溶藻细菌L7对铜绿微囊藻的溶藻效应及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水体富营养化现象的日趋严重及藻类水华的频繁暴发,探索行之有效的抑制藻类水华暴发的途径极为迫切,其中利用溶藻细菌控藻成为目前生物控藻的研究热点。
     作者所在课题组从广州城区某富营养化池塘筛选获得一株溶藻细菌L7(简称L7),属蜡状芽孢杆菌(Bacillus cereus),在已有研究基础上,作者以常见的水华藻类——铜绿微囊藻(Microcystis aeruginosa)为研究对象,研究了L7对铜绿微囊藻的溶藻效应,并探讨了其溶藻机理。主要研究结果如下:
     1、L7对铜绿微囊藻的溶藻效应
     为了探索L7溶藻的适宜环境条件,研究了菌藻浓度及环境因子对L7溶藻效应的影响。结果表明:L7对铜绿微囊藻的溶藻效应呈“剂量-效应”关系,表现出“低浓度促进,高浓度抑制”效应;在连续7 d的实验周期内,在不同温度条件下的溶藻效应强弱依次为25℃>35℃>15℃;12 h:12 h光暗周期条件下的溶藻效应强于全光照和全黑暗;在不同pH值条件下的溶藻效应强弱依次为:pH 9.0>pH 6.0>pH 7.0>pH 8.0>pH 10.0。可见,L7对铜绿微囊藻的溶藻效应与菌藻浓度及环境因子密切相关。
     2、L7对铜绿微囊藻生理特性的影响
     研究L7对铜绿微囊藻生理特性的影响,从宏观层面初步探讨溶藻机理。结果表明:在高浓度L7(ρL7>107 cfu/mL)作用下,藻细胞脱氢酶活性、可溶性蛋白质含量、可溶性碳水化合物含量和光合色素(叶绿素a、类胡萝卜素和藻胆蛋白)含量均下降,丙二醛含量升高。可见,L7对藻细胞的生理特性影响的途径为:L7通过抑制藻细胞的光合系统活性,进而导致光合作用减弱,使得藻细胞生化反应减慢,细胞膜氧化损伤程度升高,最终影响到藻细胞分裂,使藻细胞生长受到抑制。
     3、L7对铜绿微囊藻细胞生物学特征的影响
     使用流式细胞仪,以PI染色和叶绿素自发荧光检测L7溶藻过程中藻细胞生物学特征的变化,在微观层面深入探讨溶藻机理。结果表明:L7与藻细胞接触后,先从破坏藻细胞膜完整性开始,然后透过破损的细胞膜破坏藻体的光合色素,从而抑制藻细胞的生理功能的正常发挥,从而造成藻体的非自然死亡;在L7的持续作用下,藻细胞的核酸物质也遭受到严重破坏。可见,L7对藻细胞生物学特征的影响途径在于破坏细胞膜完整性进而破坏光合色素。
     4、L7溶藻过程中磷的转移
     为明确磷在菌藻共培养体系中的转移过程,研究了L7溶藻过程中磷的转移。结果表明:L7尽管抑制了藻细胞的增殖,但藻细胞对水体磷的吸收并不受其抑制,在后期铜绿微囊藻能在藻细胞内积聚磷。可见,溶藻过程中磷部分积聚在藻细胞内。
     5、藻细胞破碎液对L7的促进
     为了进一步明晰藻类与溶藻细菌相互影响的作用机理,通过在L7的培养过程中添加铜绿微囊藻细胞破碎液,试图探究藻细胞破碎液对L7的促进作用。结果表明:藻细胞破碎液的添加有利于提高L7溶藻活性物质的溶藻效果,但不同生长阶段藻细胞破碎液的促进作用无显著差异;随着添加的藻细胞破碎液体积浓度的提高,L7溶藻活性物质的溶藻效果提高,呈现一定的“剂量-效应”关系。可见,藻细胞破碎液能提高L7的溶藻效果。
With the increasingly serious eutrophication and frequent outbreaks of algal bloom, it is imperative to explore effective methods to prevent algal bloom. The use of algicidal bacteria is considered as a new method of controlling algae has become the hotspot of biological control of algae.
