基于流动注射梯度技术的液滴微流控系统及其在酶抑制剂筛选和酶反应动力学研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液滴微流控(Droplet-based microfluidics)是在微通道结构中生成和操控纳升至飞升级液滴的科学与技术。与连续流微流控系统相比,液滴微流控系统不仅具有混合速度快、抑制扩散、无交叉污染以及试剂和样品消耗量低等优点,而且微流控液滴的生成频率可高达数千赫兹,在高通量筛选上极具潜力。近十年来,随着微液滴的操纵、生成、分裂、分选、检测等技术的日趋成熟,液滴微流控系统在分析化学、蛋白质结晶筛选、细胞生物学、分子生物学、高通量筛选上的应用日益广泛。本文主要进行了微流控梯度液滴分析系统的研究,并将其应用于酶抑制剂筛选和酶反应动力学研究中。
     第一章总结了微流控梯度技术的研究现状,包括各种用于连续流微流控系统与液滴微流控系统的梯度技术原理、特点及其在细胞生物学、酶反应动力学、高通量筛选等领域的应用。
     第二章建立了一种基于流动注射梯度技术的液滴微流控系统。该系统由试样引入系统、微芯片、驱动系统与激光诱导荧光检测系统组成。微芯片上集成了取样探针、试样引入通道、试剂通道、液滴形成通道及液滴反应与检测通道。样品通过磨尖的取样探针注入微通道内,在流动的载流中由于对流和分子扩散形成具有连续轴向浓度梯度的样品区带。该样品区带在与试剂汇合后,被与水不互溶的油相间隔形成具有浓度梯度的液滴阵列。样品与试剂在液滴内混合、反应,其产物在流经检测点时被激光诱导荧光检测系统检测。该系统只需单次注射纳升级样品即可形成浓度梯度范围达3-4个数量级的液滴,具有很低的样品消耗。系统被成功地应用于基于β-半乳糖苷酶(β-galactosidase,(3-gal)的酶抑制分析,初步展示了本系统在高通量药物筛选中应用的潜力。
     第三章用第二章建立的基于流动注射梯度技术的液滴微流控系统进行了Caspase-1酶抑制剂的筛选。Caspase-1催化荧光底物YVAD-AFC释放出游离的荧光染料分子AFC,抑制剂Ac-YVAD-CHO与Ac-(Nme)Tyr-Val-Ala-Asp-CHO对该酶反应有抑制作用。自行搭建了一套激发波长为405nm,发射波长为505nm的激光诱导荧光系统检测释放的游离染料分子AFC。该系统样品消耗仅为3.3nL。该系统被应用于Caspase-1抑制剂Ac-YVAD-CHO与Ac-(Nme)Tyr-Val-Ala-Asp-CHO半数抑制浓度(IC50)的测定。
     第四章将第二章建立的基于流动注射梯度技术的液滴微流控系统,应用于酶动力学研究,测定了p-半乳糖苷酶催化荧光素双p-d-吡喃半乳糖苷反应的米氏常数(Km)。该方法具有简单、快速的特点,在1min内仅需一次注样操作就可测定出酶反应的米氏常数,耗样仅为13nL。
Droplet microfluidics is the science and technology which generate and manipulate droplets in the nanoliter nanoliter to femtoliter range. Comparing with the continuous flow-based microfluidic systems, the droplet-based microfluidic systems offer advantages of rapid mixing, eliminated cross contamination, low sample/reagent consumption and high frequency of microreactor generation. In the past decade, various techniques of droplet generation, manipulation, fusion, splitting, sorting and detection have been developed, and applied in bioanalysis, protein crystallization screening, cell biology and high throughput screening. The aim of the present work is to develop droplet-based microfluidic systems capable of generating large-scale concentration gradient for enzyme inhibitor screening and enzyme kinetic study.
     In chapter1, the progress of microfluidic concentration gradient techniques under continuous flow mode and droplet-based mode, as well as their applications in cell biology, enzyme kinetics and high-throughput screening, are reviewed.
     In chapter2, the flow injection gradient technique (FIG) was coupled with droplet generation to generate droplets with large-scale concentration gradients. The droplet-based microfluidic system consisted of sample introduction system, micro chip, driven system and laser induced fluorescence detection system. Multiple modules including sampling probe, dispersion channel, reagent channel, droplet generation and detection were integrated into the microchip. The injected sample plug was dispersed in the flowing carrier to form a sample zone with continuous concentration gradients along the channel. The sample zone was then segmented into a series of droplets by a immiscible oil phase. The present system could be used to generate droplets with concentrations spanning3-4orders of magnitudes with a single nanoliter-scale injection. We applied it in β-gal inhibition assay to preliminarily demonstrate its application potentials in high throughput drug screening.
     In chapter3, the droplet-based flow injection gradient system built in chapter2was used to screen the caspase-1inhibitors. The assay was based on the inhibition of enzyme caspase-1by inhibitors of Ac-YVAD-CHO and Ac-(Nme)Tyr-Val-Ala-Asp-CHO, impeding the release of AFC from the substrate YVAD-AFC. A home-built laser induced fluorescence detection system with an excitation wavelength of405nm and emission wavelength of505nm was used to measure AFC produced in the droplets. With a single injection of3.3nL inhibitors, the IC50values of Ac-YVAD-CHO and Ac-(Nme)Tyr-Val-Ala-Asp-CHO were obtained.
     In chapter4, the droplet-based flow injection gradient system presented in chapter2was used in enzyme kinetic study for the measurement of Michaelis-Menten constant. With a single injection of13nL of substrate, the Michaelis-Menten constant of the β-gal catalyzed reaction was measured in less than1min.
