MicroRNA-7-5p在胶质母细胞瘤微血管内皮细胞的表达及其功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     恶性肿瘤的发生与发展是一个极为复杂的过程,多种基因、多种信号通路参与其中,多种相关的发育基因在此过程中发挥着异常重要的作用。MicroRNAs的表达与调控作用,作为肿瘤发生发展的重要因素之一,被日益受到重视和越来越多的研究。MicroRNAs (miRNAs)是一类长度为18-22nt、具有基因调控功能的小分子非编码RNA。微RNAs (microRNAs, miRNAs)的失调往往与癌症的发生和发展相关。miRNAs靶向作用于其靶基因mRNAs,并与其3'-UTR完全或者不完全互补结合,引起靶mRNAs的降解,或者抑制其翻译,从而发挥其生物学作用。
     胶质母细胞瘤(Glioblastoma, WHO IV级),易称为多形性胶质母细胞瘤(Glioblastoma multiforme, GBM),无论是从发病率还是恶性程度,都是中枢神经系统肿瘤中最高的原发性肿瘤。多年来,胶质母细胞瘤的治疗,一直是神经外科学领域的一大难题,目前主要的临床治疗方案仍然是手术中最大限度的切除及辅以术后放疗、化疗等手段。虽然近几年来对GBM的有些治疗取得了新的进展,但由于其高度恶性,高术后复发率,预后仍然较差。因此,目前探索新的GBM的发病机制及寻找其新的更为有效的治疗方法仍然是一大研究热点。
     微血管增殖是GBM特有的病理特征,但是,目前对于增殖的GBM微血管内皮细胞的功能知之甚少。几乎所有的研究与化疗药物均是靶向作用于GBM细胞,而作用于抗肿瘤血管生成的化疗药物未出现预期的效果。GBM中微血管只占到肿瘤很小的一部分,以往研究通过提取整个肿瘤的总RNA或基因组DNA来寻找GBM微血管特异性差异基因显然是不适当的。本研究将提取非肿瘤脑组织微血管和GBM微血管,用微芯片技术分析对比GBM微血管和脑组织微血管的miRNA表达谱的差异性,应用现代生物学信息工具分析整合miRNA表达谱,在miRNA、mRNA及蛋白水平上研究能够加强或抑制GBM微血管增殖的某些因子,以期发现更有效的潜在抑制GBM微血管增殖的新靶点。
     目的
     1.提取纯化GBM及正常脑组织的微血管,检测二者的差异miRNAs;
     2.筛选出差异显著的miRNA,研究其对血管内皮细胞生物学行为的影响;
     3.对筛选出的差异显著的miRNA进行功能及其机制的研究,为明确其是否可作为GBM治疗的新靶点提供实验依据。
     方法
     1.应用葡聚糖沉淀梯度密度离心法,提取纯化GBM微血管和非肿瘤正常脑组织微血管。以此为基点提取总RNA。
     2.用miRNA基因芯片技术,筛查在GBM微血管和脑组织微血管中的差异表达的microRNAs,应用实时定量PCR进一步对其进行验证,验证其在微血管组织及在人脐静脉血管内皮细胞系(HUV-EC-C)中的表达情况。
     3.运用生物信息学工具TagetScan5.1、MicroCosm Targets Version5预测差异miRNA的靶基因,并对其特异性靶基因进行KEGG pathway分析。选择确定差异显著的参与调控血管内皮细胞生物学行为的microRNA及其靶基因。
     4.构建过表达目的基因的慢病毒载体和阴性对照慢病毒载体;应用293T细胞进行病毒包装和滴度测定;慢病毒载体感染HUV-EC-C细胞;应用qPCR检测慢病毒载体目的基因的表达。
     5.采用划痕实验、MTT实验、流式细胞术,观察目的基因的表达对血管内皮细胞体外迁移能力、增殖能力及其细胞周期的影响。
     6.将预测的靶基因的野生型或突变型3'-UTR克隆入GV272的XbaI位点构建萤光素酶报告基因,与过表达miRNA慢病毒或对照组慢病毒质粒共转染HUV-EC-C细胞,通过分析萤光素酶的表达以初步判定miRNA的靶基因。应用Western Blot在细胞及组织中检测,进一步确认miRNA对其靶基因的调控关系。
     7.所有结果用均数加减标准差来表示。t检验进行组间比较。MiR-7-5p和RAF1表达之间的关系通过皮尔森相关性统计方法来探究。P<0.05为差异有统计学意义。所有统计学分析用SPSS16.0软件进行。
     结果
     1.应用葡聚糖沉淀梯度密度离心法从GBM和正常脑组织中成功纯化提取出微血管组织,并应用台盼兰染色,镜下可见正常脑组织微血管每条清晰完整,分支明显;GBM微血管破碎,呈团状,分支杂乱。
     2.通过基因芯片分析显示,在GBM微血管中miR-7-5p相对于正常脑组织微血管呈现大幅下调(P<0.01),相对于正常非肿瘤脑组织微血管减少2.616倍。在各5例GBM微血管和脑组织微血管中,应用qPCR验证符合基因芯片分析结果。之后,我们又在人脐静脉内皮细胞系(HUV-EC-C)中验证miR-7-5p的表达情况,经qPCR检测,HUV-EC-C细胞中miR-7-5p明显低表达。
     3.生物信息学预测结果表明,参与血管内皮细胞生物学行为的RAF1的3'-UTR与miR-7-5p的5’端“种子序列”有很好的匹配位点。荧光素酶活性测定结果显示RAF1是miR-7-5p下游的直接靶点(P<0.01)。
     4.MTT实验、细胞周期实验显示,在体外miR-7-5p诱导血管内皮细胞周期停滞于G1期,从而抑制血管内皮细胞增值。划痕实验表明在体外miR-7-5p对血管内皮细胞的迁移能力无影响。
     5. Western blot分析显示,在HUV-EC-C细胞感染过表达miR-7-5p病毒能降低RAF1的蛋白水平,Actin作为内参,(P<0.01);在GBM和正常脑组织微血管中,miR-7-5p和RAF1的表达呈负相关关系。Pearson's相关分析具有统计学‘意义。相关性系数为-0.786,(P<0.01)。
