褪黑素对H_2O_2诱导的大鼠脑微血管周细胞损伤的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     第一部分:探讨获取高纯度大鼠原代脑微血管周细胞的分离和培养方法,并对其鉴定。
     第二部分:探讨褪黑素在过氧化氢(H2O2)诱导的大鼠脑微血管周细胞损伤中的保护作用。
     第三部分:探讨褪黑素抑制H2O2诱导的大鼠脑微血管周细胞凋亡的保护机制。
     方法
     第一部分:选取10只3周龄Wistar大鼠,取大脑,去除白质,剪碎成大约1mm3大小,通过两次酶消化、20%BSA离心和33%连续密度Percoll梯度离心获得纯度较高的大脑微血管片段,接种于35mm培养皿中,加入含10%FBS的DMEM培养基,37℃、5%CO2细胞孵箱中培养,2天后更换新鲜培养基;采用倒置显微镜观察周细胞生长状况及其形态;免疫细胞化学法检测NG2、α-SMA、vWF及GFAP表达,鉴定分离的细胞及其纯度;MTT法检测绘制其增殖曲线。
     第二部分:应用MTT试验和台盼蓝拒染试验检测不同浓度H2O2处理后脑微血管周细胞的细胞活力;应用胞内反应性氧簇检测试剂盒检测褪黑素及抗化剂GSH对胞内活性氧聚集的影响;采用TUNEL法确定细胞死亡类型;检测褪黑素及GSH对H202诱导大鼠脑微血管周细胞损伤的保护作用。
     第三部分:检测褪黑素及抗氧化剂GSH对H2O2诱导的脑微血管周细胞调亡过程中关键蛋白Caspase-3的活性影响;应用Western blot法检测凋亡相关蛋白Bax和Bcl-2的表达,观察褪黑素在H2O2诱导脑微血管周细胞凋亡中的作用。
     结果
     第一部分:培养5天左右可见周细胞从贴壁的脑微血管片段周围长出;培养的周细胞成不规则外形,在某些区域可重叠生长;8~10天可形成汇合;脑周细胞拥有长的细胞突触、较大的细胞体及圆形的细胞核;免疫细胞化学染色结果显示脑微血管周细胞NG2和α-SMA表达阳性,并可同时表达这两种标志物,而对vWF和GFAP两种蛋白的免疫反应呈阴性,排除了内皮细胞和星形胶质细胞的存在;培养的周细胞纯度达96%以上;在培养到第10天左右增殖至顶峰。
     第二部分:MTT结果显示,H202处理脑微血管周细胞可引起剂量依赖的细胞毒性作用;使用0.05mM、0.1mM和0.2mM H202作用脑微血管周细胞2h可分别导致大约12%、25%和28%的细胞死亡(P<0.05),当使用0.5mM H202处理时可诱导大约38%的细胞死亡(P<0.01);而当使用1mM H202处理时会诱导大部分(78%)周细胞死亡;应用台盼蓝拒染试验也得到了一致的结果;胞内活性氧检测结果显示使用褪黑素或抗氧化剂GSH预孵育可分别降低胞内活性氧大约27%或36%。;TUNEL实验结果表明,H202诱导的脑周细胞死亡是由凋亡介导的;与H202处理组相比,褪黑素(0.1mM)预处理可减少一半数量的H202诱导的TUNEL-阳性细胞;抗氧化剂GSH(0.5mM)也可降低H202诱导的周细胞凋亡。
     第三部分:H2O2(0.5mM)处理脑周细胞可显著增加Caspase-3活性,与对照相比增加约2.24倍(P<0.05),应用褪黑素(0.1mM)或GSH(0.5mM)预孵育后可减弱H202引起的Caspase-3活性的增加,与H202-处理组相比降低约19%(P<0.01);Western blot结果显示,与对照组相比,H202(0.5mM)处理周细胞(2h)可显著降低抗凋亡蛋白Bcl-2的表达,下降约50%(P<0.05);与H202处理组相比,使用褪黑素(0.1mM)预处理可上调Bcl-2的表达,大约增加3倍(P<0.01);但是,对促凋亡蛋白Bax的影响很小,发现对照组与处理组均表达很低。
     结论
     第一部分:该方法可成功获得纯度较高的原代大鼠脑微血管周细胞
     第二部分:褪黑素可抑制H202-诱导的脑微血管周细胞凋亡,验证了其抗凋亡作用。
     第三部分:褪黑素可通过降低Caspase-3活性及上调抗凋亡蛋白Bcl-2的表达来发挥抗凋亡作用。
Objective
     Part1:To establish the method of isolating and culturing highly purified primary rat brain microvascular pericytes.