引文
[1]Jeon, N. L.; Dertinger, S. K. W.; Chiu, D. T.; Choi, I. S.; Stroock, A. D.; Whitesides, G. M. Generation of solution and surface gradients using microfluidic systems. Langmuir 2000,16(22),8311-8316.
    [2]Dertinger, S. K. W.; Chiu, D. T.; Jeon, N. L.; Whitesides, G. M. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem.2001, 73(6),1240-1246.
    [3]Walker, G. M.; Ozers, M. S.; Beebe, D. J. Cell infection within a microfluidic device using virus gradients. Sensors Actual B-Chem.2004,98(2-3),347-355.
    [4]Zhou, Y.; Wang, Y.; Mukherjee, T.; Lin, Q. Generation of complex concentration profiles by partial diffusive mixing in multi-stream laminar flow. Lab Chip 2009, 9(10),1439-1448.
    [5]Kamholz, A. E.; Weigl, B. H.; Finlayson, B. A.; Yager P. Quantitative analysis of molecular interaction in a microfluidic channel:The T-sensor. Anal. Chem.1999,71(23),5340-5347.
    [6]Garcia, E.; Hasenbank, M. S.; Finlayson, B.; Yager, P. High-throughput screening of enzyme inhibition using an inhibitor gradient generated in a microchannel. Lab Chip 2007,7(2),249-255.
    [7]Lee, J. S. H.; Hu, Y. D.; Li, D. Q. Electrokinetic concentration gradient generation using a converging-diverging microchannel. Anal. Chim. Acta 2005,543(1-2), 99-108.
    [8]Holden, M. A.; Kumar, S.; Castellana, E. T.; Beskok, A.; Cremer, P. S. Generating fixed concentration arrays in a microfluidic device. Sensors Actual B-Chem.2003, 92(1-2),199-207.
    [9]Mao, H. B.; Yang, T. L.; Cremer, P. S. Design and characterization of immobilized enzymes in microfluidic Systems. Anal. Chem.2002,74(2),379-385.
    [10]Hadd, A. G.; Raymond, D. E.; Halliwell, J. W.; Jacobson, S. C.; Ramsey, J. M. Microchip device for performing enzyme assays. Anal. Chem.1997,69(17), 3407-3412.
    [11]Jacobson, S. C.; McKnight, T. E.; Ramsey, J. M. Microfluidic devices for electrokinetically driven parallel and serial mixing. Anal. Chem.1999,71(20), 4455-4459.
    [12]Irimia, D.; Geba, D. A.; Toner, M. Universal microfluidic gradient generator. Anal. Chem.2006,78(10),3472-3477.
    [13]Yamada, M.; Hirano, T.; Yasuda, M.; Seki, M. A microfluidic flow distributor generating stepwise concentrations for highthroughput biochemical processing. Lab Chip 2006,6(2),179-184.
    [14]Walker, G. M.; Monteiro-Riviere, N.; Rouse, J.; O'Neill, A. T. A linear dilution microfluidic device for cytotoxicity assays. Lab Chip 2007,7(2),226-232.
    [15]Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl. Acad. Sci. U.S.A.2002,99(26),16531-16536.
    [16]Jambovane, S.; Duin, E. C.; Kim, S. K.; Hong, J. W. Determination of kinetic parameters,Km and kcat, with a single experiment on a chip. Anal. Chem.2009, 81(9),3239-3245.
    [17]Jiang, X. Y.; Ng, J. M. K.; Stroock, A. D.; Dertinger, S. K. W.; Whitesides, G. M. A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens. J. Am. Chem. Soc.2003,125(18),5294-5295.
    [18]Kim, C.; Le,e K. S.; Kim, J. H.; Shin, K. S.; Lee, K. J.; Kim, T. S.; Kang, J. Y. A serial dilution microfluidic device using a ladder network generating logarithmic or linear concentrations. Lab Chip 2008,8(3),473-479.
    [19]Sun, K.; Wang, Z. X.; Jiang, X. Y. Modular microfluidics for gradient generation. Lab Chip 2008,8(9),1536-1543.
    [20]Lee, K.; Kim, C.; Ahn, B.; Panchapakesan, R.; Full, A. R.; Nordee, L.; Kang, J. Y.; Oh, K. W. Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab Chip 2009,9(5),709-717.
    [21]Hattori, K.; Sugiura, S.; Kanamori, T. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Lab Chip 2009,9(12), 1763-1772.
    [22]Li, C. W.; Chen, R. S.; Yang, M. S. Generation of linear and non-linear concentration gradients along microfluidic channel by microtunnel controlled stepwise addition of sample solution. Lab Chip 2007,7(10),1371-1373.
    [23]Wu, H. K.; Huang, B.; Zare, R. N. Generation of complex, static solution gradients in microfluidic channels. J. Am. Chem. Soc.2006,128(13),4194-4195.
    [24]Du, Y. N.; Shim, J.; Vidula, M.; Hancock, M. J.; Lo, E.; Chung, B. G.; Borenstein, J. T.; Khabiry, M.; Cropek, D. M.; Khademhosseini, A. Rapid generation of spatially and temporally controllable long-range concentration gradients in a microfluidic device. Lab Chip 2009,9(6),761-767.
    [25]Abhyankar, V. V.; Lokuta, M. A.; Huttenlocher, A.; Beebe. D. J. Characterization of a membrane-based gradient generator for use in ceil-signaling studies. Lab Chip 2006,6(3),389-393.
