基于PVDF的全有机介电材料制备、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平的不断提高,储能材料已经受到人们极大的关注。高介电薄膜因其具有高的介电性能和大的储能面积已经成为目前迫切发展的一类新型电储能材料。聚合物具有优异的成膜性能和高场储电能力,因此全聚合物介电材料为储能薄膜的开发提供了有益的途径。本文采用介电常数较高的聚偏氟乙烯(PVDF)作为基体,与极性结晶的聚酰胺(PA)进行共混,通过不同的加工方式和微观结构调控手段,制备具有高介电性能的全聚合物薄膜材料。
     本论文的主要研究内容与结果如下:
     1.以不同结构的PA6、PA66和PA11分别与PVDF共混,制备了PA/PVDF共混材料。通过FTIR、XRD、DSC、SEM等测试表征发现PA与PVDF没有发生化学反应,共混体系中PA和PVDF的结晶结构没有明显改变,但是结晶完善程度有所下降。
     2.以PA11为主要研究体系,力学性能研究表明:PA11与PVDF在任意组成时,PA11/PVDF共混材料都具有良好的延伸率和高的拉伸强度。对共混体系进行定向拉伸,当交变频率在102-107Hz时,PA11/PVDF共混材料表现出理想的频率和温度稳定性。当PA11与PVDF的质量比为20:80时,PA11/PVDF介电常数高达25,是纯PVDF的3倍,纯PA11的6倍,XRD分析表明定向拉伸的PA11/PVDF共混材料中PVDF诱发了较多的β晶。
     3.将强极性的小分子DMSO引入PA11/PVDF共混体系中,通过溶液共混的方式制备了PA11/PVDF共混材料。DMSO的强极性作用使PA11/PVDF中的PVDF形成了更多的β晶;当DMSO-H2O沉淀剂配比为5:95时,PA11/PVDF共混薄膜(PA11:PVDF=80:20)的介电常数高达188.1,但是由于DMSO对共混体系不稳定的缔合作用,在较高的交变频率下,共混材料的介电损耗也较大,达到了1.37。
     4.通过小分子接枝技术,将GMA与PA11熔融反应接枝得到PA11-g-GMA,再与PVDF进行共混制备PA11-g-GMA/PVDF共混材料。GMA的强极性作用及接枝反应的形成,是共混材料的介电性能大为提高。当GMA添加量为10wt%时,PA11-g-GMA/PVDF共混物的介电常数为34,介电损耗小于0.05。
     5.自行合成了乙酸乙烯酯与马来酸酐交替共聚物(VA-MA)并以其作为PA11/PVDF的大分子增容剂。VA-MA与PAll反应生成了PA11-g-VA-MA接枝共聚物,与PVDF进行共混后发现:PA11-g-VA-MA降低了两相界面张力,提高了PVDF与PA11的相容性。但是相容程度的大幅度改善,并没有使共混体系的介电常数明显提高,只是共混体系的介电损耗较小。
     6.采用高分子SMA作为PA11和PVDF的增容剂,通过熔融共混制备了PA11/PVDF/SMA共混材料,并对共混材料进行了定向拉伸。所得的共混材料表现出优异的介电性能,当SMA添加量为1wt%时,PA11-g-SMA/PVDF共混物的介电常数高达60,介电损耗在0.07以下;通过电压-电流测试分析,发现加入SMA以后,共混体系的致密度大幅度提高,共混材料泄漏电流下降了一个数量级,表明是一类理想的柔性高介电薄膜材料。
Energy storage materials have attracted tremendous attention with improving living standards. High-k films are currently developed urgently as a new type of energy storage materials due to their excellent dielectric properties and large energy storage area. Because of the outstanding film-forming property and high energy storage capability of polymer, polymer-based dielectric materials have supplied a helpful approach to the development of energy storage films. In this paper, PVDF with high dielectric constant are used as matrix, and are blended with polar crystal PA to prepare all-polymer films with good dielectric performances through different processes and controlling methods of microstructure.
     The main research contents and results are listed as follows:
     1. PA/PVDF blends were prepared by melt blending three types of PA (PA6, PA66, PA11) and PVDF. FTIR, XRD, DSC and SEM results show that there is no chemical reaction between PA and PVDF and no obvious changes of crystal structure can be detected, but the crystal perfection is decreased.