     One algicidal bacteria, strain L7, was isolated from a eutrophic pond in the town of Guangzhou, which belongs to Bacillus cereus. Based on the existing research, the author studied the algicidal effect of L7 on Microcystis aeruginosa, and explored its algicidal mechanism. The main results were as follows:
     1. The algicidal effect of L7 on Microcystis aeruginosa
     The algicidal effect of L7 on Microcystis aeruginosa was consistents with the relationship of "concentration-effect", showing“low concentration promoted, high concentration inhibited”. During 7d’s consecutive experiment, the algicidal effect under different temperature conditions were 25℃>35℃>15℃. The algicidal effect in the 12h: 12h light and dark cycle was stronger than in illumination and in darkness; At different pH level, the algicidal effect were pH 9.0>pH 7.0>pH 6.0>pH 8.0>pH 10.0.
     2. The effect of L7 on the physiological characteristics of Microcystis aeruginosa
     Under the treatment of high concentration L7 (ρL7>107cfu/mL), the dehydrogenase activity, soluble protein content, soluble carbohydrate content of Microcystis aeruginosa decreased. The chlorophyll, carotenoids and phycocyanin of Microcystis aeruginosa decreased significantly. The MDA content increased. We conclude that the algicidal mechanism of L7 on Microcystis aeruginosa was: L7 inhibited the photosynthesis system activity of Microcystis aeruginosa, which led to reducing the photosynthesis, and then reducing the dehydrogenase activity, soluble protein, soluble carbohydrate content, making bilchenical reations slow down, ultimately affecting the cell division of algae.
     3. The effect of L7 on the cell biological characteristics of Microcystis aeruginosa
     The biological characteristics of the algae in the algicidal cycle by FCM analysis showed that the algicidal trends were in steps. Firstly, the Microcystis aeruginosa cell membrane was destroyed, then the chlorophyll was damaged, resulting in the non-natural death of the algae cells at the last step. In the continued effect of L7, the nucleic acids of the algae cells was also damaged severely.
     4. The transfer of phosphorus during the algicidal process
     Although L7 suppressed the proliferation of the algae cells, the absorption of phosphorus in water was not subject to its suppression, and the phosphorus could be accumulated in the algae in the latter stages.
     5. The feedback and induction of intact algal solution to L7
     Adding intact algal solution of Microcystis aeruginosa into the culture process of L7 would help improve the aligicidal effect of algicidal components to Microcystis aeruginosa, but there was no significant difference among different growth cycles of algae; With the addition of the intact algal solution of Microcystis aeruginosa increased, the algicidal effect of the algicidal components to Microcystis aeruginosa increased, showing the relationship of“dose-effect”.