    [26]Atencia, J.; Morrow, J.; Locascio, L. E. The microfluidic palette:A diffusive gradient generator with spatio-temporal Control. Lab Chip 2009,9(18), 2707-2714.
    [27]Park, J. Y.; Yoo, S. J.; Hwang, C. M.; Lee, S. H. Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow. Lab Chip 2009,9(15),2194-2202.
    [28]Kang, T.; Han, J.; Lee, K. S. Concentration gradient generator using a convective-diffusive balance.Lab Chip 2008,8(7),1220-1222.
    [29]Goulpeau, J.; Lonetti, B.; Trouchet, D.; Ajdari, A.; Tabeling, P. Building up longitudinal concentration gradients in shallow microchannels. Lab Chip 2007, 7(9),1154-1161.
    [30]Keenan, T. M.; Hsu, C. H.; Folch, A. Microfluidic "jets" for generating steady-state gradients of soluble molecules on open surfaces. Appl. Phys. Lett. 2006,89(11),114103.
    [31]Chung, B. G.; Lin, F.; Jeon, N. L. A microfluidic multi-injector for gradient generation. Lab Chip 2006,6(6),764-768.
    [32]Schilling, E. A.; Kamholz, A. E.; Yager, P. Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal. Chem. 2002,74(8),1798-1804.
    [33]Seong, G. H.; Crooks, R. M. Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts. J. Am. Chem. Soc.2002,124(45), 13360-13361.
    [34]Pihl, J.; Sinclair, J.; Sahlin, E.; Karlsson, M.; Petterson, F.; Olofsson, J.; Orwar, O. Microfluidic gradient-generating device for pharmacological profiling. Anal. Chem.2005,77(13),3897-3903.
    [35]Mao, H. B.; Cremer, P. S.; Manson, M. D. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl. Acad. Sci. U.S.A.2003,100(9), 5449-5454.
    [36]Ye, N. N.; Qin, J. H.; Shi, W. W.; Liu, X.; Lin, B. C. Cell-based high content screening using an integrated microfluidic device. Lab Chip 2007,7(12), 1696-1704.
    [37]Jeon, N. L.; Baskaran, H.; Dertinger, S. K. W.; Whitesides, G. M.; Water, L. V. D.; Toner, M. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol.2002,20(8), 826-830.
    [38]Yang, M. S.; Li, C. W.; Yang, J. Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal. Chem.2002,74(16),3991-4001.
    [39]Dertinger, S. K. W.; Jiang, X. Y.; Li, Z. Y.; Murthy, V. N.; Whitesides, G. M. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl. Acad. Sci. U.S.A.2002,99(20),12542-12547.
    [40]Chung, B. G.; Flanagan, L. A.; Rhee, S. W.; Schwartz, P. H.; Lee, A. P.; Monuki, E. S.; Jeon, N. L. Human neural stem cell growth and differentiation in a gradient-Generating microfluidic device. Lab Chip 2005,5(4),401-406.
    [41]Lin, F.; Butcher, E. C. T cell chemotaxis in a simple microfluidic device. Lab Chip 2006,6(11),1462-1469.
    [42]Irimia, D.; Liu, S. Y.; Tharp, W. G.; Samadani, A.; Toner, M.; Poznansky, M. C. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip 2006,6(2),191-198.
    [43]Kim, M.; Kim, T. Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis assays. Anal. Chem.2010,82(22), 9401-9409.
    [44]Kim, L.; Vahey, M. D.; Lee. H. Y.; Voldman, J. Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip 2006,6(3), 394-406.
    [45]Kim, D.; Lokuta, M. A.; Huttenlocher, A.; Beebe, D. J. Selective and tunable gradient device for cell culture and chemotaxis study. Lab Chip 2009,9(12), 1797-1800.
    [46]Sugiura, S.; Hattori, K.; Kanamori, T. Microfluidic serial dilution cell-based assay for analyzing drug dose response over a wide concentration range. Anal. Chem.2010,82(19),8278-8282.
    [47]Li, C. W.; Yang, J.; Yang, M. S. Dose-dependent cell-based assays in V-shaped microfluidic channels. Lab Chip 2006,6(7),921-929.
    [48]Thorsen, T.; Roberts, R. W.; Arnold, F. H.; Quake, S. R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett.,2001, 86(18),4163-4166.
    [49]Garstecki, P.; Fuerstman, M. J.; Stone, H. A.; Whitesides, G. M. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 2006,6(3),437-446.
    [50]Anna, S. L.; Bontoux, N.; Stone, H. A. Formation of dispersions using "flow focusing" in microchannels. Appl. Phys. Lett.,2003,82(3),364-366.
    [51]Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A. Monodisperse double emulsions generated from a microcapillary device. Science,2005,308(5721),537-541.
    [52]Li, W.; Young, E. W. K.; Seo, M.; Nie, Z. H.; Garstecki, P.; Simmons, C. A.; Kumacheva, E. Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter 2008,4(2), 258-262.
    [53]Du, W. B.; Sun, M.; Gu, S. Q.; Zhu, Y.; Fang, Q. Automated microfluidic screening assay platform based on DropLab. Anal. Chem.2010,82(23), 9941-9947.
    [54]Um, E.; Park, J. K. A microfluidic abacus channel for controlling the addition of droplets. Lab Chip 2009,9(2),207-212.
    [55]Frenz, L.; Blouwolff, J.; Griffiths, A. D.; Baret, J. C. Microfluidic production of droplet pairs. Langmuir 2008,24(20),12073-12076.
    [56]Niu, X. Z.; Gulati, S.; Edel, J. B.; deMello, A. J. Pillar-induced droplet merging in microfluidic circuits. Lab Chip 2008,8(11),1837-1841.