     Part2:To explore the role of melatonin in H2O2induced brain microvascular pericytes apoptosis.
     Part3:To explore the underlying mechanism of melatonin in protecting brain microvascular pericytes against H2O2-induced apoptosis.
     Methods
     Part1:The brains of ten3-weeks old Wistar rats were recieved by decapitation. Meninges and white matter were carefully removed and gray matter was minced into approximately lmm3fragments. After twice enzymatic digestion and a33%continous Percoll gradient centrifugation, micro-vessel fragments were incubated in35mm dish plates. Brain microvascular pericytes were cultured in DMEM supplemented with10%FBS at37℃with a humidified atmosphere of5%CO2/95%air. After2days, the medium was changed with a new one. The grow course and morphology of brain microvascular pericytes were observed with inverted microscope. And, the pericytes were identified by immunocytochemical method for the immunostaining of NG2, α-SMA, vWF and GFAP. MTT assay was performed to examine the cell growth curve.
     Part2:MTT assay and trypan blue exclusion assay were carried out to measure the cell viability of cultured pericytes after treatment with different concentrations of H2O2respectively. Intracellular reactive oxygen species (ROS) was measured by using a Reactive Oxygen Species Assay Kit. To distinguish the types of cell death induced by H2O2treatment in brain microvascular pericytes, TdT-mediated dUTP nick-end labeling (TUN EL) assay was used to identify apoptosis. The protective effect of melatonin and anti-oxidant GSH was also measured.
     Part3:To determine whether caspase-3activation is involved in H2O2-induced apoptosis, Caspase-3activity was measured by using a Caspase-3activity detection kit. The expression of apoptosis-relating proteins Bax and Bcl-2were detected by western blotting.
     Results
     Part1:Brain microvascular pericytes can grow out of the microvessel fragments after 5-6days. Cultured rat brain microvascular pericytes were irregular in shape and formed multilayers in some areas of the culture dishes. These pericytes can reach confluency after8-10days. The pericytes have long cell process, larger cell body and round cell nucleus. Immunostaining results indicated that brain microvascular pericytes express NG2and a-smooth muscle actin, while markers of astrocytes (glial fibrillary acidic protein, GFAP) and endothelial cells (factor Ⅷ-related antigen/von Willebrand factor) are negative. The purity of brain pericytes is up to96%. The peak point of grow shown at10th cultured day.
     Part2:H2O2treatment elicited a dose-dependent cytotoxicity in rat brain pericytes. The treatment of pericytes with0.05mM,0.1mM, and0.2mM H2O2caused approximately12%,25%, and28%cell damage, respectively, at2h (P<0.05). The cells treated with0.5mM H2O2experienced an approximately38%decrease in viability at2h (P<0.01). Even more significant damage was found in the1mM H2O2group, as with a78%decrease in viability at2h (P<0.001). A similar pattern of cell death was also observed using a trypan blue exclusion assay. After3h pre-incubation with melatonin and the antioxidants GSH, intracellular ROS levels were decreased approximately by27%and36%respectively. TUNEL assay results indicated that pericyte death was mediated by apoptosis. Pre-incubation with0.1mM melatonin significantly reduced cell apoptosis, and the percentage of apoptotic cells was reduced to approximately half that of the H2O2-treated group that did not receive melatonin pretreatment. Pretreatment with GSH (0.5mM) also attenuated H2O2-induced apoptotic cell death.
     Part3:Compared with the controls, the activity of Caspase-3was increased by2.24-fold (P<0.05) in the brain pericytes treated with0.5mM H2O2for2h. However, incubation with melatonin (0.1mM) prior to H2O2treatment reduced the caspase-3activity by19%compared with H2O2-treated cells(P<0.01). Similar results were obtained with the antioxidant glutathione (GSH,0.5mM). The expression of the anti-apoptotic protein Bcl-2was reduced by approximately50%in cells that were treated with0.5mM H2O2for2h (P<0.05) compared with the controls. A3-fold increase in Bcl-2levels (P<0.01) was detected after pre-incubation with melatonin (0.1mM), in comparison to the H2O2-treated group. In contrast, Bax expression levels were not affected:both treated and control groups showed lower levels of Bax expression.
