CoFe_2O_4-BaTiO_3磁电复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁电耦合效应是由外加电场或外加磁场感应产生的电场感生磁矩效应或磁场感生电矩效应,具有这种磁电耦合效应的铁电磁功能材料被简称为磁电材料。由于磁电材料是在外加磁场强度H的作用下产生电极化强度P或在外加电场作用下产生诱导磁化,因此可以用转换系数α=dP/dH或dH/dP表征磁电效应的大小,由磁场能感生电场能的转换系数αE即磁电耦合系数。由钴铁氧-钛酸钡两相复合而成的磁电材料(简称磁电复合材料)以其具有较大的磁电耦合系数和无铅、容易合成等特点而受到广泛的研究和关注。本文以制备出高性能的CoFe_2O_4-BaTiO_3磁电复合材料为目标,采用化学方法一次性合成CoFe_2O_4和BaTiO_3两相共存的纳米复合粉体,然后采用不同陶瓷烧结技术对粉体进行烧结,分别实现该体系的铁磁相—铁电相的复合。针对以纳米复合粉体为原料制备磁电复合材料的特点,构建了粉体中两相形成共格界面、依附生长的八面体模型,运用此模型解释了由纳米粉体烧制得到高磁电耦合性能的原因;首次设计了块体二次烧结实验方案,通过改变块体微界面研究其对磁电耦合效应的影响;针对二次烧结块体样的磁电耦合系数下降等问题,提出了适合于混相磁电复合材料的电畴与磁畴作用距离模型,并以此对制备磁电陶瓷中的各种问题作出合理的解释。具体内容包括:
     1.通过改进了的EDTA-柠檬酸溶液络合法合成CoFe_2O_4-BaTiO_3两相不同配比(1 : 4, 1 : 2, 1 : 1)的纳米复合粉体,研究不同温度下处理的粉体其形貌、粒径和两相界面共生机制等问题,应用改进的普通烧结方法,在1180°C/2h条件下对900°C粉体进行烧结,制得了磁电耦合系数最高值为680μV/Oe·cm的磁电复合材料,分析表明是该中铁磁相含量低、晶粒界面结合不够紧密等因素影响了磁电耦合效应;采用陶瓷热等静压技术烧结了CoFe_2O_4摩尔含量为20%和45%的磁电样品,在1050°C/110 MPa/60 min条件下烧制的0.45CoFe_2O_4-0.55BaTiO_3磁电陶瓷样品具有最大的磁电耦合系数值,达30.09 mV/Oe·cm,研究表明细化晶粒、提高铁磁相含量、增大两相接触面积和提升烧结密度有利于高磁电耦合效应的产生。
     2.首次采用以单相NaCl为熔融盐介质,以NP-10 (nonylphenyl ether)为表面活性剂的熔融盐法一次性合成出了CoFe_2O_4-BaTiO_3纳米复合粉体,经TEM、XRD等分析手段检测表明于800°C反应合成的粉体中无其它杂相,粉体粒径在100 nm以下,而提高或者降低反应温度都将影响粉体粒径和粉体纯度;用普通陶瓷烧结方法在1180°C/120 min的条件下烧制了CoFe_2O_4摩尔含量约为20%、35%和50%的磁电复合材料样品,后两种样品都获得很好的物理性能(密度达到93.2%TD和94.3%TD)和铁电、铁磁综合性能(如压电系数分别达到14 pC·N-1和17 pC·N-1),并在50%CoFe_2O_4的样品中获得最高的磁电耦合系数,其值为17.04 mV/Oe·cm;以XRD、SEM等分析手段检测了块体材料的组成和微结构,分析表明两相之间结合紧密且无杂相存在于晶界,晶粒大小控制在0.5μm左右;以熔融盐法合成出了更细小的纳米粉粒,为烧结后的块体样提供了更大的相接触面积,块体烧结致密度也增大,同时获得优异的铁电、铁磁综合性能。
     3.利用粉体XRD表征、透射电镜衍射花样(SEAD)和计算出的两相晶格参数之间的关系,分析得到两相晶胞在平行于(110)和(220)晶面的平面内可以以晶格匹配的方式共格生长,由此构建了粉体合成时两相共格生长的八面体结构模式;当粉体中两相以这种共格的方式长大时,相与相之间能紧密结合,减少位错等缺陷,因此以全纳米粉体为原料制备的磁电复合材料可以获得更高的磁电耦合效应;以提高块体样品致密度、提升磁电耦合效应为目标,设计了块体二次热压烧结实验方案,实验后发现,溶液法合成的块体样最大磁电耦合系数是680μV/Oe·cm,二次烧结后其系数值降为42.7μV/Oe·cm,对其多项性能进行对比分析,结果表明两相间共格界面遭受最大程度改变是导致耦合系数下降的最直接原因;以熔融盐法制备的块体样(50% CoFe_2O_4和35% CoFe_2O_4)磁电耦合系数可以达到17.04 mV/Oe·cm和6.83 mV/Oe·cm,经过二次烧结后样品的耦合系数降为62.1μV/Oe·cm和65.16μV/Oe·cm,研究分析也表明影响它们的最关键因素是共格界面的破坏。
     4.从磁电耦合作用最基本的工作原理出发,分析和总结了CoFe_2O_4-BaTiO_3磁电复合材料中磁畴和电畴的形成机制,以及两种畴在各自受外力作用时形变、极化等现象产生的过程和机理;首次提出了畴间作用距离影响磁电耦合效应的模型,不但充分地验证了混相磁电复合材料中耦合效应产生的条件,而且对相界面的变化影响磁电耦合系数大小也作出了圆满的解释。
Magnetoelectric(ME) coupling effect is an induction of magnetic moment in an adscititious electric field or an induction of electric moment in an magnetic field, and the functional materials which have this properties can be called ME materials. Since the polarization intensity P of ME material is an induction effect in an adscititious magnetic intensity H, the conversion coefficientαcan be expressed as dP/dH, vice versa. Because those materials revealed high ME coefficient, and they are lead-free, easy to be synthesized, the CoFe_2O_4-BaTiO_3 ME composites have been a focus in ME research recently.