    [57]Boukellal, H.; Selimovic, S.; Jia, Y. W.; Cristobal, G.; Fraden, S. Simple, robust storage of drops and fluids in a microfluidic device. Lab Chip 2009,9(2), 331-338.
    [58]Srisa-Art, M.; deMello, A. J.; Edel, J. B. High-throughput DNA droplet assays using picoliter reactor volumes. Anal. Chem.2007,79(17),6682-6689.
    [59]Huebner, A.; Olguin, L. F.; Bratton, D.; Whyte, G.; Huck, W. T. S.; deMello, A. J.; Edel, J. B.; Abell, C.; Hollfelder, F. Development of quantitative cell-based enzyme assays in microdroplets. Anal. Chem.2008,80(10),3890-3896.
    [60]Liu, S. J.; Gu, Y. F.; Roux, R. B. L.; Matthews, S. M.; Bratton, D.; Yunus, K. Fisher, A. C; Huck, W. T. S. The electrochemical detection of droplets in microfluidic devices. Lab Chip 2008,8(11),1937-1942.
    [61]Han, Z. Y.; Li, W. T.; Huang, Y. Y.; Zheng, B. Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves. Anal. Chem.2009,81(14),5840-5845.
    [62]Kelly, R. T.; Page, J. S.; Marginean, I.; Tang, K.; Smith, R. D. Dilution-free analysis from picoliter droplets by nano-electrospray ionization mass spectrometry. Angew. Chem. Int. Ed.2009,48(37),6832-6835.
    [63]Fidalgo, L. M.; Whyte, G.; Bratton, D.; Kaminski, C. F.; Abell, C; Huck, W. T. S. From microdroplets to microfluidics:selective emulsion separation in microfluidic devices. Angew. Chem. Int. Ed.2008,47(11),2042-2045.
    [64]Zhu, Y.; Fang, Q. Integrated droplet analysis system with electrospray ionization-mass spectrometry using a hydrophilic tongue-based droplet extraction interface. Anal. Chem.2010,82(19),8361-8366.
    [65]Theberge, A. B.; Whyte, G.; Huck, W. T. S. Generation of picoliter droplets with defined contents and concentration gradients from the separation of chemical mixtures. Anal. Chem.2010,82(9),3449-3453.
    [66]Niu, X. Z.; Zhang, B.; Marszalek, R. T.; Ces, O.; Edel, J. B.; Klug, D. R.; deMello, A. J. Droplet-based compartmentalization of chemically separated components in two-dimensional separations. Chem. Commun.,2009, (41), 6159-6161.
    [67]Edgar, J. S.; Pabbati, C. P.; Lorenz, R. M.; He, M.; Fiorini, G. S.; Chiu, D. T. Capillary Electrophoresis Separation in the Presence of an Immiscible Boundary for Droplet Analysis. Anal. Chem.2006,78(19),6948-6954.
    [68]Roman, G. T.; Wang, M.; Shultz, K. N.; Jennings, C.; Kenned, R. T. Sampling and electrophoretic analysis of segmented flow streams using virtual walls in a microfluidic device. Anal. Chem.,2008,80 (21),8231-8238.
    [69]Pei, J.; Nie, J.; Kennedy, R. T. Parallel electrophoretic analysis of segmented samples on chip for high-throughput determination of enzyme activities. Anal. Chem.2010,82(22),9261-9267.
    [70]Frenz, L.; Harrak, A. E.; Pauly, M.; Begin-Colin, S.; Griffiths, A. D.; Baret, J. C. Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed.2008,47(36),6817-6820.
    [71]Chan, E. M.; Alivisatos, A. P.; Mathies, R. A. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J. Am. Chem. Soc.2005, 127(40),13854-13861.
    [72]Shestopalov, I.; Tice, J. D.; Ismagilov, R. F. Multi-step synthesis of nanopaiticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 2004,4(4),316-321.
    [73]Dittrich, P. S.; Jahnz, M.; Schwille, P. A new embedded process for compartmentalized cell-free protein expression and on-line detection in microfluidic devices. ChemBioChem 2005,6(5),811-814.
    [74]Courtois, F.; Olguin, L. F.; Whyte, G.; Bratton, D.; Huck, W. T. S.; Abell, C. Hollfelder, F. An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets. ChemBioChem 2008,9(3), 439-446.
    [75]Wu, N.; Zhu, Y.; Brown, S.; Oakeshott, J.; Peat, T. S.; Surjadi, R.; Easton, C.; Leech, P. W.; Sexton, B. A. A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract. Lab Chip 2009,9(23), 3391-3398.
    [76]Song, H.; Ismagilov, R. F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J. Am. Chem. Soc.2003,125(47),14613-14619.
    [77]Jambovane, S.; Kim, D. J.; Duin, E. C.; Kim, S. K.; Hong, J. W. Creation of stepwise concentration gradient in picoliter droplets for parallel reactions of matrix metalloproteinase Ⅱ and Ⅸ. Anal. Chem.2011,83(9),3358-3364.
    [78]Lorenz, R. M.; Fiorini, G. S.; Jeffries, G. D. M.; Lim, D. S. W.; He, M; Chiu, D. T. Simultaneous generation of multiple aqueous droplets in a microfluidic device. Anal. Chim. Acta 2008,630(2),124-130.
    [79]Damean, N.; Olguin, L. F.; Hollfelder, F.; Abell, C.; Huck, W. T. S. Simultaneous measurement of reactions in microdroplets filled by concentration gradients. Lab Chip 2009,9(12),1707-1713.