     2. When PA 11 are chosen as main research system, the mechanical characterization results show that PA11/PVDF blends have excellent elongation and high tensile strength regardless of the blending ratio. The blends are uniaxially stretched, and when the alternate frequency ranges from 102 to 107, PA11/PVDF blends show perfect frequency and temperature stabilities. When the mass ratio of PA11 and PVDF is 20:80, the dielectric constant of PA11/PVDF blend is 25, which is 3 times of that of pure PVDF and 6 times of that of pure PA11. XRD analysis indicates that PVDF in uniaxially stretched PA11/PVDF blends induces large amount ofβcrystal.
     3. Strong polar small molecules DMSO are introduced into the PA 11/PVDF blends system and PA11/PVDF blends are prepared though solution blending. The strong polar effect of DMSO leads to the formation of moreβcrystal of PVDF in PA11/PVDF blends. When the ratio of DMSO-H2O is 5:95, the dielectric constant of PA11/PVDF blending film (PA11:PVDF=80:20) is as high as 188.1, but the dielectric loss is also as high as 1.37 at high alternate frequency due to the unstable chelating effect of DMSO to the blends system.
     4. PA11-g-GMA is obtained by small molecule grafting approach, and PA11-g-GMA/PVDF blend is then prepared through melt blending. The strong polar effect and the occurrence of grafting reaction makes the dielectric properties of blend materials improved greatly. Dielectric constant of 34 and dielectric loss less than 0.05, are obtained at the GMA content of 10%. The leakage current of the blend is lower than that of PA11/PVDF.
     5. Alternating copolymer of vinyl acetate and maleic anhydride (VA-MA) is prepared as macromolecule compatibilizer. VA-MA is reacted with PA11 to produce PA 11-g-VA-MA grafting copolymer which is then blended with PVDF, and the results show that PA11-g-VA-MA decreases the interfacial tension of the two phases and increases the compatibility of PVDF and PA11. However, the remarkable increase of compatibility does not improve the dielectric constant but decreases the dielectric loss of the blends system.
     6. Adding copolymer of styrene and maleic anhydride (SMA) to blend with PA11 and PVDF, when PA11/PVDF/SMA blends were uniaxially oriented by drawing can decreased the dielectric loss (tan8<0.07), increased dielectric constant(εbiend=59).The Voltage-Current test analysis found that the remnant current of PA11/PVDF blends is as low as10-7uA/cm2. The remnant current at 0 V of PA11/PVDF blend with SMA is an order of magnitude lower than that of PA 11/PVDF blend without SMA.
     The effect of macromolecular morphology alterations in responsive field on their electrical and charge storage properties can bring new possibilities into effect for functional composite materials.
引文
[1]Rogers C A. Smart materials-systems the down of new materials ages. Intelligent Material Systems and Structure,1993,4(1):4-10.
    [2]Wan J G, Tao B Q. Design and study on a 1-3 anisotropy piezocomposite sensor. Materials and Design,2000,21:533-536.
    [3]功能材料及应用编写组.功能材料及应用,北京:机械工业出版社,1991.
    [4]王珏,王德生,严萍.高储能密度复合绝缘材料的研究.电工电能新技术,2005,24(2):24-27.
    [5]Yuan J K, Dang Z M, Bai J. Unique dielectric properties in polyaniline/poly (vinylidene fluoride) composites induced by temperature. Physical Status Solid,2008,5:233-235.
    [6]翁端.环境材料学.北京:清华大学出版社.2001.
    [7]黄佳佳,张勇,陈继春.高储能密度介电材料研究进展.材料导报,2009,11(23):307-314.
    [8]殷之文.电介质物理学.北京:北京科学出版社,2003.
    [9]Bharti V, Kaura T and. Nath R. Ferroelectric hysteresis in simultaneously stretched and corona-poled PVDF film. IEEE transactions on dielectrics and electrical insulation.1997, 4(11):738-741.
    [10]何曼君.高分子物理.上海:复旦大学出版社,1983.
    [11]Lam K H, Chan H L W. Polarization response of proton irradiated 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3/polyvinylidene fluoride-trifluoroethylene 0-3 composites. Journal of Applied Physics,2004.96(10):5898-5902.
    [12]方俊鑫,殷之文.电介质物理学.北京:科学出版社,1998.
    [13]Lu J, Wong C P. Recent Advances in high-k nanocomposite materials for embedded capacitor applications. IEEE,2008.