     In this paper, we focus on the preparation of CoFe_2O_4-BaTiO_3 ME composites with high coefficientα, using chemical methods to synthesize the nano-powder with two phases concurrently, and sintering those powders into ME ceramic samples by using different techniques. There are many advantages in those sintered ME ceramics, such as lower sintering temperature, higher density and finer grains in those samples, when they were sintered by using nano-particle powders, which may make great progress in their properties. A octahedron model of sharing a O atom layer in crystal lattice when CoFe_2O_4 growing up on BaTiO_3 was constructed, and the causation of high coefficient in ME nano-composites was explained clearly by using this model; a series of two-time sintering experiments were carried into execution to change the interface of two phases in ME composites, and the influences of the alterable interface on ME coupling effect were studied; a hypothesis of interactional model between electric domain and magnetic domain was assumed to explain the severe decreasing in those two-time sintering ME samples and other problems in preparation of other ME composites. The followings are the main content of this paper:
     1.The nano-powders of CoFe_2O_4-BaTiO_3 ME compound with different ratio(1 : 4, 1 : 2, 1 : 1) were synthesized by using the improving one-pot solution of EDTA-CA(citric acid) method, and the shape, size and symbiosis mechanism of those nano-particles was studied when they were treated under different temperatures. Those nano-powders were sintered at different conditions by using the common sintering method, and one of the ME ceramics which was sintered on 1180°C/2 hour has achieved the highest ME coefficient, 680μV/Oe·cm, in all of them. The research on them shows that the low content of CoFe_2O_4 phase and bad conbined interface between the CoFe_2O_4 phase and BaTiO_3 phase were the main factors to the low ME coefficient. Two series of composites with CoFe_2O_4 content of 20% and 45% (in mol) were prepared by using the Hot Iso-static Press sintering technique, then their grain sizes, theory density and interface between two phases were studied systemically. A sample of 0.45CoFe_2O_4-0.55BaTiO_3 composites has the biggest ME coefficient of them, that is 30.09 mV/Oe·cm, when it was sintered at 1050°C/110 MPa/60 min by HIP condition; the study shows it was attributed to the finer grain, higher content of CoFe_2O_4, bigger interface areas and increasing in density that the composite has achieved great improvement in ME coefficient.
     2.It was the first time that the CoFe_2O_4-BaTiO_3 ME nano-powders was synthesized successfully by using the molten salt method, as well as NaCl being medium and NP-10 (nonylphenyl ether) being active reagent. Those powders, with CoFe_2O_4 content being 20%, 35% and 50%, were detected by TEM and XRD after treating at different conditions, and the result shows that one of those powders has no other phase beside CoFe_2O_4 and BaTiO_3 and their particle size is under 100 nm when it was treated at 800°C. On the other hand, when the treated temperature changed, there were some impurity phases in those powders or their size would be bigger, which would bring some deleterious results to ME ceramics finally. We sintered all of the nano-powder into ceramics at 1180°C/120 min and tested the physical properties of them; when the content of CoFe_2O_4 was 35% and 50% in the composites, they have outstanding ferroelectric and ferromagnetic properties (such as piezoelectric coefficient d33 were 14 pC·N-1 and 17 pC·N-1 , respectively) as well as good physical properties (the density of them were 93.2%TD and 94.3%TD). A biggest value of all ME coefficient of them was 17.04 mV/Oe·cm, which was tested in the sample of 0.5CoFe_2O_4-0.5BaTiO_3 composite, and it can be attributed to the excellent all-around piezoelectric-piezomagnetic properties in this sample. The phases and micro-structure of those ceramics were detected by XRD and SEM, and the result shows there was not any impurity between the interface and the grain size was about 0.5μm, which is benefit to rising the contacted area of two phases. It was because of using nano-powders that the density and resistance of the ceramics were raised remarkably.
