-1939.
    [175]Gindorf C,Singheiser L,Hilpert K.Vaporisation of chromia in humid air[J].Journal of Physics and Chemistry of Solids,2005,66(2-4):384-387.
    [176]王文,张海鸥,王桂兰.固体氧化物燃料电池连接板材料和制备工艺[J].能源研究与信息,2002,18(3):178-184.
    [177]Machida M,Eguchi K,Arai H.Analytical electron microscope analysis of the formation of BaO·6Al_2O_3[J].Journal of the American Ceramic Society,1988,71(12):1142-1147.
    [178]Vasperin M,Saine M C,Kahn A.Influence of M~(2+) ions substitution on the structure of lanthanum hexaaluminates with magnetop.umbite structure[J].Journal of Solid State Chemistry,1984,54(1):61-69.
    [179]Iyi N,Inoue Z,Takekawa S,et al.The crystal structure of lanthanum hexaaluminate[J].Journal of Solid State Chemistry,1984,54(1):70-77.
    [180]West A R.Solid State Chemistry and its Applications.New York:John Wiley and Sons,1984.固体化学及其应用.苏勉曾,谢高阳,申泮文译.上海:复旦大学出版社,1989.289-310.
    [181]Rossi R C,Fulrath R M.Epitaxial growth of spinel by reaction in solid state[J].Journal of the American Ceramic Society,1963,46(3):145-149.
    [182]Ropp R C,Carroll B.Solid-state kinetics of LaAl_(11)O_(18)[J].Journal of the American Ceramic Society,1980,63(7-8):416-419.
    [183]MacKenzie K J D,Schmucker M,Mayer L.Evolution of crystalline aluminates from hybrid gel-derived precursors studied by XRD and multinuclear solid state MAS NMR Ⅲ.Lanthanum hexaluminate,LaAl_(11)O_(18)[J].Thermochimica Acta.,1999,335(1-2):73-78.
    [184]Shannon R.D.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J].Acta Crystallographica,1976,A32:751-767.
    [185]Kajitani M,Matsuda M,Hoshikawa A,et al.In situ neutron diffraction study on fast oxide ion conductor LaGaO_3-based perovskite compounds[J].Chemistry of Materials,2005,17(16):4235-4243.
    [186]Kajitani M,Matsuda M,Hoshikawa A,et al.Doping effect on crystal structure of fast oxide ion conductor LaGaO_3-based perovskite compounds[J].Key Engineering Materials,2006,320:227-230.
    [187]曾人杰.无机材料化学(上)[M].厦门:厦门大学出版社,2001,46-68.
    [188]Delmastro A,Geobaldo F,Vallino M,et al.Solid State Equilibria in the System Al_2O_3-La_2O_3-Cr_2O_3:Reactivity Catalyst/Support LaCrO_3/Al_2O_3[J].Journal of the European Ceramic Society,1998,18(6):607-611.
    [189]Zhang H,Gilbert B,Chert B,et al.WAXS and PDF-based analyses of chromium doping in nanocrystalline titania(anatase and brookite)[C].Materials Research Society Symposium Proceedings,San Francisco,CA,United States,2006,915:237-242.
    [190]Ryskewitsch E.Compression strength of porous sintered alumina and zirconia[J].Journal of the American Ceramic Society,1953,36(1):65-68.
    [191]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992,260-266.
    [192]Kovacik J.Electrical conductivity of two-phase composite material[J].Scripta Materialia,1998,39(2):153-157.
    [193]Landauer R,in Electrical Transport and Optical Properties of Inhomogeneous Media(Ohio State University,1977),Proceedings of the First Conference on the Electrical Transport and Optical Properties of Inhomogeneous Media,AIP Conf.Proc.No.40,AIP,New York,1978.
    [194]Bruggeman D A G.The calculation of various physical constants of heterogeneous substances,1.The dielectric constants and conductivities of mixtures composed of isotropic substances[J].Annalen der Physik(Leipz),1935,416(7):636-664.
    [195]Efros A L,Shklovskii B I.Critical behaviour of conductivity and dielectric constant near the cetal-non-metal transition threshold[J].Physica Status Solids (B),1976,76(2):475-485.
    [196]Straley J P.Critical exponents for the conductivity of random resistor lattices[J].Physical Review B,1977,15(2):5733-5737.
    [197]McLachlan D S,Blszkiewicz M,Newnham R E.Electrical resistivity of composites[J].Journal of the American Ceramic Society,1990,73(8):2187-2203.
    [198]McLachlan D S,Rosenbaum R,Albers A,et al.The temperature and volume fraction dependence of the resistivity of granular Al-Ge near the percolation threshold[J].Journal of Physics:Condensed Matter,1993,5(27):4829-4842.
    [199]Deptuck D,Harrison J P,Zawadzki P.Measurement of elasticity and conductivity of a three-dimensional percolation system[J].Physical Review Letters,1985,54(9):913-916.
    [200]McLachlan D S.An equation for the conductivity of binary mixtures with anisotropic grain structures[J].Journal of Physics C:Solid State Physics,1987,20(7):865-877.
    [201]鲍亚华,陈昂,智宇,等.BaPbO_3/BaTiO_3系复合陶瓷的研究[J].硅酸盐学报,1995,23(1):22-26.
    [202]董相廷,郭奕柱,洪广言,等.超微LaMO_3(M=Fe,Cr,Mn,Co)的导电性与粒度的关系[J].科技通报,1994,10(5):277-280.
    [203]Claussen N.Strengthening strategies for ZrO_2-toughened ceramics at high temperatures[J].Materials Science and Engineering,1985,71(1-2):21-38.
    [204]Carter J D,Appel C C,Mogensen M.Reactions at the calcium doped lanthanum chromite-yttria stabilized zirconia interface[J].Journal of Solid State Chemistry,1996,122(2):407-415.
    [205]杨彬,钟香崇.世界耐火材料的新进展[J].耐火材料,1996,30:170-174.
    [206]王庆祥,吴雄,喻承欢,等.浸入式水口堵塞的机理及其改善措施[J].钢铁,2005,40(2):34-36.
    [207]栗庆田.浸入式水口新材料的显微结构与力学性能[J].山东建材学院学报,1998.3:201-203.
    [208]谭立华 译.铁渣和钢渣与耐火材料的反应[J].国外耐火材料,1994,12:19-23.
    [209]斯温M V.陶瓷的结构与性能[M].北京:科学出版社,1998,6:99-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700