     Conclusion
     Part1:Highly purified primary rat brain microvascular pericytes were successfully isolated through this method.
     Part2:Melatonin was able to protect pericytes from H2O2-induced apoptotic cell death.
     Part3:Melatonin prevents H2O2-induced apoptosis in cultured brain pericytes by inhibiting caspase-3activation and by up-regulating the expression of Bcl-2.
引文
[1]Lindahl P, Johansson BR, Leveen P, et al. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice [J]. Science,1997,277(5323):242-245.
    [2]Kuhnert F, Tam BYY, Sennino B, et al. Soluble receptor-mediated selective inhibition of VEGFR and PDGFR beta signaling during physiologic and tumor angiogenesis [J]. ProcNatl Acad Sci USA,2008,105(29):159-165.
    [3]Sims DE. Diversity within pericytes [J]. Clin Exp Pharmacol P,2000,27(10): 842-846.
    [4]Bandopadhyay R, Orte C, Lawrenson JG, et al. Contractile proteins in pericytes at the blood-brain and blood-retinal barriers [J]. J Neurocytol,2001,30(1):35-44.
    [5]Hirschi KK, D'Amore PA. Pericytes in the microvasculature [J]. Cardiovasc Res, 1996,32(4):687-698.
    [6]Fernandez-Klett F, Offenhauser N, Dirnaql U, et al. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain [J]. Proc Natl Acad Sci USA,2010,107(51):22290-22295.
    [7]Zhu WH, Han J, Nicosia RF. Requisite role of p38 MAPK in mural cell recruitment during angiogenesis in the rat aorta model [J]. J Vase Res,2003,40(2):140-148.
    [8]Berger M, Bergers G, Arnold B, et al. Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization [J]. Blood, 2005,105(3):1094-1101.
    [9]Shepro D, Morel NM. Pericyte physiology [J]. FASEB J,1993,7(11):1031-1038.
    [10]Rucker HK, Wynder HJ, Thomas WE. Cellular mechanisms of CNS pericytes [J]. Brain Res Bull,2000,51(5):363-369.
    [11]Sato M, Suzuki S, Senoo H. Hepatic stellate cells:Unique characteristics in cell biology and phenotype [J]. Cell Struct. Funct,2003,28(2):105-112.
    [12]Betsholtz C, Karlsson L, Lindahl P. Developmental roles of platelet-derived growth factors [J]. Bioessays,2001,23(6):494-507.
    [13]Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance [J]. Neuro-Oncol,2005,7(4):452-464.
    [14]Parkinson FE, Hacking C. Pericyte abundance affects sucrose permeability in cultures of rat brain microvascular endothelial cells. Brain Res,2005,8-14.
    [15]Daneman R, Zhou L, Kebede AA, et al. Pericytes are required for blood-brain barrier integrity during embryogenesis [J]. Nature,2010,468(7323):562-566.
    [16]Hori S, Ohtsuki S, Hosoya K, et al. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro [J]. J Neurochem,2004,89(2):503-513.
    [17]Dohgu S, Takata F, Yamauchi A, et al. Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production [J]. Brain Res,2005,1038(2):208-215.
    [18]Kose N, Asashima T, Muta M, et al. Altered expression of basement membrane-related molecules in rat brain pericyte, endothelial, and astrocyte cell lines after transforming growth factor-betal treatment [J]. Drug Metab Pharmacok,2007, 22(4):255-266.
    [19]Kaur C, Ling E A. Blood brain barrier in hypoxic-ischemic conditions [J]. Curr Neurovasc Res,2008,5(1):71-81.
    [20]Korn J, Christ B, Kurz H. Neuroectodermal origin of brain pericytes and vascular smooth muscle cells [J]. J Comp Neurol,2002,442 (1):78-88.
    [21]Hayashi K, Nakao S, Nakaoke R, et al. Effects of hypoxia on endothelial/pericytic co-culture model of the blood-brain barrier [J]. Regul Peptides,2004,123(1-3):77-83.
    [22]Parkinson FE, Hacking C. Pericyte abundance affects sucrose permeability in cultures of rat brain microvascular endothelial cells [J]. Brain Res,2005,1049(1):8-14.
    [23]Dore-Duffy P. Pericytes:Pluripotent cells of the blood brain barrier [J]. Curr Pharm Design,2008,14(16):1581-1593.