     3.The relations of the XRD peaks, SEAD of TEM and crystal lattice parameters between two phases(CoFe_2O_4, BaTiO_3) in powders were lucubrated, and we found there is a plane parallel to the (110) and (220) crystal lattice plane for CoFe_2O_4 and BaTiO_3, respectively. In this plane, the crystalize of two phases can grow up with sharing a O atom layer where the CoFe_2O_4 and BaTiO_3 were octahedron model on each side, and there was less defect in the contacted interface when the two phases combined as it. Thus the causation of high coefficient in ME composite by using the nano-particle can be clear according to this model. A series of two-time Hot-press sintering experiments were carried out in ME ceramic samples in order to develop the density and enhance the ME coupling between the two phases, but an unexpected result was discovered. A two-time sintered sample, for example, which was synthesized by the one-pot solution method and has the ME value of 680μV/Oe·cm, did not be with a higher coefficient but with a lower value as 42.7μV/Oe·cm; the similar phenomena was found in the samples prepared by molten salt method, that is to say the value of 17.04 mV/Oe·cm and 6.83 mV/Oe·cm for 50% CoFe_2O_4 and 35% CoFe_2O_4 samples have a great decrease to be 62.1μV/Oe·cm , 65.16μV/Oe·cm, respectively. Many factors were studied according to their influences on ME coupling, but the result shows that the disappear of the symbiotic interface between two phases was the most important one of them.
     4.Based on the essential principle of the ME coupling effect, the form mechanism of the magnetic domain and electric domain in CoFe_2O_4-BaTiO_3 ME composites were studied and summarized, then the process and mechanism of the distortion as well as the polarization in the domains were also analyzed when they were under outside force. The interactional model between different domains was assumed to be a hypothesis, which can explain not only the foundations for ME coupling effect, but also the change of coefficient value in those two-time sintering ME composites.
引文
[1] Ryu J, Priya S, Uchino K, et al. Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J.Electroceramics, 2002, 8:107~119.
    [2] Hill N A. Why are there so few magnetic ferroelectrics. J. Phys. Chem. B, 2000, 104: 6694~6709.
    [3] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299:1719~1723.
    [4] Astrov D A. Magnetoelectric effect in chromium oxide. Sov. Phys. -JETP, 1960, 11: 708~710.
    [5] Rado G T, Folen V G. Observation of the magnetically Induced mgnetoelectric eEffect and evidence for antiferromagnetic domains. Phys. Rev. Lett., 1961, 7: 310~313.
    [6] Folen V G, Rado G T, Stalder E W. Anisotropy of magnetoelectric effect in Cr2O3. Phys. Rev. Lett., 1961, 6(11): 607-608.
    [7] Foner S, Hanabusa M H, Magnetoelectric effects in Cr2O3 and (Cr2O3)0.8·(Al2O3)0.2. J.Appl.Phys., 1963, 34: 1246~1247.
    [8] Smolenskii G A, Chupis I E. Problems in solid state physics. Mir Publisher, Moscow ,1984: 100~120.
    [9] Newham R E, Skinner D P, Cross L E. Connectivity and piezoelectric-pyroelectric composites, Mat. Res. Bull., 1978, 13: 525~530.
    [10] Harshe G, Dougherty G P, Newnham R E. Magnetoelectric effect in composite materials. Mathematics in Smart Structures, 1993, 1919: 224~228.
    [11] Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4 Nanostructures. Science, 2004, 303(5658): 661~663.
    [12]齐西伟,周济,岳振星,等.铁电/铁磁复合材料的磁性能和介电性能研究.电子元件与材料,2003, 122(4):3~5.
    [13] Patankar K, Dombale P, Mathe V, et al. AC conductivity and magnetoelectric effect in MnFe1.8Cr0.2O4–BaTiO3 composites. Mater. Sci. Engi., 2001,B87 :53~58.
    [14] Bichurin M I, Petrov V M. Theroy of low- frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites. J Appl. Phys., 2002, 92(12): 7681~7683.
    [15]韩建涛.新型磁电功能化合物的制备和表征. [博士学位论文].上海:复旦大学,2007.
    [16] Ryu J, Carazo A V, Uchino K, et al. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl.Phys., 2001, 40: 4948~4951.
    [17] Liu Y X, Wan J G, Liu J M, et al. Numerical modeling of magnetoelectric effect in a composite structure. J Appl .Phys., 2003, 94(8): 5111~5117.