引文
[1]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报. 2005, 25(3): 589-595
    [2]谢平著.论蓝藻水华的发生机制:从生物进化、生物地球化学和生态学视点[M].北京:科学出版社, 2007
    [3]金相灿,刘鸿亮,屠清瑛.中国湖泊富营养化[M].北京:中国环境科学出版社, 1990
    [4] Hutchison G. Eutrophication:The scientific background of a contemporary practical problem[J]. American Scientist. 1973(61): 269-279
    [5]徐宁,段舜山,李爱芬,等.沿岸海域富营养化与赤潮发生的关系[J].生态学报. 2005, 25(7): 1782-1786
    [6]母锐敏.溶藻细菌对水华铜绿微囊藻的去除特性及对微囊藻毒素的降解研究[D].上海:复旦大学, 2008
    [7]史顺玉.溶藻细菌对藻类的生理生态效应及作用机理研究[D].武汉:中国科学院研究生院(水生生物研究所), 2006
    [8]孙慧群,朱琳,高文宝.淡水湖泊中微囊藻水华的成因分析[J].生物学通报. 2005, 40(8): 23-24
    [9]周云龙,于明.水华的发生、危害和防治[J].生物学通报. 2004, 39(6): 11-14
    [10]牛晓君.富营养化发生机理及水华暴发研究进展[J].四川环境. 2006, 25(3): 73-76
    [11]刘辉.全流程生物氧化技术处理微污染原水[M].北京:化学工业出版社, 2003
    [12]郑建军,钟成华,邓春光.试论水华的定义[J].水资源保护. 2006, 22(5): 45-48
    [13]刘玉生,韩梅,梁占彬,等.光照、温度和营养盐对滇池微囊藻生长的影响[J].环境科学研究. 1995, 8(6): 7-11
    [14]周云龙,于明.水华的发生、危害和防治[J].生物学通报. 2004, 39(6): 11-14
    [15]张维昊,徐小清,丘昌强.水环境中微囊藻毒素研究进展[J].环境科学研究. 2001, 14(2): 57-61
    [16] Paerl H.W., Fulton R.S., Moisander P.H., et al. Harmful freshwater algal blooms, with an emphasis on cyanobacteria[J]. Scientific World Journal. 2001(1): 76-113
    [17]刘红涛.铜绿微囊藻生长与环境因子的关系及其铜胁迫下的毒理学效应[D].武汉:华中师范大学, 2003
    [18]胡鸿钧,魏印心.中国淡水藻类——系统、分类及生态[G].北京:科学出版社, 2006: 23-24
    [19] Dokulil M.T., Teubner K. Cyanobacterial dominance in lakes[J]. Hydrobiologia. 2000, 438(1-3): 1-12
    [20]高政权,孟春晓.淡水水体中蓝藻水华研究进展[J].安徽农业科学. 2009, 37(16): 7597-7598
    [21]谢平.水生动物体内的微囊藻毒素及其对人类健康的潜在威胁[M].北京:科学出版社, 2006
    [22]王士芬.湖泊水藻类的去除方法[J].污染防治技术. 2000, 13(1): 23-25
    [23]彭海清,谭章荣,高乃云,等.给水处理中藻类的去除[J].中国给水排水. 2002, 18(2): 29-31
    [24] Balcomb R., Hoberg J.R., Giddings J.M. Fate and toxicity of the algicide irgarol 1051: A marine microcosm study[J]. Bulletin of Environmental Contamination and Toxicology. 2002, 69(5): 696-703
    [25] Kim Y.S., Lee D.S., Jeong S.Y., et al. Isolation and characterization of a marine algicidal bacterium against the harmful raphidophyceae Chattonella marina[J]. Journal of Microbiology. 2009, 47(1): 9-18
    [26]胡绵好,奥岩松,朱建坤,等. pH和曝气对水生植物去除富营养化水体中氮磷等物质的影响[J].水土保持学报. 2008, 22(4): 168-173
    [27]吴洁,虞左明.西湖浮游植物的演替及富营养化治理措施的生态效应[J].中国环境科学. 2001, 21(6): 540-544
    [28]刘晶,秦玉洁,丘焱伦,等.生物操纵理论与技术在富营养化湖泊治理中的应用[J].生态科学. 2005, 24(2): 188-192
    [29] Reynolds C., Rogers D. Seasonal variations in the vertical distribution and buoyancy of Microcystis aeruginosa Kütz. emend. Elenkin in Rostherne Mere, England[J]. Hydrobiologia. 1976, 48(1): 17-23
    [30] Takamura N., Iwakuma T., Yasuno M. Uptake of 13C and 15N (ammonium, nitrate and urea) by Microcystis in Lake Kasumigaura [J]. Journal of Plankton Research. 1987(9): 151-168