    [80]Bui, M. P. N.; Li, C. A.; Han, K. N.; Choo, J.; Lee, E. K.; Seong, G. H. Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient. Anal. Chem.2011,83(5),1603-1608.
    [81]Edgar, J. S.; Milne, G.; Zhao, Y. Q.; Pabbati, C. P.; Lim, D. S. W.; Chiu, D. T. Compartmentalization of chemically separated components into droplets. Angew. Chem. Int. Ed.2009,48(15),2719-2722.
    [82]Li, Q.; Pei, J.; Song, P.; Kennedy, R. T. Fraction collection from capillary liquid chromatography and off-line electrospray ionization mass spectrometry using oil segmented flow. Anal. Chem.2010,82(12),5260-5267.
    [83]Niu, X. Z.; Gielen, F.; Edel, J. B.; deMello, A. J. A microdroplet dilutor for high-throughpu screening. Nat. Chem.2011,3(6),437-442.
    [84]Zheng, B.; Roach, L. S.; Ismagilov, R. F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc. 2003,125(37),11170-11171.
    [85]Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L.; Tice, J. D.; Ismagilov, R. F. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc. Natl. Acad. Sci. U.S.A.2006,103(51),19243-19248.
    [1]Mugherli, L.; Burchak, O. N.; Balakireva, L. A.; Thomas, A.; Chatelain, F.; Balakirev, M. Y. In situ assembly and screening of enzyme inhibitors with surface-tension microarrays.Angew. Chem. Int. Ed.2009,48(41),7639-7644.
    [2]Dertinger, S. K. W.; Chiu, D. T.; Jeon, N. L.; Whitesides, G. M. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem.2001, 73(6),1240-1246.
    [3]Kamholz, A. E.; Weigl, B. H.; Finlayson, B. A.; Yager, P. Quantitative analysis of molecular interaction in a microfluidic channel:the T-sensor. Anal. Chem.1999, 71(23),5340-5347.
    [4]Mao, H. B.; Cremer, P. S.; Manson, M. D. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl. Acad. Sci. U. S. A.2003,100(9),5449-5454.
    [5]Thorsen, T.; Roberts, R. W.; Arnold, F. H.; Quake, S. R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett.2001, 86(18),4163-4166.
    [6]He, M.; Edgar, J. S.; Jeffries, G. D. M.; Lorenz, R. M.; Shelby, J. P.; Chiu, D. T. Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets. Anal. Chem.2005,77(6),1539-1544.
    [7]Shim, J.; Olguin, L. F.; Whyte, G.; Scott, D.; Babtie, A.; Abell, C.; Huck, W. T. S.; Hollfelder, F. Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. J. Am. Chem. Soc.2009,131(42),15251-15256.
    [8]Clausell-Tormos, J.; Lieber, D.; Baret, J. C.; El-Harrak, A.; Miller, O. J.; Frenz, L. Blouwolff, J.; Humphry, K. J.; Koster, S.; Duan, H.; Holtze, C.; Weitz, D. A. Griffiths, A. D.; Merten, C. A. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chemistry & Biology 2008,15(5),427-437.
    [9]Ahn, K.; Agresti, J.; Chong, H.; Marquez, M.; Weitz, D. A. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl. Phys. Lett.2006,88(26),264105.
    [10]Mazutis, L.; Baret, J. C.; Treacy, P.; Skhiri, Y.; Araghi, A. F.; Ryckelynck, M.; Taly, V.; Griffiths, A. D. Multi-step microfluidic droplet processing:kinetic analysis of an in vitro translated enzyme. Lab Chip 2009,9(20),2902-2908.
    [11]Roach, L. S.; Song, H.; Ismagilov, R. F. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal. Chem.2005,77(3),785-796.
    [12]Courtois, F.; Olguin, L. F.; Whyte, G.; Bratton, D.; Huck, W. T. S.; Abell, C.; Hollfelder, F. An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets. ChemBioChem.2008,9(3), 439-446.
    [13]Wu, N.; Zhu, Y.; Brown, S.; Oakeshott, J.; Peat, T. S.; Surjadi, R.; Easton, C.; Leech, P. W.; Sexton, B. A. A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract. Lab Chip 2009,9(23),3391-3398.
    [14]Huebner, A.; Srisa-Art, M.; Holt, D.; Abell, C.; Hollfelder, F.; deMello, A. J.; Edel, J. B. Quantitative detection of protein expression in single cells using droplet Microfluidics. Chem. Commun.2007,(12),1218-1220.
    [15]Dittrich, P. S.; Jahnz, M.; Schwille, P. A new embedded process for compartmentalized cell-free protein expression and on-line detection in microfluidic devices. ChemBioChem.2005,6(5),811-814.
    [16]Brouzes, E.; Medkova, M.; Savenelli, N.; Marran, D.; Twardowski, M.; Hutchison, J. B.; Rothberg, J. M.; Link, D. R.; Perrimon, N.; Samuels, M. L. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl. Acad. Sci. U.S.A.2009,106(34),14195-14200.
    [17]Pei, J.; Li, Q.; Robert T. Kennedy, R. T. Rapid and label-free screening of enzyme inhibitors using segmented flow electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom.2010,21(7),1107-1113.
    [18]Clausell-Tormos, J.; Griffiths, A. D.; Merten, C. A. An automated two-phase microfluidic system for kinetic analyses and the screening of compound libraries. Lab Chip 2010,10(10),1302-1307.