    [18] Wan J G, Li Z Y, Wang Y, et al. Strong flexural resonant magnetoelectric effect in Terfenol-D/epoxy-Pb(Zr,Ti)O3 bilayer. Appl. Phys. Let., 2005, 86: 202504~202509.
    [19] Yu H, Zeng M, Wang Y, et al. Magnetoelectric resonace-bandwith broadening of Terfenol-D/epoxy-Pb(Zr,Ti)O3 bilayers in parallel and series connections. Appl.Phys.Let., 2005, 86: 032508~032514.
    [20] Nan C W, Liu L, Cai N, et al. A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys and polymer. Appl. Phys. Letts., 2002, 81(20):3831~3833.
    [21] Van Suchtelen J. Product properties: A new application of composite materials. Philips Res. Rapts.,1972, 27: 28~35.
    [22] Van Den Boomgaard J, Van Run A M T J, Van Suchtden J. Piezoelectric- piezomagnetic composites with magnetoelectric effect. Ferroelectrics, 1976, 14: 727~728.
    [23] Van Den Boomgaard J, Born R A J. A sintered magnetoelectric composite materials BaTiO3-Ni(Co,Mn) Fe2O4. J. Mater. Sci., 1978, 13: 1538~1542.
    [24] Wan J G, Liu J M, Chand H L W, et al. Giant magnetoelectric effect of a hybrid of magnetostrictive and piezoelectric composites. J. Appl. Phys., 2003, (93): 9916~9919.
    [25] Dai Y R, Bao P, Zhu J S, et al. Internal friction study on CuFe2O4/PbZr0.53Ti0.47O3 composites. J. Appl. Phys., 2004, 96: 5687~5689.
    [26] Srinivasan G, Rasmussen E T, Gallegos J, et al. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B, 2001, 64: 214408~214410.
    [27]王海青.复合材料阻抗对电磁干扰的影响分析.航空电子技术,1998, 4:12~16.
    [28]马昌贵.抗EMI磁性元件的发展动向.磁性材料及器件,2000, 35: 03-0031-05.
    [29] Zhang H Y, Gu B X, Zhai H R, et al. Magnetic and magneto-optical propetics of sputtered Co0.8Fe2.2O4 film with perfict[111] orientation. Phys.Status Solid., 1994,143(2):399~402.
    [30]刘海涛,杨郦,张树军,等.无机材料合成,北京:化学工业出版社,2003: 32~33.
    [31]高瑞平,李晓光.先进陶瓷物理与化学原理及技术,北京:科学出版社,2001: 252~258.
    [32] Priya S, Islam R, Dong S X. Recent advancements in magnetoelectric particulate and laminate composites. J Electroceram., 2007, 19:147~164.
    [33] Van den Boomgaard J, Terrell D R, Born R A J, et al. An in situ grown eutectic magnetoelectric composite material. PartⅠ: Composition and unidirectional solidification. J.Mater. Sci., 1974, 9:1705~1709.
    [34] Suryanarayana S V. Magnetoelectric interaction phenomena in materials. Bull. Mater. Sci., 1994, 17(7): 1259~1270.
    [35] Mazumder S, Bhattacharya G S. Synthesis and characterization of in situ grown magnetoelectric composites in the BaO–TiO–FeO–CoO system. Ceram. Int., 2004, 30:389~392.
    [36] Mahajan R P, Patankar K K, Kothale M B, et al. Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite-barium titanate composites. Bull.Mater. Sci., 2000, 23(4): 273~279.
    [37] Patankar K K, Patil A A, Sivakumar K V, et al. AC conductivity and magnetoelectric effect in CuFe1.6Cr0.4O4–BaTiO3 composite ceramics. Mater. Chem. Phys.,2000, 65: 97~102.
    [38] Wang H W, Chung M R. Formation of Ba2Ti9O20 ceramics from EDTA-gel-derived powders. Mater.Chem.Phy.,2002,77: 853~859.
    [39]蔡树芝,牟季美,张立德,等.纳米非晶氮化硅键态的X射线径向分布函数研究.物理学报, 1992,41(10):1620~1626.
    [40] Halperin W P. Quantum size effects in metal particles. Rev. Modern. Phys., 1986, 58(3): 532~535.
    [41] Ball P, Garwin L. Science at the Atomic Scale. Nature, 1992, 355: 761~766.
    [42]张立德,牟季美.开拓原子和物质的中间领域-纳米粒子和纳米固体.物理, 1998, 21(3):137~173.
    [43] Jeong U, Teng X, Wang Y, et al. Superparamagnetic colloids:controlled synthesis and niche applications. Adv. Mater., 2007, 19: 33~60.
    [44] Wang S, Zuo J L, Gao S, et al. The Observation of superparamagnetic behavior in molecular nanowires. J. Am.Chem. Soc., 2004, 126: 8900~8901.