    [31] Shirai M., Matumaru K., Ohotake A., et al. Development of a Solid Medium for Growth and Isolation of Axenic Microcystis Strains (Cyanobacteria)[J]. Applied and Environmental Microbiology. 1989, 55(10): 2569-2571
    [32]李仁辉,何振荣,何家菀,等.中国新记录蓝藻——绿色微囊藻及其毒性的初步研究[J].水生生物学报. 1993, 17(3): 282-284
    [33]何家菀,李络平,俞家禄,等.我国产毒微囊藻的新发现──惠氏微囊藻及其毒性的初步研究[J].水生生物学报. 1996, 20(2): 192-194
    [34]何家菀,何振荣,俞敏娟.微囊藻质粒与毒性[J].水生生物学报. 1990, 14(1): 93-94
    [35]何家菀,何振荣,俞家禄,等.东湖铜绿微囊藻毒素的分离与鉴定[J].海洋与湖沼. 1988, 19(5): 424-430
    [36]胡鸿钧,魏印心.中国淡水藻类——系统、分类及生态[G].北京:科学出版社, 2006: 67-68
    [37]吴刚,席宇,赵以军.溶藻细菌研究的最新进展[J].环境科学研究. 2002, 15(5): 43-46
    [38] Christopher G.P., Tom L.D., Kyle D.H., et al. Infection,growth,and community level consequences of a diatom pathogen in a Sonoran Desert stream[J]. Journal of Phycology. 1993, 29(4): 442-452
    [39]赵以军,刘永定.有害藻类及其微生物防治的基础──藻菌关系的研究动态[J].水生生物学报. 1996, 20(2): 173-181
    [40] Imamura N., Motoike I., Shimada N. An efficient screening approach for anti-Microcystis compounds based on knowledge of aquatic microbial ecosystem[J]. Journal of Antibiotics. 2001, 54(7): 582-587
    [41] Lovejoy C., Bowman J.P., Hallegraeff G.M. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma[J]. Applied and Environmental Microbiology. 1998, 64(8): 2806-2813
    [42] Doucette G.J., Mcgovern E.R., Babinchak J.A. Algicidal bacteria active against Gymnodinium breve (Dinophyceae). I. Bacterial isolation and characterization of killing activity[J]. Journal of Phycology. 1999, 35(6): 1447-1454
    [43] Imai I., Kim M.C., Nagasaki K., et al. Relationships between dynamics of red tide-causing raphidophycean flagellates and algicidal micro-organisms in the coastal sea of Japan[J]. Phycological Research. 1998, 46: 139-146
    [44] Doucette G., Kodama M., Franca S. Bacterial interactions with harmful algal bloom species: bloom ecology,toxigenesis and cytology[J]. NATO ASI Series. 1998(41): 619-647
    [45] Furuki M., Kobayashi M. Interaction between Chattonella and bacteria and prevention of this red tide[J]. Marine Pollution Bulletin. 1991(2):189-193
    [46] Prakash S., Lawton L.A., Edwards C. Stability of toxigenic Microcystis blooms[J]. Harmful Algae. 2009, 8(3): 377-384
    [47] Gurbuz F., Ciftci H., Akcil A. Biodegradation of cyanide containing effluents by Scenedesmus obliquus Fatma Gurbuza, Hasan Ciftcib and Ata Akcilb[J]. Journal of Hazardous Materials. 2009, 9(1): 681-686
    [48] Glass J.B., Wolfe-Simon F., Anbar A.D. Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae[J]. GEOBIOLOGY. 2009, 7(2): 100-123
    [49] Mu R., Fan Z., Pei H., et al. Isolation and algae-lysing characteristics of the algicidal bacterium B5[J]. Journal of Environmental Sciences. 2007, 19(11): 1336-1340
    [50]裴海燕,胡文容,曲音波,等.一株溶藻细菌的分离鉴定及其溶藻特性[J].环境科学学报. 2005, 25(6): 796-802