    [14]Chen Q, Du P Y, Lin J. Percolative conductor/polymer composite films with significant dielectric properties. Applied Physics Letters,2007,91:22912-22914.
    [15]Wang T T, Herbert J M, Glass A. The application of ferroelectric polymers Blackie,1988.
    [16]Nan C W. Physics of inhomogeneous inorganic materials. Progress of Material Science,1993, 37:1-116.
    [17]Lindcnno M, Coonbs A, Snell D. Properties and types of coatings on non-oriented electrical steels. Journal of Magnetism and Magnctic Matcrials,2000,215:79-82.
    [18]Saleem M, Baker W E. In situ reactive compatibilization in polymer blends:effects of functional group concentrations. Journal of Applied Polymer Science,1990,39:655-678.
    [19]顾振军,王寿泰.聚合物的电性和磁性.上海:上海交通大学出版社,1988.
    [20]朱嘉林.夹层压电复合材料的研究.电子元件与材料,1999,18(3):12-15.
    [21]Krishnamoorti R, Giannelis E P. Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules,1997,30(14):4097-4102.
    [22]Lacroix C, Bousmina M, Carreau P J, et al. Peoperites of PETG/EVA blends: viscoelasti, morphological and interfacial properties. Polymer,1996,37(14):2939-2947.
    [23]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,1990.
    [24]Cho J W, Paul D R. Nylon-6 nanocomposites by melts compounding. Polymer,2001,42(3): 1083-1094.
    [25]Khare R, Juan J, Pablo J, et al. Rheology of confined polymer melts. Macromolecules,1996, 29(24):7910-7918.
    [26]Wang J W, Wang Y, Wang F, Li S Q, Xiao J, Shen Q D. A large enhancement in dielectric properties of poly(vinylidene fluoride) based all-organic nanocomposite. Polymer,2009,50(2):679-684.
    [27]周洋,万建国,陶宝棋.PVDF压电薄膜的结构、机理与应用.材料导报,1996,5:23-29.
    [28]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,1990.
    [29]Kim D H, Kim B, Kang H. Development of a piezoelectric polymer-based microgripper for microassembly and micromanipulation. Micro-system Technologies,2004,10:275-280.
    [30]Marra S P, Ramesh K T, Douglas A S. The mechanical and electromechanical properties of calcium-modified lead titanate/poly(vinylidenefluoride-trifluoroethylene) 0-3 composites. Smart Materials and Structures,1999,8:57-63.
    [31]Savakus H P, Klicker K A, Newham R E. PZT-epoxy piezoelectric transducers:a simplified fabrication procedure. Materials Research Bulletin,1981,16:677-680.
    [32]Xie S H, Zhu B K, Wei X Z, et al. Polyimide/BaTiO3 composites with controllable dielectric properties. Composites:Part A,2005,36(12):1152-1157.
    [33]Subodh G, Pavithran C, Mohanan P, et al. PTFE/SrCe2TiO6 polymer cerami composites for electronic packaging applications. Journal of the European Ceramic Society,2007,27(11): 3039-3044.
    [34]Qi L, Lee B I. Chen S H, et al. High-dielectric-constant silver-epoxy composite sas embedded dielectric. Advanced Materials,2005,17(9):1777-1781.
    [35]Wang D Y, Chan H L W. A dual frequency ultrasonic transducer based on BNBT6/epoxy 1-3 composite. Materials Science and Engineering B.2003,99:147-150.
    [36]肖学山.极端条件下聚合物结构性能研究.长春:中国科学院应用化学研究所,2000.
    [37]Gramespacher H, Meissner J. Interdependence between morphology and melt rheology of polymer blends in elongation and shear. Proceedings of the International Congress on Rheol, 1992,36:354-359.
    [38]Dang Z M, Lin Y H, Nan C W. Novel ferroelectrie polymer composites with high dielectric constants. Advanced Materials,2003,15(19):1625-1629.
    [39]Safari A, Lee Y H, Halliyal A, et al.0-3 piezoelectrics composites prepared by coprecipitated PbTiO3 powder. American Ceramic Society Bulletin,1987,66:668-670.
    [40]Auld B A, Hossack J A. Distributed-period structures for suppression of spurious modes in 1-3 piezocomposites. Electronics Letters,1991,27(14):1284-1285.