    [45]李承恩.功能陶瓷粉体制备液相包裹技术的理论基础与应用.上海:上海科学普及出版社,1997:15~16.
    [46] Error N G, Anderson H U. Polymeric precursor synthesis of ceramics materials. Better Ceramics Through Chemistry II, 1986: 571~577.
    [47] Fransaer J,Ross J R,Delaey L,et al. Sol-gel preparation of high-Tc-Bi-Ca-Sr-Cu-O and Y-Ba-CA-O superconductors. J.Appl.Phys.,1989,65(8): 3277~3279.
    [48] Marcilly C, Couty P C, Delmon. Preparation of highly dispersed mixed oxide and oxide solid solution by pyrolysis of amorphous organic precursors. J.Am.Ceram.Soc., 1970, 53(1):56~57.
    [49] Couty P, Ajol H, Marcilly C, et al. Oxydes mixtes ou en solution solide sous forme tres divisee obtenus par decomposition thermique de precurseus amorphes. Powder Technol.,1973, 7(1):21~38.
    [50] Anderson D J, Sale F R. Production of conducting oxide powder by amorphous citrate process. Powder Metall., 1979, 22(1):14~21.
    [51] Baythoun M S G, Sale F S. Production of strontium-substitued lanthanum manganite perovskite powder by the amorphous citrate process. J. Mater. Sci.,1982, 17(9): 2757-2769.
    [52] Tuttle B A, Voigt J A. Powder synthesis of SrTiO3 boundary layer capaciotor materials. Ceramic Powder Science II, 1988:62~67.
    [53] Zhu C T, Dunn B. Preparation of high-Tc superconducting oxides by the amorphous citrate process. J.Am.Ceram.Soc.,1987, 70(12):C375~C377.
    [54] Hong W W,David A H,Frank R S. Phase homogeneity and segregation in PZT powders prepared by thermal decemposition of Metal-EDTA complexes derived from nitrate and chloride solutions. J.Am.Ceram.Soc, 1992, 75(1): 124~130.
    [55] Hodgson S N B, Shen X. Preparation of alkaline earth carbonates and oxides by the EDAL-gel process. J. Mater. Sci.,2000, 35:5275~5282.
    [56]张祥麟.络和物化学.北京:冶金工业出版社,1979:1~10.
    [57]李菲.钙钛矿型与多重铁性功能材料的溶液络合法制备及表征.[硕士学位论文].江苏:南京航空航天大学, 2006.
    [58]薛华,李隆弟,陈德朴,等.分析化学.北京:清华大学出版社, 1994:100~102.
    [59] Zhu D G, Liu S K, Yin X D, et al. In-situ HIP synthesis of TiB2/SiC ceramic composites. J. Mater. Proces. Tech., 1999, 89(90): 457~461.
    [60]蒋军.热等静压原位合成TiB2-TiC复相陶瓷材料.[硕士学位论文].四川:西南交通大学,2007.
    [61] Cullity B D. Elements of X-Ray Diffraciton. New York: Addison-Wesley, 1978:99~100.
    [62] Zheng H, Wang J, Lofland S E. Multiferroic BaTiO3-CoFe2O4 Nanostructures. Science, 2004, 303: 661~663.
    [63]邵海成,戴红莲,董健.化学共沉淀法合成CoFe2O4纳米颗粒及其磁性能.硅酸盐学报, 2005, 33(8): 959~962.
    [64] Mahajan R, Patankar K, Kothale M. Magnetoelectric effect in cobalt ferrite-barium titanate composites and their electrical properties. Pramana-J. Phys., 2002, 58(5,6): 1115~1124.
    [65] Devan R S, Lokare S A, Patil D R. Electrical conduction and magnetoelectric effect of (x) BaTiO3 + (1-x)Ni0.92Co0.03Cu0.05Fe2O4 composites in ferroelectric rich region. J. Phys. Chem. Solid., 2006, 67: 1524~1530.
    [66] Rajendrana M, Pullara R C, Bhattacharyaa A K, et al. Magnetic properties of nanocrystallineCoFe2O4 powders prepared at room temperature. J. Magn. Magn. Mater.,2001, 232: 71~83.
    [67] Ding J, McCormick P C, Street R. Magnetic properties of mechanically alloyed CoFe2O4. Solid State Commun., 1995, 95(1): 31~33.
    [68] Gangopadhyay S, Hadjipanayis G C. Magnetic properties of ultrafine iron particles. Phys.Rev.B.,1992, 45: 9778~9782.
    [69] Han D H, Wang J P. Crystallite size effect on saturation magnetization of fine ferrimagnetic particles. J. Magn. Magn. Mater.,1994,136: 176~182.
    [70] Bathe X, Obradors X. Surface spin canting in BaFe12O19 fine particles. J Magn. Magn. Mater., 1993,124: 228~238.