    [51] Jeong S., Ishida K., Ito Y., et al. Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides[J]. Tetrahedron Letters. 2003, 44(43): 8005-8007
    [52] Lee S.O., Kato J., Takiguchi N., et al. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp strain A28[J]. Applied and Environmental Microbiology. 2000, 66(10): 4334-4339
    [53] Banin E., Khare S.K., Naider F., et al. Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of zooxanthellae[J]. Applied and Environmental Microbiology. 2001, 67(4): 1536-1541
    [54]彭超,吴刚,席宇,等. 3株溶藻细菌的分离鉴定及其溶藻效应[J].环境科学研究. 2003, 16(1): 37-40
    [55]席宇,吴刚,张勇,等.一株淡水溶藻细菌的分离及初步研究[J].华中师范大学学报(自然科学版). 2003, 37(2): 222-226
    [56]袁峻峰,孟智芳,陈德辉,等.中性柠檬酸菌对几种常见藻类生长的他感作用[J].淡水渔业. 1999, 29(4): 12-15
    [57]赵传鹏,浦跃朴,尹立红,等.溶微囊藻菌的分离与溶藻作用[J].东南大学学报(自然科学版). 2005, 35(4): 602-606
    [58]李小彩,胡文容,裴海燕,等.一株溶藻细菌(P15)的溶藻效应研究[J].中国给水排水. 2006, 22(19): 8-11
    [59]宁华,张荣先,陈浩,等.滇池中芽孢杆菌的ARDRA分类及溶藻特性[J].湖泊科学. 2008, 20(5): 675-680
    [60]晋利,刘兆普,赵耕毛,等.一株溶藻细菌对铜绿微囊藻生长的影响及其鉴定[J].中国环境科学. 2010, 30(2): 222-227
    [61]王祥荣,胡欢,母锐敏,等. 1株铜绿微囊藻降解菌的分离鉴定及其溶藻特征[J].复旦学报(自然科学版). 2010, 49(1): 94-98
    [62] Yoshikawa K., Adachi K., Nishijima M.β-Cyanoalanine Production by Marine Bacteria on Cyanide-Free Medium and Its Specific Inhibitory Activity toward Cyanobacteria[J]. Applied and Environmental Microbiology. 2000, 66(2): 718-722
    [63] Mitsutani A., Takesue K., Mkirita M. Lysis of Skeletonema costatum by Cytophaga sp., isolated from the coastal water of the Ariakesea[J]. Nippon Suisan Gakkaishi. 1992, 58(2): 2158-2167
    [64] Imai I., Ishida Y., Hata Y. Kill of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan[J]. Marine Biology. 1993, 116(2): 527-532
    [65] Kang Y.H., Kim J.D., Kim B.H. Isolation and characterization of a bio-agent antagonistic to diatom, Stephanodiscus hantzschii[J]. Journal of Applied Microbiology. 2005, 98: 1030-1038
    [66] Jung S.W., Kim B.H., Katano T., et al. Pseudomonas fluorescens HYK0210-SK09 offers species-specific biological control of winter algal blooms caused by freshwater diatom Stephanodiscus hantzschii[J]. Journal of Applied Microbiology. 2008, 105: 186-195
    [67] Caiola M.G., Pellegrini S. Lysis of Microcystis aeruginosa by Bdellovibrio-like bacteria[J]. Journal of Phycology. 1984, 20(1): 471-475
    [68]邓建明,陶勇,李大平,等.溶藻细菌及其分子生物学研究进展[J].应用与环境生物学报. 2009, 15(6): 895-900
    [69]瞿建宏,刘韶斌.水体中芽孢杆菌和微囊藻的生长及其资源竞争[J].湛江海洋大学学报. 2002, 22(3): 13-18
    [70]吴为中,安成才,刘新尧,等.溶藻细菌B5的溶藻效果与溶藻特性的初步研究[J].北京大学学报(自然科学版). 2003, 39(4): 489-493
    [71]史顺玉,刘永定,沈银武.细菌溶藻的初步研究[J].水生生物学报. 2004, 28(2): 219-221
    [72]郑天凌,徐美珠,俞志明,等.菌-藻相互作用下胞外酶活性变化研究[J].海洋科学. 2002, 26(12): 41-45
    [73]朱丽萍,高光,汤祥明,等.微囊藻水华期间水体及藻体上细菌的动态[J].湖泊科学. 2009, 21(3): 395-400
    [74]黄姿,李春强,于晓玲,等.一株溶藻细菌(Pseudoalteromonas sp.)的分离鉴定及溶藻活性初探[J].海洋技术. 2008, 27(3): 56-60