    [19]Granieri, L.; Baret, J. C.; Griffiths, A. D.; Christoph A. Merten, C. A. High-throughput screening of enzymes by retroviral display using droplet-based microfluidics. Chemistry & Biology 2010,17(3),229-235.
    [20]Pei, J.; Nie, J.; Kennedy, R. T. Parallel electrophoretic analysis of segmented samples on chip for high-throughput determination of enzyme activities. Anal. Chem.2010,82(22),9261-9267.
    [21]Sun, M.; Fang, Q. High-throughput sample introduction for droplet-based screening with an on-chip integrated sampling probe and slotted-vial array. Lab Chip,2010,10(21),2864-2868.
    [22]Edgar, J. S.; Milne, G.; Zhao, Y. Q.; Pabbati, C. P.; Lim, D. S. W.; Chiu, D. T. Compartmentalization of chemically separated components into droplets. Angew. Chem. Int. Ed.2009,48(15),2719-2722.
    [23]Song, H.; Ismagilov, R. F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J. Am. Chem. Soc.2003,125(47),14613-14619.
    [24]Zheng, B.; Roach, L. S.; Ismagilov, R. F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc. 2003,125(37),11170-11171.
    [25]Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L.; Tice, J. D.; Ismagilov, R. F. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc. Natl. Acad. Sci. U.S.A.2006,103(51),19243-19248.
    [26]Lorenz, R. M.; Fiorini, G. S.; Jeffries, G. D. M.; Lim, D. S. W.; He, M; Chiu, D. T. Simultaneous generation of multiple aqueous droplets in a microfluidic device. Anal. Chim. Acta 2008,630(2),124-130.
    [27]Damean, N.; Olguin, L. F.; Hollfelder, F.; Abell, C.; Huck, W. T. S. Simultaneous measurement of reactions in microdroplets filled by concentration gradients. Lab Chip 2009,9(12),1707-1713.
    [28]Bui, M. P. N.; Li, C. A.; Han, K. N.; Choo, J.; Lee, E. K.; Seong, G. H. Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient. Anal. Chem.2011,83(5),1603-1608.
    [29]Du, W. B.; Sun, M.; Gu, S. Q.; Zhu, Y.; Fang, Q. Automated microfluidic screening assay platform based on dropLab. Anal. Chem.2010,82(23), 9941-9947.
    [30]Jambovane, S.; Kim, D. J.; Duin, E. C.; Kim, S. K.; Hong, J. W. Creation of stepwise concentration gradient in picoliter droplets for parallel reactions of matrix metalloproteinase Ⅱ and Ⅸ. Anal. Chem.2011,83(9),3358-3364.
    [31]Theberge, A. B.; Whyte, G.; Huck, W. T. S. Generation of picoliter droplets with defined contents and concentration gradients from the separation of chemical mixtures. Anal. Chem.2010,82(9),3449-3453.
    [32]Jia, Z. J.; Fang, Q.; Fang, Z. L. Bonding of glass microfluidic chips at room temperatures. Anal. Chem.2004,76(18),5597-5602.
    [33]Yin, X. F.; Shen, H.; Fang, Z. L. A simplified microfabrication technology for production of glass microfluidic chips. Chinese J. Anal. Chem.2003,31(1), 116-119.
    [34]He, Q. H.; Fang, Q.; Du, W. B.; Fang, Z. L. Fabrication of a monolithic sampling probe system for automated and continuous sample introduction in microchip-based CE. Electrophoresis 2007,28(16),2912-2919.
    [35]Zhu, Y.; Pan, J. Z.; Su, Y.; He, Q. H.; Fang, Q. Fabrication of low-melting-point alloy microelectrode and monolithic spray tip integration of glass chip with electrospray ionization mass spectrometry. Talanta 2010,81(3),1069-1075.
    [36]Du, W. B.; Fang, Q.; He, Q. H.; Fang, Z. L. High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows. Anal. Chem.2005,77(5),1330-1337.
    [37]Fan, S. H.; Fang, Z. L. Compensation of calibration graph curvature and interference in flow injection spectrophotometry using gradient ratio calibration. Anal. Chim. Acta 1990,241(1),15-22.
    [38]Gisin, M.; Thommen, C. Hydrodynamically limited precision of gradient techniques in flow injection analysis. Anal. Chim. Acta 1986,179,149-167.
    [39]Hungerford, J. M.; Christian, G. D.; Ruzicka; J.; Giddings, J. C. Reaction rate measurement by flow injection analysis using the gradient stopped-flow method. Anal. Chem.1985,57(9),1794-1798.
    [40]Ruzicka, J.; Hansen, E. H. Recent development in flow injection analysis-gradient techniques and hydrodynamic injection. Anal. Chim. Acta. 1983,145(Jan),1-15.
    [41]方肇伦.流动注射分析法.北京:科学出版社,1999.
    [42]Georgiou, M. E.; Georgiou, C. A.; Koupparis, M. A. Flow injection gradient technique in spectrophotometric determination of formation constants of micromolecule-cyclodextrin complexes. Anal. Chem.1995,67(1),114-123.
    [43]Tran, C. D.; Baptista, M. S.; Tomooka, T. Determination of binding constants by flow injection gradient technique. Langmuir 1998,14(24),6886-6892.
    [44]Georgiou, M. E.; Georgiou, C. A.; Koupparis, M. A. Automated flow injection gradient technique for binding studies of micromolecules to proteins using potentiometric sensors:application to bovine serum albumin with anilinonaphthalenesulfonate probe and drugs. Anal. Chem.1999,71(13), 2541-2550.