    [71] Kothale,Patankar K,Kadam S,et al. Dielectric behaviour and magnetoelectric effect in copper–cobalt ferrite + barium lead titanate composites. Mater. Chem. Phys., 2002, 77: 691~696.
    [72] Cai N, Nan C W, Zhai J Y, et al. Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. Appl. Phys. Lett.,2004, 84: 3516~3518.
    [73] Jiang Q H, Shen Z J, Ce-Wen Nan. Magnetoelectric composites of nickel ferrite and lead zirconnate titanate prepared by spark plasma sintering. J. Euro. Ceram. Soc., 2007, 27: 279~284.
    [74]田洋.熔融盐法制备无机功能纳米材料. [博士学位论文].山东:山东大学,2007.
    [75]段淑贞,乔芝郁主编.熔盐化学:原理与应用,冶金工业出版社,1990:25~30.
    [76] Haff B W,Kerridge D H. Chemistry in Britain. Royal Society of Chemistry Press, 1979: 75~78.
    [77] Ribeiro D, Chemla M C C. Effeet in molten LiCl/KCl and LiF/KF mixtures. J.Phys.Chem.B, 2003, 107:4392~4402.
    [78] Koch V R, Miller L L, Osteryoung R A. Electronitiated friendel-crafts transalkylations in a room temperature molten-salt medium. J.Am.Chem.Soc.,1976, 98:5277~5279.
    [79] Appleby D, HusseyC L, Sedden K R. Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes. Nature, 1986, 323:614~616.
    [80] Wikes J S, Zaworotko M J. Air and water Stable l-ethyl-3-methylimidazolium based ionic liquids. J.Chem.Soc., Chem.Commun.,1992, 13:965~967.
    [81] Durand B, Roubin M. Molten salts reactions a process fot fine grained solids preparation. Mater. Sci. Forum, 1991, 73-75:663~68.
    [82] Geantet J E,Kerridge D H, Decamp T, et al. Hydrotreating properties of MoS2 catalystsprepared from thiocyanate melts. Mater. Sci. Forum, 1991, 73-75: 693~698.
    [83] Wang Y, Lee J Y, Deivaraj T C. Controlled synthesis of V-Shaped SnO2 nanorods. J. Phys.Chem.B, 2004,108:13589~13593.
    [84] Sun J Q, Wang J S, Wu X C, et al. Novel method for high-yield synthesis of rutile SnO2 nanorods by oriented aggregation. Cryst.Growth, 2006, 6: 1584~1587.
    [85] Mao Y, Banerjee S, Wong S S. Large-scale synthesis of single-crystalline perovskite nanostructures. J.Am.Chem.Soc.,2003,125:15718~15719.
    [86] Mao Y, Wong S S. Composition and shape control of crystalline Ca1-xSrxTiO3 perovskite nanopartieles. Adv. Mater., 2005,17:2194~2199.
    [87] Zhang S, Jayaseelan D D, Bhattacharya G, et al. Molten salt synthesis of magnesium aluminate(MgAl2O4) spinel powder. J.Am.Ceram.Soc., 2006, 89:1724~1744.
    [88] Li Z, Lee W E, Zhang S. Low temperature synthesis of calcium zirconate(CaZrO3) powder from molten salts. Am.Ceram.Soc.,2007, 90:364~367.
    [89] Hashimoto S, Zhang S, Lee W E, et al. Synthesis of magnesium aluminate spinel platelets from-alumina platelet and magnesium sulfate precursors. Am.Ceram.Soc., 2003, 86: 1959~1962.
    [90] Calm J W. On the morphology stability of growth crystals in crystal. Edited by Peiser S H, Pergamon, Oxford U. K. 1967.
    [91]孙晓琴.熔盐法合成BaTiO3以及片状SrTiO3的研究与机制. [硕士学位论文].湖北:武汉理工大学,2004.
    [92] Vonkresenskays N K, Kashicheev G N. The solubility of metal oxides in fused salts. Akad. Navk, 1956, 27: 255~267.
    [93] Cai Z Y, Xing X R, Yu R B. Large-scale synthesis of Pb1-xLaxTiO3 ceramic powders by molten salt method. Alloy. Comp.,2006,31: 273~277.
    [94] Delarue G. Chemical properties of the eutectic LiCl and KCl I metallic oxides. Electroanal Chem.,1960, 30: 285-300.
    [95] Inman D, Legey J C, Spencer R. A potentiometric study of alumina solubility and the influence of complexing by fluoride ions in LiCl-KCl. Appl. Electrochem.,1978, 8:273~276.
    [96] Mao Y B, Park T J, Zhang F, et al. Environmentally friendly methodologies of nanostructure synthesis. Small, 2007, 3(7):1122~1139.