    [24]Dore-Duffy P, Katychev A, Wang X, et al. CNS microvascular pericytes exhibit multipotential stem cell activity [J]. J Cerebr Blood F Met,2006,26(5):613-624.
    [25]Leoni G, Rattray M, Butt AM. NG2 cells differentiate into astrocytes in cerebellar slices [J]. Mol Cell Neurosci,2009,42(3):208-218.
    [26]Thomas WE. Brain macrophages:On the role of pericytes and perivascular cells [J]. Brain Res Rev,1999,31(1):42-57.
    [27]Majno G, Palade GE, Schoefl GI. Studies on inflammation:Ⅱ. The site of action of histamine and serotonin along the vascular tree:A topographic study [J]. J Biophys Biochem Cytol,1961,11(3):607-626.
    [28]Kristensson K, Olsson Y. Accumulation of protein tracers in pericytes of the central nervous system following systemic injection in immature mice [J]. Acta Neurol Scand, 1973,49(2):189-194.
    [29]Balabanov R, Washington R, Wagnerova J, et al. CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2 [J]. Microvasc Res,1996,52(2):127-142.
    [30]Quaegebeur A, Segura I, Carmeliet P. Pericytes:Blood-Brain Barrier Safeguards against Neurodegeneration [J]? Neuron,2010,68(3):321-323.
    [31]Hellstrom M, Kalen M, Lindahl P, et al. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development,1999,126(14):3047-3055.
    [32]Bell RD, Winkler EA, Sagare AP, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging [J]. Neuron, 2010,68(3):409-27.
    [33]Gonul E, Duz B, Kahraman S, et al. Early pericyte response to brain hypoxia in cats: an ultrastructural study [J]. Microvasc Res,2002,64(1):116-119.
    [34]Duz B, Oztas E, Erginay T, et al. The effect of moderate hypothermia in acute ischemic stroke on pericyte migration:an ultrastructural study [J]. Cryobiology,2007, 55(3):279-284.
    [35]Dore-Duffy P, Owen C, Balabanov R, et al. Pericyte migration from the vascular wall in response to traumatic brain injury [J]. Microvasc Res,2000,60(1):55-69.
    [36]Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis [J]. Acta. Neuropathol,1995, 90(3):228-238.
    [37]Margaill I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke. Free Radical Bio Med,2005,39(4):429-443.
    [38]Touyz RM, Schiffrim EL. Reactive oxygen species in vascular biology:implications in hypertension [J]. Histochem Cell Biol,2004,122(4):339-352.
    [39]Deshpande NN, Sorescu D, Seshiah P, et al. Mechanism of hydrogen peroxide-induced cell cycle arrest in vascular smooth muscle [J]. Antioxid Redox Sign, 2002,4(5):845-854.
    [40]Jacobson MD. Reactive oxygen species and programmed cell death [J]. Trends Biochem Sci,1996,21(3):83-86.
    [41]Rajaratnam SMW, Middleton B, Stone BM, et al. Melatonin advances the circadian timing of EEG sleep and directly facilitates sleep without altering its duration in extended sleep opportunities in humans [J]. J Physiol,2004,561(1):339-351.
    [42]Srinivasan V, Spence WD, Pandi-Perumal SR, et al. Melatonin and human reproduction:shedding light on the darkness hormone [J]. Gynecol Endocrinol,2009, 25(12):779-785.
    [43]Reiter RJ, Acuna-Castroviejo D, Tan D-X, et al. Free redical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system [J]. Ann N Y Acad Sci,2001,939:200-215.
    [44]Reiter RJ. Oxidative damage in the central nervous system:protection by melatonin [J]. Prog Neurobiol,1998,56(3):359-384.
    [45]Lin H, Lee E. Effects of melatonin in experimental stroke models in acute, sub-acute, and chronic stages [J]. Neuropsychiatr Dis Treat,2009,5:157-162.
    [46]Kotler M, Rodriguez C, Sainz RM, et al. Melatonin increases gene expression for antioxidant enzymes in rat brain cortex [J]. J. Pineal Res,1998,24(2):83-89.
    [47]Mayo JC, Sainz RM, Herrera AF, et al. Melatonin regulation of antioxidant enzyme gene expression [J]. Cell Mol Life Sci,2002,59(10):1706-1713.
    [48]Rodriguez C, Mayo JC, Sainz RM, et al. Regulation of antioxidant enzymes:a significant role for melatonin [J]. J. Pineal Res,2004,36(1):1-9.