    [45]Olsen, S.; Ruzicka, J.; Hansen, E. H. Gradient techniques in flow injection analysis:stopped-flow measurement of the activity of lactate dehydrogenase with electronic dilution. Anal. Chim. Acta 1982,136,101-112.
    [46]Motlekar, N.; Diamond, S. L.; Napper, A. D. Evaluation of orthogonal pooling strategy for rapid high-throughput screening of proteases. Assay Drug Dev. Technol.2008,6(3),395-405.
    [47]Rathore, R.; Pribil, P.; Corr, J. J.; Seibel, W. L.; Evdokimov, A.; Greis, K. D. Multiplex enzyme assays and inhibitor screening by mass spectrometry. J. Biomol. Screen.2010,15(8),1001-1007.
    [48]Green, L. S.; Bullard, J. M.; Ribble, W.; Dean, F.; Ayers, D. A.; Ochsner, U. A.; Janjic, N.; Jarvis, T. C. Inhibition of methionyl-tRNA synthetase by REP8839 and effects of resistance mutations on enzyme activity. Antimicrob. Agents Chemother.2009,53(1),86-94.
    [49]Niu, X. Z.; Gielen, F.; Edel, J. B.; deMello, A. J. A microdroplet dilutor for high-throughput screening. Nature Chemistry 2011,3(6),437-442.
    [1]马学琴.新型Caspase-]小分子抑制剂的发现.华东师范大学硕士学位论文.2006年
    [2]Ma, H.; Horiuchi, K. Y.; Wang, Y.; Stefan, A.; Kucharewicz, S. A.; Diamond, S. L. Nanoliter homogenous ultra-high throughput screening microarray for lead discoveries and IC50 profiling. Assay Drug Dev. Technol.2005,3(2),177-187.
    [3]Gosalia, D. N.; Diamond, S. L. Printing chemical libraries on microarrays for fluid phase nanoliter reactions. Proc.Natl. Acad. Sci. USA 2003,100(5),8721-8726.
    [4]Pei, J.; Li, Q.; Kennedy, R. T. Rapid and label-free screening of enzyme inhibitors using segmented flow electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom.2010,21(7),1107-1113.
    [5]Clausell-Tormos, J.; Griffiths, A. D.; Merten, C. A. An automated two-phase microfluidic system for kinetic analyses and the screening of compound libraries. Lab Chip 2010,10(10),1302-1307.
    [6]Granieri, L.; Baret, J.; Griffiths, A. D.; Merten, C. A. High-throughput screening of enzymes by retroviral display using droplet-based microfluidics. Chemistry & Biology 2010,17(3),229-235.
    [7]Mazutis, L.; Baret, J.; Treacy, P.; Skhiri, Y.; Araghi, A. F.; Ryckelynck, M.; Taly, V.; Griffiths, A. D. Multi-step microfluidic droplet processing:kinetic analysis of an in vitro translated enzyme. Lab Chip 2009,9(20),2902-2908.
    [8]Srisa-Art, M.; deMello. A. J.; Edel, J. B. High-throughput DNA droplet assays using picoliter reactor volumes. Anal. Chem.2007,79(17),6682-6689.
    [9]Dittrich, P. S.; Jahnz, M.; Schwille, P. A new embedded process for compartmentalized cell-free protein expression and on-line detection in microfluidic devices. ChemBioChem.2005,6(5),811-814.
    [10]Wu, N.; Zhu, Y.; Brown, S.; Oakeshott, J.; Peat, T. S.; Surjadi, R.; Easton, C. Leech, P. W.; Sexton, B. A. A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract. Lab Chip 2009,9(27), 3391-3398.
    [11]Chan, E. M.; Alivisatos, A. P.; Mathies, R. A. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J. Am. Chem. Soc.2005, 127(40),13854-13861.
    [12]Ahn, K.; Agresti, J.; Chong, H.; Marquez, M.; Weitz, D. A. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl. Phys. Lett.2006,88(26),264105.
    [13]Roman, G. T.:Wang, M.; Shultz, K. N.; Jennings, C.; Kennedy, R. T. Sampling and electrophoretic analysis of segmented flow streams using virtual walls in a microfluidic device. Anal. Chem.2008,80 (21),8231-8238.
    [14]Niu, X.; Gulati, S.; Edel, J. B.; deMello, A. J. Pillar-induced droplet merging in microfluidic circuits. Lab Chip 2008,8(11),1837-1841.
    [15]Mazutis, L.; Araghi, A. F.; Miller, O. J.; Baret, J.; Frenz, L.; Janoshazi, A.; Taly, V.; Miller, B. J.; Hutchison, J. B.; Link, D.; Griffiths, A. D.; Ryckelynck, M. Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal. Chem.2009,81(12), 4813-4821.
    [16]Agrestia, J. J.; Antipovc, E.; Abatea, A. R.; Ahna, K.; Rowata, A. C; Barete, J.; Marquezf, M.; Klibanovc, A. M.; Griffiths, A. D.; Weitz, D. A. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. USA 2010,107(9),4004-4009.
    [17]Shestopalov, I.; Tice, J. D.; Ismagilov, R. F.; Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab chip 2004,4(4),316-321.
    [18]Liau, A.; Karnik, R.; Majumdar, A.; Cate, J. H. D. Mixing crowded biological solutions in milliseconds. Anal. Chem.2005,77(23),7618-7625.
    [19]Shim, J.; Olguin, L. F.; Whyte, G.; Scott, D.; Babtie, A.; Abell, C.; Huck, W. T. S.; Hollfelder, F. Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. J. Am. Chem. Soc.2009,131(42),15251-15256.