    [41]Singh V, Kulkarni A R, Mohan T R. Dielectric properties of aluminum-epoxy composites. Journal of Applied Polymer Science,2003,90(3):3602-3608.
    [42]Chen Q, Du P Y, Tin L, et.al. Percolative conductor-polymer composite films with significant dielectric properties. Applied Physics Letters,2007,91(21):022912-1-022912-3.
    [43]Li Q, Xue Q, Hao L Z, et al. Large dielectric constant of the chemically functionalized carbonnanotube/polymer composites. Composites Science and Technology,2008,68(4): 2290-2296.
    [44]Dang Z M, Fan L Z, Shen Y. Dielectric behavior of novel three-phase MWNTs/BaTiO3/PVDF composites. Materials Science and Engineering: B,2003,103(5):140-144.
    [45]Lu J X, Moon K S, Kim B K, et al. High dielectric constant PAN/epoxy composites via in situ polymerization for embedded capacitor applications. Polymer,2007,48(1):1510-1516.
    [46]Dang Z M, Nan C W, Xie D, et al. Dielectric behavior and dependence of percolation threshold on the conductivity of fillers in polymer-semiconductor composites. Applied Physics Letters, 2004,85(7):97-99.
    [47]Zhang Q M, Li H F, Poh M, et al. An all-organic composite actuator material with a high dielectric constant. Nature,2002,419(9):284-287.
    [48]Zhang J, Zhu D, Matsuo M. Circuit simulation for the dielectric responses of the composites of copper phthalocyanine oligomers and sulfonated polyurethanes by separating thestructural elements. Journal of Polymer Science Part B:Polymer Physics,2009,57(12):1146-1155.
    [49]Green Z I, Chen X C, Papastrat A G, et al. Morphology of vapor deposited polyimides containing copper phthalocyanine. Chemical Vapor Deposition,2009,4(15):106-111.
    [50]Babel A, Wind J D, Jenekhe S A. Ambipolar charge transport in air-stable polymer blend thin-film transistors. Advanced Functional Materials,2004,9(14):891-898.
    [51]Iulia G K, Daniel L, Tossapol T, et al. Characterisation of organic field-effect transistors using metal phthalocyanines as active layers. Physica status solidi(c),2010,7(12):456-459.
    [52]Lu J X, Moon K S, Kim B K. High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications. Polymer,2007,48(1):1510-1516.
    [53]Rao Y, Wong C P. Novel ultra-high dielectric constant polymer based composite for embedded capacitor application. IEEE Polytronic 2002 Conference,2002,196-200.
    [54]Li Q, Xue Q Z, Zheng Q B, et al. Large dielectric constant of the chemically purified carbon nanotube/polymer composites. Material Letters,2008,62(6):4229-4231.
    [55]Dang Z M, Yan W T, Xu H P. Novel high-dielectric-permittivity poly(vinylidene fluoride)/polypropylene blend composites:The influence of the poly(vinylidenefluoride) concentrationand compatibilizer. Journal of Applied Polymer Science,2007,105(6): 3649-3655.
    [56]Xu J W, Wong C P. Low-loss percolative dielectric composite. Applied Physics Letters,2005, 87(8):082907-1-082907-2.
    [57]Shen Y, Lin Y H, Li M, et al. High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Advanced Materials,2007,19(10):1418-1422.
    [58]Dang Z M, ShenY, Nan C W. Dielectric behavior of three-phase percolative Ni-BaTi03/polyvinylidene fluoride composites. Applied Physics Letters,2002,81(11): 4814-4816.
    [59]Dang Z M, Fan L Z, Shen Y, et al. Study on dielectric behavior of a three-phase CF/(PVDF+BaTi03) composite. Chemical Physics Letters,2003,369(11):95-100.
    [60]Dang Z M, Fan L Z, Shen Y, et al. Dielectric behavior of novel three-phase MWNTs/BaTiO3/PVDF composites. Materials Science and Engineering: B,2003,103(5): 140-144.
    [61]Choi H W, Heo Y W, Lee J H, et al. Effects of BaTiO3 on dielectric behavior of BaTiO3-Ni-PMMA composites. Applied Physics Letters,2002,89(13):132910-1-132910-3.
    [62]冯德柱.聚合物结构和性能.北京:科学出版社,1995.
    [63]Kulek J, Pawlaczyk C Z, Markiewicz E. Influence of poling and ageing on high-frequency dielectric and piezoelectric response of PVDF-type polymer foils. Journal of Electrostatics. 2002(56):135-141.