     结论
     葡聚糖沉淀梯度密度离心法能够成功提取GBM微血管与正常脑组织微血管,台盼兰染色,镜下发现二者在形态上有明显的差别,这符合客观规律。本研究从纯化的GBM微血管和正常脑组织的微血管为基点开始。因此,对于明确在GBM微血管的发生发展中起至关重要的有意义的microRNAs及其它们的作用靶点,具有更好的参考价值,对GBM的治疗可能提供更有意义的实验依据。在目前基因芯片研究中,我们揭示了miR-7-5p在GBM微血管中明显下调,并应用qPCR在GBM微血管组织及HUVEC-C细胞株中进行了验证。此外,我们成功地包装了过表达miR-7-5p及其对照组慢病毒,并进行了体外MTT实验、细胞周期实验及划痕实验。实验结果表明niR-7-5p的过度表达能够通过诱导HUV-EC-C细胞在G1期的细胞周期停滞而显著抑制其增殖,而对血管内皮细胞在体外的迁移能力无影响。这些结果有力地支持了niR-7-5p可能是GBM微血管增值的一种抑制物。
     为了探究引起由miR-7-5p介导的GBM微血管内皮细胞生长受抑制的机制,我们接下来开始鉴别miR-7-5p潜在的靶基因。生物信息学分析显示,RAF1可能是]miR-7-5p潜在的下游靶点。而且,RAF1在多种癌症的发生发展中起着重要作用。因此,我们应用荧光素酶活性测定法来鉴定miR-7-5p在RAF1表达上的作用。荧光素酶活性测定数据显示miR-7-5p能够直接靶向作用于RAF1的3'-UTR。蛋白免疫印迹结果显示,在HUV-EC-C细胞中miR-7-5p的过度表达明显下调了RAF1的表达。我们又对5组GBM微血管和正常脑组织微血管进行了western blot实验,结果显示RAF1在GBM微血管组织中上调,在脑组织微血管中下调,并且和miR-7-5p的表达呈负相关关系。这些数据证实了miR-7-5p能够下调RAF1的表达,这也表明了RAF1在GBM微血管的形成中可能是一个促进因素。本研究提示,miR-7-5p通过对下游靶基因RAF1的调控,在GBM微血管的形成和发展中可能扮演抑癌基因的角色,并在调控血管内皮细胞的增殖等恶性生物学特性中发挥着重要作用。
Background
     The occurrence and development of malignant tumors are complex process that have multiple genes and a variety of signaling pathways participate in, and a variety of related developmental genes play an extremely important role in this process. As one of the important factors of tumor development, the expression and regulation of microRNAs is becoming more and more attention and research subject. MicroRNAs are a class of small molecules RNA with length18-22nt and non-coding, which have gene regulatory functions. MiRNAs disorders are often associated with the development and progression of cancer. MiRNAs target mRNAs by completely or not completely complementary binding, causing degradation of target mRNAs, or inhibit translation, which exerts its biological effects.
     Glioblastoma (Glioblastoma, WHO IV grade), easily called glioblastoma multiforme tumor (Glioblastoma multiforme, GBM), are the most common and most malignant primary tumors in the central nervous system tumors. The treatment of glioblastoma, is troubled by the problem of neurosurgery, the main treatment is to maximize the clinical surgical resection and postoperative supplemented by means of radiotherapy and chemotherapy. Although some aspects of treatment have made new progress in recent years, but because of its high degree of malignancy, easy to relapse after surgery, the prognosis remains poor. Therefore, to explore new glioblastoma pathogenesis and find new and more effective treatments is still a major research focus at present.