    [75]席宇,朱大恒,黄进勇,等.溶藻细菌的生态学作用及其生物量检测方法[J].微生物学杂志. 2005, 25(5): 62-67
    [76]刘晶,潘伟斌,秦玉洁,等.两株溶藻细菌的分离鉴定及其溶藻特性[J].环境科学与技术. 2007, 30(2): 17-21
    [77]刘晶.溶藻细菌的分离鉴定及其溶藻特性研究[D].广州:华南理工大学, 2006
    [78]杨丽丽,潘伟斌,李燕.一株溶藻细菌溶藻活性物质的成份及溶藻机制[J].环境科学与技术. 2010, 33(3): 72-75
    [79]何鉴尧,潘伟斌,林敏.溶藻细菌对富营养化水体藻类群落结构的影响[J].环境污染与防治. 2008, 30(11): 70-74
    [80]赵传鹏,浦跃朴,尹立红.溶藻细菌及其测定评价方法的研究进展[J].东南大学学报(医学版). 2005, 24(3): 202-206
    [81]张胜花,葛芳杰,王红强,等.不同氮磷营养条件下铜绿微囊藻(Microcystis aeruginosa)对正磷酸盐的蓄积效果[J].长江流域资源与环境. 2008, 17(6): 909-914
    [82] Lai H.T., Hou J.H., Su C.I., et al. Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui[J]. Ecotoxicology and Environmental Safty. 2009, 72(2): 329-334
    [83] Ma J.Y., Zheng R.Q., Xu L.G., et al. Differential sensitivity of two green algae, Scenedesmus obliqnus and Chlorella pyrenoidosa, to 12 pesticides[J]. Ecotoxicology and Environmental Safty. 2002, 52(1): 57-61
    [84] Yang Z., Wang W., Liu Y., et al. Increased Growth of Chlorella pyrenoidosa (Chlorophyta) in Response to Substances from the Rotifer Brachionus calyciflorus[J]. Journal of Freshwater Ecology. 2008, 23(4): 545-552
    [85]李燕,潘伟斌,杨丽丽.三株溶藻细菌胞外溶藻活性物质若干分离特性的研究[J].微生物学通报. 2008, 35(2): 171-177
    [86]林敏,潘伟斌,张太平,等.三株溶藻细菌溶藻活性代谢产物的初步研究[J].生态环境. 2007, 16(2): 358-362
    [87]杨晓新.溶藻细菌对球形棕囊藻溶藻机理的研究[D].广州:暨南大学, 2008
    [88]李木桂,刘晶,潘伟斌,等. 3株溶藻菌生长特性研究初报[J].广州环境科学. 2007, 22(2): 1-4
    [89]张勇,席宇,吴刚.溶藻细菌杀藻物质的研究进展[J].微生物学通报. 2004, 31(1): 127-131
    [90]郑天凌,苏建强.海洋微生物在赤潮生消过程中的作用[J].水生生物学报. 2003, 27(3): 291-295
    [91] Xie J., Hu W.R., Pei H.Y., et al. Detection of amount and activity of living algae in fresh water by dehydrogenase activity (DHA)[J]. Environmental Monitoring and Assessment. 2008, 146(1-3): 473-478
    [92]石瑛,杜青平,谢树莲. 1,4-二氯苯对蛋白核小球藻的毒性效应[J].环境科学研究. 2007, 20(3): 133-136
    [93] Bennett A., Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alga[J]. The Journal of Cell Biology. 1973(58): 419-435
    [94]熊丽,吴振斌,况琪军,等.氯氰菊酯对斜生栅藻的毒性研究[J].水生生物学报. 2002, 26(1): 66-71
    [95]李学强,李秀珍.盐碱胁迫对欧李叶片部分生理生化指标的影响[J].西北植物学报. 2009, 29(11): 2288-2293
    [96] Stebbing A.R.D. Hormesis-The stimulation of growth by low levels of inhibitors [J]. The Science of the Total Environment. 1982, 22(3): 213-234
    [97]王悠,杨震,唐学玺,等. 7种海洋微藻对UV-B辐射的敏感性差异分析[J].环境科学学报. 2002, 22(2): 225-230
    [98]于娟,唐学玺,田继远.蒽与UV-B辐射共同作用对2种海洋微藻的毒性效应[J].中国水产科学. 2002, 9(2): 157-160
    [99]蔡恒江,唐学玺,张培玉,等. UV-B辐射对青岛大扁藻生长及其某些生理特性的影响[J].海洋科学进展. 2005, 23(4): 460-465
    [100] Duncan D.R., Widholm J.M. Osmotic induced stimulation of the reduction of the viability dye 2,3,5-triphenyltetrazolium chloride by maize roots and callus cultures[J]. Journal of Plant Physiology. 2004, 161(4): 397-403
    [101] Ishikawa E., Bae S.K., Miyawaki O., et al. Freezing injury of cultured rice cells analyzed by dielectric measurement[J]. Journal of Frementation and Bioengineering. 1997, 83(3): 222-226