    [97] Chen J, Xing X R, Watson A, et al. Rapid synthesis of multiferroic BiFeO3 single-crystalline nanostructures. Am. Chem. Soc. : Chem. Mater., 2007,19: 3598~3600.
    [98] Weng L Q, Fu Y D, Song S H, et al. Synthesis of lead zirconate titanate–cobalt ferritemagnetoelectric particulate composites via an ethylenediaminetetraacetic acid–citrate gel process. Scripta Materialia, 2007, 56: 465~468.
    [99] Patankar K, Joshi S, Chougule B. Dielectric behaviour in magnetoelectric composites. Phys. Lett. A, 2005, 346: 337~341.
    [100] Maxwell J. A treatise on electricity and magnetism. Clarendon, 1892: 89~122.
    [101] Koop C. On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies. Phys. Rev., 1951, 83: 121~124.
    [102]王永晔,杨德清,汪跃群.电滞回线在压电材料研究中的应用.声学与电子工程, 2007, 2: 33~37.
    [103] Qi X W, Zhou J, Li B R, et al. Preparation and spontaneous polarization-magnetization of a new ceramic ferroelectric-ferromagnetic composite. J. Am. Ceram. Soc.,2004, 87(10): 1848~1852.
    [104] Popov C, Chang H, Record P M, et al. Direct and converse magnetoelectric effect at resonant frequency in laminar piezoelectric-magnetostrictive composite. J Electroceram.,2008, 20:53~58.
    [105] Deng C Y, Zhang Y, Ma J, et al. Magnetoelectric effect in multiferroic heteroepitaxial BaTiO3–NiFe2O4 composite thin films. Acta Mater., 2008, 56 : 405~412.
    [106]杨帆.磁致-压电层合材料的磁电特性研究. [硕士学位论文].重庆:重庆大学,2006.
    [107]张辉,杨俊,方亮,等.铁电-铁磁复合材料的研究现状及发展趋势.材料导报,2003,17(6):64~67.
    [108] Echigoya J. Directional solidification and interface structure of BaTiO3-CoFe2O4 eutectic. J. Mater. Sci.,2000, 35:5587~5591.
    [109] Bunget I, Raetchi V. Dynamic magnetoelectric effectric in the composite system of Ni-Zn ferrites and PZT ceramics. Rev. Roum. Phys.,1982, 27: 401~406.
    [110] Kothale M B, Patankar K K, KadamS L, et al. Dielectric behaviour and magnetoelectric effect in copper-cobalt ferrite +barium lead titanate composites. Mater. Chem. Phys.,2003,77:691~696.
    [111] Srinivasan G, Rasmussen E T, Hayes R. Magnetoelectric effect in ferrite-lead zirconate titanate layered composites:The influence of zinc substitution in ferrites. Phys.Rev.B, Cond. Mat. MateR. Phys., 2003, 67: 14418~14427.
    [112] Srinivasan G, Rasmussen E T, Bush A A, et al. Structural and magnetoelectric properties of Mfe2O4-PZT(M=Ni,Co) and Lax(Ca,Sr)1-xMnO3- PZT multilayer composites. Appl. Phys.A, 2004, 78:721~728.
    [113] Nan C W, Li M, Huang J H. Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric ploymers. Phys. Rev. B, 2001, 63(14): 010652~010658.
    [114] Nan C W, Liu G, Lin Y H. Influence of interfacial bonding on giant magnetoelectric response of multiferroic laminated composites of Tb1-xDyxFe2 and PbZrxTi1-xO3. Appl. Phys. Let., 2003, 83(21) :4366~4368.
    [115] Nan C W, Cai N, Shi Z,et al. Large magnetoelectric response in multiferroic polymer-based composites. Phys. Rev. B, 2005,7:014102~014108.
    [116] Nan C W, Liu L, Cai N, Zhai J, Ye Y, Lin Y H. Lin A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl. Phys. Let., 81:3831~3834.
    [117]施展,南策文.铁电/铁磁三相颗粒复合材料的磁电性能计算.物理学报,2004, 53(8): 2766~2770.
    [118]沈仁发,万红.磁致伸缩/压电层状复合材料的理论研究.成昭华,等编,第四届全国磁性薄膜与纳米磁学会议论文集,河北:河北工业大学出版社,2004:241~245.
    [119]万红,谢立强,吴学忠,等. TbDyFe薄膜与PZT压电陶瓷的磁电效应研究.物理学报, 2005, 54(8): 3872~3878.
    [120]杨盼,尹媛,赵可,等.复合材料LiNbO3/Terfenol-D的磁电效应.四川大学学报(自然科学版),2005, 42(2):77~81.
    [121] Dong S X, Li J F, Viehland D. Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: Theory IEEE Transactions on Ultrasonics. Ferroelect. Freq.Contr., 2003,50(10):1253~1261.