     Microvascular proliferation is a unique pathological features of GBM, however, the function of the proliferative of microvascular endothelial cells is poorly understood in the currentAlmost all studies and chemotherapy drugs are targeted to GBM cells, and act on the anti-angiogenic effects of chemotherapy drugs are not expected to occur.Because GBM microvessel only to a very small part in the tumor, previous studies that by extracting the entire tumor total RNA or genomic DNA to find GBM microvascular specific gene is clearly inappropriate.This study will extract non-tumor brain tissue microvascular and GBM microvessels, compared the differences in miRNA expression profiling in GBM microvascular and brain microvascular with micro-chip technology, apply of modern bioinformatics tools to analyze and integrate of miRNA expression profiling,and study certain factors that can enhance or inhibit the proliferation of GBM microvessels on miRNA, mRNA and protein levels, in order to find a more effective inhibition of GBM vascular proliferation potential targets.
     Objective
     1. Extracting and purificating of microvascular from GBM and normal brain tissue to detect differences miRNAs between them;
     2. Screened significant differences miRNA, to study its effects on vascular endothelial cells biological behavior;
     3. To study the function and mechanism of the filter out significant differences miRNA and provide experimental evidence for clear whether its can be used as a new target for the treatment of GBM.
     Methods
     1. Applying dextran sedimentation density gradient centrifugation, extract and purify of GBM microvascular and non-tumor normal brain tissue capillaries. Look microvascular as the specimen, and extract the total RNA from it.
     2. By miRNA microarray technology, screening differences expression microRNAs in GBM microvascular and brain tissue microvascular, using quantitative real-time PCR to further validate the gene chip result, verify its expression in the microvasculature organization and human umbilical vein endothelial cells (HUV-EC-C).
     3. By bioinformatics tools(TagetScan5.1, MicroCosm Targets Version5) prediction the target genes of differences miRNA, and perform KEGG pathway analysis for the specific target genes. Select OK the significant differences microRNA and their target genes that related to the regulation in the biological behavior of endothelial cells.