    [102]梁文艳,王珂,阮清鸳,等. TTC-脱氢酶还原法测定铜绿微囊藻活性[J].环境科学学报. 2008, 28(9): 1745-1750
    [103]祁峰.脱氢酶活性测定水中活体藻含量的研究[D].济南:山东大学, 2006
    [104]努扎艾提·艾比布,刘云国,宋华晓,等.重金属Zn Cu对香根草生理生化指标的影响及其积累特性研究[J].农业环境科学学报. 2010, 29(1): 54-59
    [105]胡智泉,刘永定,何光源.微囊藻毒素对滇池水华束丝藻的溶藻效应研究[J].华中科技大学学报(自然科学版). 2005, 33(9): 128-131
    [106]胡智泉,刘永定.微囊藻毒素对细长聚球藻生长及生理生化特性的影响[J].水生生物学报. 2004, 28(2): 155-158
    [107]韩波平,韩志国,付翔编著.藻类光合作用机理与模型[M].北京:科学出版社, 2003
    [108]张秋英,李发东,高克昌,等.水分胁迫对冬小麦光合特性及产量的影响[J].西北植物学报. 2005, 25(6): 1184-1190
    [109]刘碧云,周培疆,李佳洁,等.丙体六六六对斜生栅藻生长及光合色素和膜脂过氧化影响的研究[J].农业环境科学学报. 2006, 25(1): 204-207
    [110]王悠,唐学玺,李永祺,等.低浓度蒽对两种海洋微藻生长的兴奋效应[J].应用生态学报. 2002, 12(3): 343-346
    [111]沈国兴,严国安,余新,等.萘及其衍生物对普通小球藻的毒性效应[J].水生生物学报. 1999, 23(5): 460-468
    [112]刘太胜,李爱芬,顾继光,等.硒对紫球藻生长及光谱特性的影响[J].生态环境. 2006, 15(2): 224-228
    [113]周志刚,尹长松.富硒极大螺旋藻整细胞、藻胆体及藻蓝蛋白的光谱特性[J].上海水产大学学报. 2002, 11(3): 208-214
    [114]周长芳,吴国荣,陆长梅,等.铅污染对钝顶螺旋藻生长及某些生理性状的影响[J].湖泊科学. 1999, 11(2): 135-140
    [115]郭沛涌,沈焕庭,张利华.淡水微型浮游植物的FCM研究[J].中国环境科学. 2002, 22(2): 101-104
    [116]于洋,孔繁翔,钱蕾蕾,等.应用流式细胞技术研究种群初始状态对藻类毒性效应的影响[J].环境化学. 2006, 25(2): 180-182
    [117]于洋,孔繁翔,钱蕾蕾,等.流式细胞术在铜对藻类生态毒理研究中的应用[J].环境化学. 2004, 23(5): 525-528
    [118]何学佳,彭兴跃.应用流式细胞仪研究Pb对海洋微藻生长的影响[J].海洋环境科学. 2003, 22(1): 1-5
    [119]谭啸,孔繁翔,曹焕生,等.利用流式细胞仪研究温度对两种藻竞争的影响[J].湖泊科学. 2006, 18(4): 419-424
    [120] Olson R., Zettler E. Potential of flow cytometry for "Pump and Probe" fluorescence measurements of phytoplankton photosynthetic characteristics[J]. Limnology and Oceanography. 1995, 40(4): 816-820
    [121] Franklin N.M., Adams M.S., Stauber J.L., et al. Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry[J]. Archives of Environmental Contamination and Toxicology. 2001, 40(4): 469-480
    [122]苏汉成.二溴海因对铜绿微囊藻水华的去除研究[D].广州:暨南大学, 2007
    [123] Stauber J.L., Franklin N.M., Adams M.S. Applications of flow cytometry to ecotoxicity testing using microalgae [J]. Trends in Biotechnology. 2002, 116(2): 165-228
    [124]于洋,孔繁翔,王美林,等.应用流式细胞技术研究铜对藻细胞膜完整性及脂酶活性的影响[J].应用与环境生物学报. 2006, 12(5): 706-709
    [125]谭香,沈宏,宋立荣.三种水华蓝藻对不同磷浓度生理响应的比较研究[J].水生生物学报. 2007, 31(5): 693-699
    [126]杨柳燕,王勤,史小丽,等.铜绿微囊藻磷代谢过程研究[J].农业环境科学学报. 2005, 24(4): 686-689
    [127]史小丽,王凤平,蒋丽娟,等.温度对外源性32P在水、铜绿微囊藻和底泥中迁移的影响[J].应用生态学报. 2003, 14(11): 1967-1970
    [128]邹迪,肖琳,杨柳燕,等.不同形态磷源对铜绿微囊藻与附生假单胞菌磷代谢的影响[J].环境科学. 2005, 28(3): 174-179
    [129]韩小波,孔繁翔,阎荣.太湖铜绿微囊藻磷摄取动力学若干重要参数与其竞争优势相关研究[J].湖泊科学. 2004, 16(3): 252-257
    [130] Manage P.M., Kawabata Z., Nakano S. Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp.[J]. Aquatic Microbial Ecology. 2000, 22(2): 111-117
    [131]蒋玫,缪宇平,袁骐,等.微小亚历山大藻对黑鲷早期生长发育的毒性效应[J].环境科学学报. 2009, 29(10): 2152-2156
    [132]周文礼,肖慧,王悠,等.小球藻与2株藻际异养细菌相互作用的研究[J].北京理工大学学报. 2008, 28(7): 643-647

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700