    [64]Linares A, Acosta J L. Dielectric behavior of polymer blends based on poly(vinylidene fluoride),1998,257(1):23-30.
    [65]Chung T C, Petchsuk A. Synthesis and poperties of ferroelectric fluoro-terpolymers with curie transition at ambient temperature. Macromolecules,2002,35:76-78.
    [66]Adikary U S, Chan H, Choy C L. Characterization of protonirradiated BaSrTiO3/P(VDF-TrFE). Computer Science and Technology,2002,62(8):2161-2167.
    [67]Yan X Z, Goodson T. High dielectric hyperbranched polyaniline materials. Journal of Physical Chemistry B,2006,110(7):11667-11672.
    [68]Nawal H S, Dalton L R, Vasudevan P. Dielectric properties of copper-phthalocyanine polymer. European Polymer Journal.1985,21(11):943-947.
    [69]Bozena H, Jan K, Markiewicz E. Dielectric relaxation in ferroelectric PZT-PVDF nanocomposites. Journal of Non-crystalline Solids,2002(305):167-170.
    [70]Smith W A. The role of piezocomposites in ultrasonic transducers. IEEE, Proc Ultrason Symp, 1989:755-766.
    [71]Nishi T, Wang T T. Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures. Macromolecules,1975,8(6): 909-915.
    [72]Dang Z M, Shen Y, Fan L Z, et al. Dielectric properties of carbon fiber filled low-density polyethylene. Journal of Applied Physics,2003,93(9):5543-5545.
    [73]Li R, Xiong C X, Kuang D L, et al. Polyamide Ⅰ1/poly(vinylidene fluoride) blends as novel flexible materials for capacitors.Macromolecular Rapid Communication,2008,29(2): 1449-1454.
    [74]Huang C, Zhang Q M. Fnhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites. Advanced Functional Materials,2004,14(5): 501-506.
    [75]Huang X Y, Jiang P K, Kim C. et al. Preparation, microstructure and properties of polyethylene aluminum nanocomposite dielectrics. Computer Science and Technology,2008,68(4): 2134-2140.
    [76]Sui G, Jana S, Zhong W H, et al. Dielectric properties and conductivity of carbon nanofiber/semi-crystalline polymer composites. Acta Materialia,2008,56(1):2381-2388.
    [77]Olszowy M, Pawlaczyk C, Markiewicz E, et al. Dielectric and pyroelectric properties of BaTiO3-PVC composites. Physica Status Solid (a),2005,202(9):1848-1853.
    [78]Dang Z M, ZhengY, Xu H P. Effect of the ceramic particle size on the microstructure and dielectric properties of barium titanate/polystyrene composites. Journal of Applied Polymer Science,2008,110(9):3473-3497.
    [79]Kim D W, Lee D H, Kim B K, et al. Nanocomposite films. Macromolecular Rapid Communications,2006,27(9):1821-1825.
    [80]Savakus H P, Klicker K A, Newnham R E. PZT-Epoxy piezoelectric transducers: a simplified fabrication procedure. Materials Research Bulletin,1981.16(6):677-680.
    [81]Tuncer E, Sauers I, James D R, et al. Electrical properties of epoxy resin based nano-composites. Nanotechnology,2007,18(12):1-6.
    [82]Rao Y, Ogitani S, Kohl P, et al. Novel Polymer-ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application. Applied Polymer Science,2002,83(6):1084-1090.
    [83]Dang Z M. Yu Y F, Xu H P, et al. Study on microstructure and dielectric property of the BaTiO3/epoxy resin composites. Computer Science and Technology,2008,68(51):171-177.
    [84]Kuo D H, Chang C C, Su T Y, et al. Dielectric properties of three ceramic/epoxycomposites. Materials Chemistry and Physics,2004,85(1):201-206.
    [85]Auld B A, Hossack J A. Distributed-period structures for suppression of spurious modes in 1-3 piezocomposites. Electronics Letters,1991.27(14):1284-1285.
    [86]Huang X Y, Jiang P K, Kim C, et al. Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly(vinylidene fluoride). European Polymer Journal,2009,45(11):377-386.
    [87]Dietz M, Es-souni M. Structural and functional properties of screen-printed PZT-PVDF-TrFE composites. Sensors and Actuators A,2008,143:329-334.