     4. Construct the lentiviral vectors with over express the desired gene and its negative control vector; perform packaging and viral titer in the293T cells;
     5. Using scratch test, MTT assay and flow cytometry, to observe the effect of target gene expression in vitro migration, proliferation and cell cycle on vascular endothelial cells.
     6. Cloned the predicted target genes3'-UTR into the XbaI site GV272and construct luciferase reporter gene, with the miRNA lentivirus and negative control lentivirus co-transfected293T cells, by analyzing the expression of luciferase to preliminary screening target genes of these highly expressed miRNA in endothelial cells. Using Western Blot to further confirmed the regulation of miRNAs to their target gene in cells and tissues.
     7. All results are expressed as mean plus or minus standard deviation. Comparisons between groups were performed with the t test. The relationship between miR-7-5p and RAF1expression was explored by Pearson's method. P<0.05was considered to be statistically significant. Statistical analyses were performed with SPSS software (version16.0).
     Results
     1. Applying dextran sedimentation density gradient centrifugation the microvascular organization was successfully extracted and purified from GBM and normal brain tissue, using trypan blue stain them, and then observed them under the microscope, we can find the normal brain tissue microvascular complete and clear each branch obvious, and however the GBM capillaries present broken, lumps and branch clutter.
     2. By microarray analysis showed that miR-7-5p significantly reduced in GBM microvessels relative to normal brain tissue microvascular (P<0.01), and reduce2.61 times relative to the normal non-tumor brain tissue microvascular. In all five cases of GBM microvascular and brain microvascular, the results of qPCR verify and the gene chip analyses have exactly the same.
     3. Bioinformatics prediction results show, the3'-UTR of RAF1that participate in the biological behavior of endothelial cells and miR-7-5p5'end "seed sequence" have better matching sites. Determination of luciferase activity shows that the RAF1is a direct target of the miR-7-5p downstream (P<0.01).
     4. MTT assay, cell cycle experiments showed that miR-7-5p induced endothelial cell cycle arrest in the G1phase, and inhibited the proliferation of endothelial cell in vitro. Scratch test showed that miR-7-5p has no effect on vascular endothelial cells in migration in vitro.
     5. Western blot analysis showed that the infection of LV-miR-7-5p leaded to a decrease of RAF1protein expression in HUV-EC-C cells. Actin was used as internal (P<0.01); In the GBM and normal brain tissue capillaries, the expression of miR-7-5p and RAF1shows negatively correlated. Pearson's correlation analysis with statistical significance. Correlation coefficient was-0.786.(P<0.01).
     Conclusions
     Dextran sedimentation density gradient centrifugation methods can be successfully extracted microvascular from GBM normal brain tissue, by trypan blue staining, and microscopy found a significant difference between GBM and normal brain microvascular in the form, this is in line with the objective law. The study began with the GBM and normal brain tissue microvascular. Therefore, there have a good reference value for the pinpoint valuable microRNAs and their targets gene that play a vital role for the occurrence of GBM microvascular, and may provide a more meaningful experimental basis for the treatment of GBM. In the current study of the gene chips, we revealed the miR-7-5p significantly downregulated in GBM microvascular, and verified the result by qPCR in the GBM microvascular tissue and HUV-EC-C cell lines. Moreover, we successfully packaged the lentivirus of over express miR-7-5p (LV-miR-7-5p) and its negative control lentivirus (LV-miR-NC), and performed the MTT assay, cell cycle test and scratch test in vitro. Experimental results showed that the overexpression of miR-7-5p can significantly inhibit the proliferation of the HUV-EC-C cells by induce the cell cycle arrest in G1phase, but for the migration of vascular endothelial cells had no effect. These results strongly supported the miR-7-5p may be an inhibitor of GBM angiogenesis.