    [122] Dong S X, Li J F, Viehland D. Magnetoelectric coupling, efficiency, and voltage gain effect in piezoelectric-piezomagnetic laminate composites. J. Mater. Sci., 2006,41(1):97~106.
    [123]钟维烈.铁电体物理学.北京:科学出版社,1996:73~81.
    [124]周志刚,等.铁氧体磁性材料.北京:科学出版社,1981:46~55.
    [125]沈建红,周济,崔学民,等. BaTiO3-NiFe2O4复合材料的铁电性能和铁磁性能研究.四川大学学报(自然科学版), 2005, 10, 42(2):85~88.
    [126] Fesenko E G, Gavrilyatchenko V G, Semenchev A F, et al. Domain structure of multiaxial ferroelectric crystals. Ferroelectrics, 1985, 63:289~295.
    [127] Randall C A, Bhalla A S, Shrout T R, Cross L E. Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order. J. Mater. Res., 1990, 5(4) : 829~834.
    [128] Cullity B D. Introduction to magnetic materials. Massachusetts: Addison-Wesley, 1972 : 145~156.
    [129] Pao Y H, Yeh C S. A linear theory for soft ferromagnetic elastic solids. Int. J. Engn. Sci., 1973, 11(4): 415~436.
    [130]鲍亦兴.变形连续介质中的电磁力.北京:科学出版社,1996:87~91.
    [131] Sabir M. Constitutive relations ferromagnetic materials for magnetomechanical hysteresis . Int. J. Engn. in Sci., 1995, 33:1233~1249.
    [132] Jiles D C, Atherton D L. Microcomputer-based system for control of applied uni-axial stress magnetic field. Rev. Sci. Instrum., 1984, 55(11):1843~1848.
    [133] Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater., 1986, 6l : 48~60.
    [134] Jiles D C, Thoelke J B. Theoretical modeling of the effects of anisotropy and stress on the magnetization and magnetostriction of Tb0.3Dy0.7Fe2. J. Magn .Magn. Mater., 1994, 134:143~160.
    [135] Armstrong W D. Magnetization and magnetostriction processes of Tb0.3Dy0.7Fe2. J. Appl. Phys., 1997, 81:2321~2326.
    [136] Armstrong W D. Burst magnetostriction in Tb0.3Dy0.7Fe1.9. J. Appl. Phys., 1997, 81(8): 3548~3554.
    [137] Hwang S C, Huber J E, McMeeking R M, et al. The simulation of switching in polycrystalline ferroelectric ceramics. J. Appl. Phys., 1998, 84 (3): 1530~1540.
    [138] Hwang S C, Waser R. Study of electrical and mechanical contribution to switching in ferroelectric/ferroelastic polycrystals. Acta Mater., 2000, 48(12): 3271~3282.
    [139]冯雪.铁磁材料本构关系的理论和实验研究. [博士学位论文].北京:清华大学, 2002.
    [140]吕炜.铁电材料与形状记忆合金的宏细观本构研究. [博士学位论文].北京:清华大学, 1998.
    [141] Carman G P, Mitrovic M. Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems. J. Intell. Mater. Syst. Struct., 1995, 6: 673~683.
    [142] Wang B W, Busbridge S C, Li Y X, et al. Magnetostriction and magnetization process of Tb0.27Dy0.73Fe2 single crystal. J. Magn. Magn. Mater., 2000,218:198~202.
    [143] Sarrazin P, Thierry B, Niepce J C. Forming pressure dependence of the ferroelectric domain structure in green barium titanate pellets. J. Europ. Ceram. Soc., 1995, 15 (8): 623~629.
    [144] Ahluwalia R, Lookman T, Saxena A, et al. Domain-size dependence of piezoelectric properties of ferroelectrics. Phys. Rev. B., 2005, 72: 014112~014118.
    [145] Cao W. Adaptronics and Smart Structures. H. Janocha (Ed), Springer, Berlin, 2007: 35~57.
    [146] Cao W, Cross L E. Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. Phys.Rev.B, 1991, 44: 5~12.
    [147] Nan C W, Clarke D. Effective properties of ferroelectric and/or ferromagnetic composites: A unified approach and its application. J. Am. Ceram. Soc.,1997, 80(6): 1333~1335.
    [148] Hill N A. Density functional studies of multiferroic magnetoelectrics. Annu.Rev.Mater.Res., 2002, 32:12~24.
    [149] Harshe G, Dougherty J P, Newnham R E. Theoretical modeling of mutilayer magnetoelectric composites. Inter.J. Appl .Electromagn. Mater., 1993, 4(2):145~159.
    [150] Harshe G. Magnetoelectric effect in piezoelectric-magnetostrictive composites. [Ph.D Thesis], USA Pennsylvania State: University of Pennsylvania State, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700