    [88]Wang S F, Wang Y R, Chena K C, et al. Characteristics of polyimide/barium titanate composite films. Ceramics International,2009,35(21):265-268.
    [89]Xiang F, Wang H, Yao X. Preparation and dielectric properties of bismuth-based PTFE microwave composites. Journal of the European Ceramics Society,2006,26(10):1999-2002.
    [90]Hu T, Juuti J, Jantunen H. RF properties of BST-PPS composites. Journal of the European Ceramic Society,2007,27(89):2923-2926.
    [91]功能材料及应用编写组.功能材料及应用.北京:机械工业出版社,1991.
    [92]Bozena H, Jan K, Ewa M, et al. Dielectric relaxation in ferroelectric PZT-PVDF nanocomposites. Journal of Non-crystalline Solids,2002,305:167-170.
    [93]Dong L J, Xiong C X, Quan H Y, et al. Polyvinyl-butyral/lead zirconate titanates composites with high dielectric constant and low dielectric loss. Scripta Matcrialia,2006,8(9):835-837.
    [94]Chahal P, Tummala R, Allen M G, M, et al. A novel integrated decoupling capacitors for MCM-L technology. Proceedings of the 46th Electronic Components & Technology Conference,1996:125-130.
    [95]RaoY J, Wong C P. High-K polymer-ceramic nanocomposite development, characterization, and modeling for embedded capacitor RF application. Proceedings of the 51 st Eelectronic Components&Technology Conference,2001.
    [96]Sui G, Jana S, Zhong W H. Dielectric properties and conductivity of carbonnanofiber and semi-crystalline polymer composites. Acta Materialia,2008,56(1):2381-2388.
    [97]傅万里,杜怌一,翁文剑,等.聚偏氟乙烯压电薄膜的制备及结构.材料研究学报,2005,19(3):243-248.
    [98]Kobune M, Takasaki K, Yazawa T. Fabrication and dielectric properties of lead-free inorganic particles-epoxy resin composites. Japanese Journal of Applied Physics,2006,45(98): 7371-7376.
    [99]李远,秦自楷,周志刚.压电与铁电材料的测量.北京:科学出版社,1984:24-37.
    [100]Choi S, Kim I D, Hong J M, et al. Effect of the dispersibility of BaTi03 nanoparticles in BaTi03/polyimide composites on the dielectric properties. Material Letters,2007,61(9): 2478-2481.
    [101]Yang C F, Wu C C, Lee Y Z, et al. Measuring the microwave frequency relative permittivity of polyetherimide/BaTi4O9 composites by using a rectangular cavity resonator. Applied Physics Letters,2008,92(2):022903-1-022903-3.
    [102]Xie S H, Zhu B K, Wei X Z, et al. Polyimide/BaTi03 composites with controllable dielectric properties. Composites Part A,2005,36(12):1152-1157.
    [103]陈惠玲,余萍,肖定全.钛酸钡/环氧介电复合材料制备技术的研究.功能材料,2008,39(3):367-341.
    [104]Zhou D X, Xu J M, Huang G H, et al. Influence of ZrO2 and SnO2 on the synthesis of Ba2Ti9O20 powders. Ceramics International.2004,30:671-673.
    [105]Faraday M. Experimental researcher in electricity. London: Richard and John Edward Taylor, 1939. Academic Press, New York.2000.
    [106]Susana A C, Silvia E B, Maurizio C, et al. Polymolefin blends. Wiley series in polymer science,2008.
    [107]Von R H. Dielectrics and Waves. John Wiley and Sons, New York,1954.
    [108]闻荻江.复合材料原理.武汉:武汉理工大学出版社,1998.
    [109]Ferry J D. Viscoelastic Properties of polymer, John Wiley Sons:NewYork 1980.
    [110]Esayan S, Scheinbeim J I, Newman B A. Pyroelectricity in nylon-7 and nylon-11 ferroelectric polymers,Technical rept.1995,95:94-99.
    [111]傅万里,杜怌一,翁文剑,等.聚偏氟乙烯压电薄膜的制备及结构.材料研究学报,2005,19(3):243-248.
    [112]陈祥宝.导电聚合物复合材料的发展.工程塑料应用,1993.21(4):50-54.
    [113]徐任信,陈文,徐庆,等.拉伸速率对PVDF薄膜介电压电性能的影响.功能材料,2004,35:1525-1528.