     To explore the mechanism of miR-7-5p inhibition GBM microvascular endothelial cell growth, we have identified the potential target genes of miR-7-5p.Bioinformatics analysis shows that the RAF1may the be potential target of miR-7-5p.Moreover, RAF1plays an important role in the development and occur for many types of cancer. Therefore, we apply the luciferase activity assay to identify the role of miR-7-5p in expression of the RAF1.The luciferase activity assay shows that miR-7-5p can directly targeting the3'-UTR of RAF1. Western blot results showed that the overexpression of miR-7-5p can significantly reduced the expression of RAF1in HUV-EC-C cells. We have carried out western blot experiments in five-groups of GBM microvascular and normal brain tissue microvascular, the result shows that the RAF1upregulated in GBM tissue capillaries, however downregulated in the brain microvessels, and there have a negative correlation appeared between the miR-7-5p and the RAF1.These data confirm the miR-7-5p can downregulate the expression of RAF1, which also shows RAF1may be a contributing factor in angiogenesis of GBM. This study suggests that miR-7-5p may play a role of tumor suppressor genes in the formation and development of microvessels in GBM through the regulation of RAF1which downstream target genes, and play an important effect in the regulation of proliferation of endothelial cells.
引文
[1]Ambros V. The functions of animal microRNAs[J]. Nature.2004; 431(7006): 350-355.
    [2]Bartel DP. MicroRNAs:genomics,biogenesis,mechanism,and function[J]. Cell. 2004; 116(2):281-297.
    [3]Pasquinelli AE,Hunter S,Bracht J.MicroRNAs:a developing story[J].Curr Opin Genet Dev.2005; 15(2):200-205.
    [4]Ahmed FE. Role of miRNA in carcinogenesis and biomarker selection:a methodological view[J]. Expert Rev Mol Diagn.2007; 7(5):569-603.
    [5]Croce CM, Calin GA. miRNAs, cancer, and stem cell division[J]. Cell.2005; 122(1):6-7.
    [6]Gregory RI, Shiekhattar R. MicroRNA biogenesis and cancer[J]. Cancer Res. 2005; 65(9):3509-3512.
    [7]Croce CM. Causes and consequences of microRNA dysregulation in cancer[J]. Nat Rev Genet.2009; 10(10):704-714.
    [8]Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells[J]. Cancer Res.2005; 65(14):6029-6033.
    [9]Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A,Hodgson JG. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce different nation of brain tumor stem cells[J]. BMC Med.2008; 24:6-14.
    [10]Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro-oncology:the avenue to a cure for malignant glioma[J]. CA:a cancer journal for clinicians.2010; 60(3):166-193.
    [11]McLendon RE, Halperin EC. Is the long-term survival of patients with intracranial glioblastoma multifotme overstated?[J]. Cancer.2003; 98(8): 1745-1748.
    [12]van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler DS, Sommer C, Reifenberger G, Hanash SM. Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction[J]. Am J Pathol.2003; 163(3):1033-1043.
    [13]Kraus JA, Lamszus K, Glesmann N, Beck M, Wolter M, Sabel M, Krex D, Klockgether T, Reifenberger G, Schlegel U. Molecular genetic alterations in glioblastomas with oligodendroglial component[J].Actaneuropathologica.2001; 101(4):311-320.
    [14]Fuller GN. The WHO Classification of Tumours of the Central Nervous System, 4th edition[J]. Arch Pathol Lab Med.2008; 132(6):906.
    [15]Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, Simon R, Li Y, Robles AI, Chen Y, Ma ZC, Wu ZQ, Ye SL, Liu YK, Tang ZY, Wang XW. Predicting hepatitis B virus-positive metastatic hepatocellualr carcinomas using gene expression profiling and supervised machine Teaming[J]. Nature Medicine.2003; 9(4):416-423.
    [16]von Kriegsheim A, Pitt A, Grindlay GJ, Kolch W, Dhillon AS. Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5[J]. Nat Cell Biol.2006; 8(9): 1011-1016.
    [17]von Bulow V, Dubben S, Engelhardt G, Hebel S, Plumakers B, Heine H, Rink L, Haase H. Zinc-dependent suppression of TNF-alpha production is mediated by protein kinase A-induced inhibition of Raf-1, I kappa B kinase beta, and NF-kappa B[J]. J Immunol.2007; 179(6):4180-4186.