    [20]Frenz, L.; Blouwolff, J.; Griffiths, A. D.; Baret, J. Microfluidic production of droplet pairs. Langmuir 2008,24 (20),12073-12076.
    [21]Holtze, C.; Rowat, A. C.; Agresti, J. J.; Hutchison, J. B.; Angile, F. E.; Schmitz, C. H. J.; Koster, S.; Duan, H.; Humphry, K. J.; Scanga, R. A.; Johnson, J. S.; Pisignano, D.; Weitz, D. A. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 2008,8(10),1632-1639.
    [22]Theberge, A. B.; Whyte, G.;Huck, W. T. S. Generation of picoliter droplets with defined contents and concentration gradients from the separation of chemical mixtures. Anal. Chem.2010,82(9),3449-3453.
    [1]Hadd, A. G.; Raymond, D. E.; Halliwell, J. W.; Jacobson, S. C.; Ramsey, J. M. Microchip device for performing enzyme assays. Anal. Chem.1997,69(17), 3407-3412.
    [2]Duffy, D. C.; Gillis, H. L.; Lin, J.; Sheppard, N. F.; Kellogg, G. J. Microfabricated centrifugal microfluidic systems:characterization and multiple enzymatic assays. Anal. Chem.1999,71 (20),4669-4678.
    [3]Yakovleva, J.; Davidsson, R.; Lobanova, A.; Bengtsson, M.; Eremin, S.; Laurell, T.; Emneus, J. Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection. Anal. Chem.2002,74 (13),2994-3004.
    [4]Seong, G. H.; Heo, J.; Crooks, R. M. Measurement of enzyme kinetics using a continuous-flow microfluidic system. Anal. Chem.2003,75 (13),3161-3167.
    [5]Burke, B. J.; Regnier, F. E. Stopped-flow enzyme assays on a chip using a microfabricated mixer. Anal. Chem.2003,75 (8),1786-1791.
    [6]Kang, J. H.; Park, J. Development of a microplate reader compatible microfluidic device for enzyme assay. Sens. Actuators B 2005,107 (2),980-985.
    [7]Su, J.; Rajapaksha, T. W.; Peter, M. E.; Mrksich, M. Assays of endogenous caspase activities:a comparison of mass spectrometry and fluorescence formats. Anal. Chem.2006,78 (14),4945-4951.
    [8]Jambovane, S.; Duin, E. C.; Kim, S. K.; Hong, J. W. Determination of kinetic parameters, Km and kcat, with a single experiment on a chip; Anal. Chem.2009, 81(9),3239-3245.
    [9]Miller, E.; Wheeler, A. R.; A digital microfluidic approach to homogeneous enzyme assays. Anal. Chem.2008,80 (5),1614-1619.
    [10]Roach, L. S.; Song, H.; Ismagilov, R. F. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal. Chem.2005,77 (3),785-796.
    [11]Ahn, K.; Agresti, J.; Chong, H.; Marquez, M.; Weitz, D. A. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl. Phys.Lett.2006,88,264105.
    [12]Huebner, A.; Olguin, L. F.; Bratton, D.; Whyte, G.; Huck, W. T. S.; de Mello, A. J.; Edel, J. B.; Abell, C.; Hollfelder, F. Development of quantitative cell-based enzyme assays in microdroplets. Anal. Chem.2008,80(10),3890-3896.
    [13]Shim, J.; Olguin, L.F.; Whyte, G.; Scott, D.; Babtie, A.; Abell, C.; Huck, W. T. S.; Hollfelder, F. Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. J. Am. Chem. Soc.2009,131(42),15251-15256.
    [14]Mazutis, L.; Baret, J. C.; Treacy, P.; Skhiri, Y.; Araghi, A. F.; Ryckelynck, M.; Taly, V.; Griffiths, A. D.. Multi-step microfluidic droplet processing:kinetic analysis of an in vitro translated enzyme. Lab Chip,2009,9(20),2902-2908.
    [15]Song, H.; Ismagilov, R. F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J. Am. Chem. Soc.2003,125(47),14613-14619.
    [16]Damean, N.; Olguin, L. F.; Hollfelder, F.; Abell, C.; Huck, W. T. S. Simultaneous measurement of reactions in microdroplets filled by concentration gradients. Lab Chip,2009,9(12),1707-1713.
    [17]Bui, M. P. N.; Li, C. A.; Han, K. N.; Choo, J.; Lee, E. K.; Seong, G. H. Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient. Anal. Chem.2011,83(5),1603-1608.
    [18]Jambovane, S.; Kim, D. J.; Duin, E. C.; Kim, S. K.; Hong, J. W. Creation of stepwise concentration gradient in picoliter droplets for parallel reactions of matrix metalloproteinase Ⅱ and Ⅸ. Anal. Chem.2011,83(9),3358-3364.
    [19]Jia, Z. J.:Fang, Q.; Fang, Z. L. Bonding of glass microfluidic chips at room temperatures. Anal. Chem.2004,76(18),5597-5602.
    [20]Yin, X. F.:Shen, H.; Fang, Z. L. A simplified microfabrication technology for production of glass microfluidic chips. Chin. J. Anal. Chem.2003.31(1), 116-119.
    [21]He, Q. H.; Fang, Q.; Du, W. B.; Fang, Z. L. Fabrication of a monolithic sampling probe system for automated and continuous sample introduction in microchip-based CE. Electrophoresis 2007,28(16),2912-2919.
    [22]Sun, M.; Fang, Q. High-throughput sample introduction for droplet-based screening with an on-chip integrated sampling probe and slotted-vial array. Lab Chip,2010,10(21),2864-2868.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700