    [114]中国科学院有机化学研究所十二室编.压电高聚物.上海:上海科学技术出版社,1980.
    [115]吴正言.有机氟工业,1995,1:28-32.
    [116]Esayan S, Scheinbeim J I, Newman B A. Pyroelectricity in nylon-7 and nylon-11 Ferroelectric Polymers. Technical Reports,1995,95:94-99.
    [117]Bachman M, Gordon W L,Weinhold S. The crystal structure of phase IV of poly (vinylidene fluoride). Journal of Applied Physics,1980,51:5095-5099.
    [118]Scobbo J J. Dynamic mechanical analysis of compatibilized polymer blends. Polymer Testing. 1991,10(4):279-290.
    [119]LimY T, Park O. Rheological evidence for the microstructure of intercalated polymer/layered silicate nanocomposites. Macromol Rapid Commun.2000,21(5):231-235.
    [120]Pinnavaia T J, Beal G W. Polymer-clay nanocomposites. Wiley: New York,2000:240.
    [121]Roode M V, Douglas E, Hemmings R T. X-ray diffraction measurement of glass content in fly-ash and slags. Cement and Concrete Research.1987,17(2):183-197.
    [122]Mandelbern L. Crystallization of polymers. New York: Mc Graw-HillPress.1964:254-257.
    [123]张庆新,莫志深.尼龙11结构与性能研究,高分子通报,2001,6:27-37.
    [124]张醒.尼龙11的性能与应用.江苏化工,1994,22(2):24-27.
    [125]Zhang Q Q, Chan H L W, Zhou Q F, Choy C L. Calcium- and lanthanum-modified lead titanate (PCLT) ceramic and PCLT/vinylidenefluoride-trifluoroethylene 0-3 nanocomposites. Journal of the American Ceramic Society,2000,83(9):2227-2230.
    [126]Paul S, Kale D D. Rheological study of polypropylene copolymer/polyoefinic elastomer blends. J Appl Polym Sci.2002,84(3):665-671.
    [127]张桂芳,张华,任萍.压电高聚物尼龙11的研究进展,天津工业大学学报,2006,25(3):20-23.
    [128]Gao Q, Scheinbeim J I. Dipolar intermolecular interactions, structural development,and electromechanical properties in ferroelectric polymer blends of nylon-11 and poly(vinylidenefluoride). Macromolecules,2000,33:7564-7572.
    [129]顾振军,王寿泰.聚合物的电性和磁性.上海:上海交通大学出版社,1990.
    [130]Banno, H. Recent developments of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles. Ferroelectrics,1983,50(14):329-338.
    [131]Amash A, Zugenmaier P. Thermal and dynamic mechanical investigations on fiber reinforced polypropylene composites. J Appl Polym Sci.1997,63:1143-1154.
    [132]George S, Varughese K T, Thomas S. Dynamic mechanical properties of isotactic polypropylene/nitrile rubber blends:Effects of blends ratio, reactive compatibilization and dynamic vulcanization. Journal of Polymer Science Part B:Polymer Physics,1997,35: 2309-2327.
    [133]王树彬,徐廷献.铁电陶瓷颗粒填充压电复合材料的微结构与性能.中国塑料,2001, 15(12):30-32.
    [134]Cui C X., Baughman H, Igbal Z, et al. Improved piezoelectric ceramic/polymer composites for hydrophone applications. Synthetic metals,1997,85:1391-1392.
    [135]邓如生.共混改性工程塑料.化学工业出版社.2003(第一版):52-60.
    [136]Sa-gong G, Safari A, Jang S J, et al. Poling flexible piezoelectric composites. Ferroelectric Letters,1986,5:131-134.
    [137]杨晓庆,黄卡玛,贾国柱.二甲基亚砜-水混合溶液的等效介电常数特异性研究.化学学报,2008,66(9):1107-1110.
    [138]Jiang Y L. Magnetoelectric Green's functions and their application to the inclusion and inhomogeneity problems. International Journal of Solids and Structures,2002,39: 4201-4213.
    [139]Li H, Chiba T, Yang Y, et al. Polymer-polymer interface in polypropylene/polyamide blends by reactive processing. Polymer,1997,38:3921-3925.
    [140]Luengos G, Schmitt F J, Hill R, et al. Thin film rheology and tribology of confined polymer melts:contrasts with bulk properties. Macromolecules,1997,30(8):2482-2494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700