    [18]Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. A MicroRNA signature associated with prognosis and progression in chronic lymphocytie leukemia[J]. N Engl J Med.2005; 353(17): 1793-1801.
    [19]Volinia S1, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, Marchesini J, Mascellani N, Sana ME, Abu Jarour R, Desponts C, Teitell M, Baffa R, Aqeilan R, Iorio MV, Taccioli C, Garzon R, Di Leva G, Fabbri M, Catozzi M, Previati M, Ambs S, Palumbo T, Garofalo M, Veronese A, Bottoni A, Gasparini P, Harris CC, Visone R, Pekarsky Y, de la Chapelle A, Bloomston M, Dillhoff M, Rassenti LZ, Kipps TJ, Huebner K, Pichiorri F, Lenze D, Cairo S, Buendia MA, Pineau P,Dejean A, Zanesi N, Rossi S, Calin GA, Liu CG, Palatini J, Negrini M, Vecchione A, Rosenberg A, Croce CM. Reprogramming of miRNA networks in cancer and leukemia[J]. Genome Res.2010; 20(5):589-599.
    [20]Kim VN. MicroRNA biogenesis:coordinated cropping and dicing[J]. Nat Rev Mol Cell Biol.2005; 6(5):376-385.
    [21]Ambros V. MicroRNA pathways in flies and worms:growth, death, fat, stress, and timing[J]. Cell.2003; 113(6):673-676.
    [22]Calin GA, Croce CM. MicroRNA-cancer connection:the beginning of a new tale[J]. Cancer Res.2006; 66(15):7390-7394.
    [23]Leung AK, Sharp PA. MicroRNA functions in stress responses[J]. Mol Cell.2010; 40(2):205-215.
    [24]Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nat Rev Genet.2010;11(19):597-610.
    [25]Hermeking H. p53 enters the microRNA world[J]. Cancer Cell.2007; 12(5):414-418.
    [26]Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB. MicroRNA regulation of a cancer network:consequences of the feedback loops involving miR-17-92, E2F, and Myc[J]. Proc Natl Acad Sci USA.2008; 105(50):19678-19683.
    [27]Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA. miR-9,a MYC/MYCN-activated microRNA,regulates E-cadherin and cancer metastasis [J]. Nat Cell Biol.2010; 12(3):247-256.
    [28]Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells[J]. Science.2004; 304(5675):1338-1340.
    [29]Li Q, Ford MC, Lavik EB, Madri JA. Modeling the neurovascular niche:VEGF-and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study[J]. J Neurosci Res.2006; 84(8):1656-1668.
    [30]Gilbertson RJ, Rich JN. Making a tumour's bed:glioblastoma stem cells and the vascular niche[J]. Nat Rev Cancer.2007; 7(10):733-736.
    [31]Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R, Ross GL, Ciampa AS, Ebbeling LG, Levy B, Drappatz J, Kesari S, Wen PY. Bevacizumab for recurrent malignant gliomas:efficacy, toxicity, and patterns of recurrence[J]. Neurology.2008; 70(10):779-787.
    [32]Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A,Davidoff A, Gilbertson RJ. A perivascular niche for brain tumor stem cells[J]. Cancer Cell.2007; 11(1):69-82.
    [33]Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature.2000; 403(6772):901-906.
    [34]Bagasra O, Prilliman KR. RNA interference:the molecular immune system[J]. J Mol Histol.2004; 35(6):545-553.
    [35]Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Nature.2001; 409(6818):363-366.
    [36]Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell. 2000; 101(1):25-33.
    [37]Barton GM, Medzhitov R. Retro viral delivery of small interfering RNA into primary cells[J]. Proc Natl Acad Sci USA.2002; 99(23):14943-14945.
    [38]Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, Weinberg RA, Novina CD. Lentivirus-delivered stable gene silencing by RNAi in primary cells[J]. RNA.2003; 9(4):493-501.
    [39]Liano M, Gaznick N, Poeschla EM. Rapid, controlled and intensive lentiviral vector-based RNAi[J]. Methods Mol Biol.2009; 485:257-270.
    [40]Miest T, Saenz D, Meehan A, Llano M, Poeschla EM. Intensive RNAi with lentiviral vectors in mammalian cells[J]. Methods.2009; 47(4):298-303.
    [41]Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L. A third-generation lentivirus vector with a conditional packaging system[J]. J Virol. 1998; 72(11):8463-8471.
    [42]Taganov, KD, Boldin MP, Baltimore D. MicroRNAs and immunity:tiny players in a big field[J]. Immunity.2007; 26(2):133-137.
    [43]Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis[J]. Br J Cancer.2007; 96 Suppl:p.R40-44.
    [44]Stefani G, Slack FJ. Small non-coding RNAs in animal development[J]. Nat Rev Mol Cell Biol.2008; 9(3):219-230.
    [45]Sokol NS, Ambros V. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth[J]. Genes Dev. 2005; 19(19):2343-2354.
    [46]Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nat Genet.2006; 38(2):228-233.
    [47]Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J]. Nature. 2005; 436(7048):214-220.
    [48]Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S, Wang B, Suster S, Jacob ST, Ghoshal K. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1 [J]. J Biol Chem.2008; 283(48):33394-33405.
    [49]Chen CZ. MicroRNAs as oncogenes and tumor suppressors[J]. N Engl J Med. 2005; 353(17):1768-1771.
    [50]Yu Z, Wang C, Wang M, Li Z, Casimiro MC, Liu M, Wu K, Whittle J, Ju X, Hyslop T, McCue P, Pestell RG. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation[J]. J Cell Biol.2008; 182(3):509-517.
    [51]Ma L, Teruya-Feldstein J. Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer[J]. Nature.2007; 449(7163):682-688.
    [52]Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer[J]. Cell Res.2009; 19(4):439-448.
    [53]Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis[J]. Cell.2009; 137(6):1032-1046.
    [54]Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ.MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1 [J]. Proc Natl Acad Sci USA.2008; 105(5):1516-1521.
    [55]Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Koppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection[J]. Sci Signal.2009; 137(6):1032-46.
    [56]Chen T, Huang Z, Wang L, Wang Y, Wu F, Meng S, Wang C.MicroRNA-125a-Sp partly regulates the inflammatory response,lipid uptake, and ORP9 expression in oxLDL-Stimulated monocyte/macrophages[J]. Cardiovasc Res.2009; 83(1): 131-139.
    [57]Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G MicroRNAs modulate the angiogenic properties of HUVECs[J]. Blood.2006; 108(9):3068-3071.
    [58]Fang Y, Xue JL, Shen Q, Chen J, Tian L. Microrna-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma[J]. Hepatology.2012; 55(6):1852-1862.
    [59]Lee KM, Choi EJ, Kim I A. Microrna-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling[J]. Radiother Oncol.2011; 101(1):171-176.
    [60]Rai K, Takigawa N, Ito S, Kashihara H, Ichihara E, Yasuda T, Shimizu K, Tanimoto M, Kiura K. Liposomal delivery of microrna-7-expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells [J]. Mol Cancer Ther.2011; 10(9):1720-1727.
    [61]Xiong S, Zheng Y, Jiang P, Liu R, Liu X, Chu Y. Microrna-7 inhibits the growth of human non-small cell lung cancer a549 cells through targeting BCL-2[J]. Int J Biol Sci.2011;7(6):805-814.
    [62]Chan LW, Wang FF, Cho WC. Genomic sequence analysis of EGFR regulat ion by micrornas in lung cancer[J]. Curr Top Med Chem.2012; 12(8):920-926.
    [63]Lai EC. Micro RNAs complementary to 3'UTR sequence motifs that mediate negative posttranscriptional regulation[J]. Nat Genet.2002; 30(4):363-364.
    [64]Sen GL, Blau HM. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies[J]. Nat.Cell Biol.2005; 7(6):633-636.
    [65]Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-odies[J]. Nat.Cell Biol.2005; 7(7):719-723.
    [66]Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E. Acrucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing[J]. RNA.2005; 11(11):1640-1647.
    [67]Liu J, Rivas FV, Wohlschlegel J, Yates JR 3rd, Parker R, Hannon GJ. A role for the P-body component GW182 in microRNA function[J]. Nat. Cell Biol.2005; 7(12):1161-1166.
    [68]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell.2005; 120(1):15-20.
    [69]Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N. Combinatorial microRNA target predictions [J]. Nat Genet.2005; 37(5):495-500.
    [70]Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers[J]. Nature.2005; 435(7043):834-838.
    [71]Volinia S, Calin GA, Liu CG, Arabs S, Cirnmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proc Natl Acad Sci USA. 2006; 103(7):2257-2261.
    [72]Zhang C, Wang C, Chen X, Yang C, Li K, Wang J, Dai J, Hu Z, Zhou X, Chen L, Zhang Y, Li Y, Qiu H, Xing J, Liang Z, Ren B, Yang C, Zen K, Zhang CY. Expression profile of microRNAs in serum:a fingerprint for esophageal squamous carcinoma[J]. Clin Chem.2010; 56(12):1871-1879.
    [73]Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY, Yang RH, Feng Y, Wang FH, Tseng HY, Thorne RF, Jin L, Zhang XD. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer[J]. Oncogene.2013; 32(15):1910-1920.
    [74]Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT. Therapeutic microRNA delivery suppresses tumorigenesis in a marine liver cancer model[J]. Cell.2009; 137(6):1005-1017.
    [75]Zhong Z, Dong Z, Yang L, Gong Z. miR-21 induces cell cycle at S phase and modulates cell proliferation by down-regulating hMSH2 in lung cancer[J]. J Cancer Res Clin Oncol.2012; 138(10):1781-1788.
    [76]Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M. Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals[J]. Nature.2005; 434(7031):338-45.
    [77]Bravo-Egana V, Rosero S, Molano RD, Pileggi A, Ricordi C, Dominguez-Bendala J, Pastori RL. Quantitative differential expression analysis reveals miRNA-7 as major islet microRNA[J]. Biochem Biophys Res Commun.2008; 366(4):922-926.
    [78]Correa-Medina M, Bravo-Egana V, Rosero S, Ricordi C, Edlund H, Diez J, Pastori RL. MicroRNA miRNA-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas[J]. Gene Expr Patterns.2009; 9(4): 193-199.
    [79]Nieto M, Hevia P, Garcia E, Klein D, Alvarez-Cubela S, Bravo-Egana V, Rosero S, Damaris Molano R, Vargas N, Ricordi C, Pileggi A, Diez J, Dominguez-Bendala J, Pastori RL. Anti sense miRNA-7 impairs insulin expression indeveloping pancreas and in cultured pancreatic buds[J]. Cell Transplant.2012; 21(8):1761-1774.
    [80]Kefas B1, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, Purow B. microRNA-7 inhibits the epiderma growth factor receptor and the Akt pathway and is down-regulated in glioblastoma[J]. Cancer Res.2008; 68(10):3566-3572.
    [81]Reddy SD, Ohshiro K, Rayala SK, Kumar R. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions[J]. Cancer Res. 2008;68(20):8195-8200.
    [82]Lin X, Tao R, Zhou Y, Andong Q, Jing Z. The effects of miRNA-7 on the proliferation of human lung cancer cell line 95D cells[J]. Tumor.2010; 30(9): 763-767.
    [83]Rai K, Takigawa N, Ito S, Kashihara H, Ichihara E, Yasuda T, Shimizu K, Tanimoto M, Kiura K. Liposomal delivery of microrna-7-expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells[J]. Mol Cancer Ther.2011; 10(9):1720-1727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700