    [49]Juknat AA, Mendez MVA, Quaglino A, et al., Melatonin prevents hydrogen peroxide-induced Bax expression in cultured rat astrocytes [J]. J. Pineal Res,2005,38 (2) 84-92.
    [50]Andrabi SA, Sayeed I, Siemen D, et al. Direct inhibition of the mitochondrial permeability transition pore:a possible mechanism responsible for antiapoptotic effects of melatonin [J]. FASEB J,2004,18(7):869-871.
    [51]Cui P, Luo Z, Zhang H, et al. Effect and mechanism of melatonin's action on the proliferation of human umbilical vein endothelial cells [J]. J. Pineal Res,2006,41(4): 358-362.
    [52]Armulik A, Abramsson A, Betsholtz C. Endothelial/Pericyte Interactions [J]. Circ Res,2005,97(6):512-523.
    [53]Rucker HK, Wynder HJ, Thomas WE. Cellular mechanisms of CNS pericytes [J]. Brain Res Bull,2000,51(5):363-369.
    [54]Anfuso CD, Lupo G, Romeo L, et al. Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCalpha and the MAPK/ERK cascade [J]. J Lipid Res,2007,48(4):782-793.
    [55]Gerhardt H, Betsholtz C. Endothelial/pericytes interactions in angiogenesis [J]. Cell Tissue Res,2003,314(1):15-23.
    [56]Yamashita J, Itoh H, Hirashima M, et al. Flkl-positive cells derived from embryonic stem cells serve as vascular progenitors [J]. Nature,2000,408(6808):92-96.
    [57]Farrington-Rock C, Crofts NJ, Doherty MJ, et al. Chondrogenic and adipogenic potential of microvascular pericytes [J]. Circulation,2004,110(15):2226-2232.
    [58]Collett G, Wood A, Alexander MY, et al. Receptor tyrosine kinase Axl modulates the osteogenic differentiation of pericytes [J]. Circ Res,2003,92(10):1123-1129.
    [59]Lai C, Kuo K. The critical component to establish in vitro BBB model:pericyte. Brain Res Rev,2005,50:258-265.
    [60]Armulik A, Genove G, Mae M, et al. Pericytes regulate the blood-brain barrier [J]. Nature,2010,468(7323):557-561.
    [61]Dore-Duffy P, Washington RA, Balabanov R. Cytokine-mediated activation of CNS microvessels:a system for examining antigenic modulation of CNS endothelial cells, and evidence for long-term expression of the adhesion protein E-selectin [J]. J Cerebr Blood F Met,1995,14(5):837-844.
    [62]Vangilder RL, Rosen CL, Barr TL, et al. Targeting the neurovascular unit for treatment of neurological disorders [J]. Pharmacol Ther,2011,130(3):239-47.
    [63]Burnette J, White RE. PGI2 opens potassium channels in retinal pericytes by cyclic AMP-stimulated, cross-activation of PKG [J]. Exp Eye Res,2006,83(6):1359-1365.
    [64]Donoghue L, Tyburski JG, Steffes CP. et al. Vascular endothelial growth factor modulates contractile response in microvascular lung pericytes [J]. Am J Surg,2006, 191(3):349-352.
    [65]Dohgu S, Takata F, Yamauchi A, et al. Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production [J]. Brain Res,2005,1038(2):208-215.
    [66]Nakagawa S, Deli MA, Nakao S, et al. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells [J]. Cell Mol Neurobiol,2007,27(6):687-694.
    [67]Dohgu S, Takata F, Matsumoto J, et al. Autocrine and paracrine up-regulation of blood-brain barrier function by plasminogen activator inhibitor-1 [J]. Microvasc Res, 2011,81(1):103-107.
    [68]Bandopadhyay R, Orte C, Lawrenson JG, et al. Contractile proteins in pericytes at the blood-brain and blood-retinal barriers [J]. J Neurocytol,2001,30(1):35-44.
    [69]鹿文葆,史晓瑞,修瑞娟.血管生成中周细胞相关信号通路的研究进展[J].中华病理学杂志,2011,40(6):423-426.
    [70]Helmbold P, Nayak RC, Marsch WC, et al. Isolation and in vitro characterization of human dermal microvascular pericytes [J]. Microvasc Res,2001,61(2):160-165.
    [71]Khoury J, Langleben D. Effects of endotoxin on lung pericytes in vitro [J]. Microvasc Res,1998,56(2):71-84.
    [72]Brachvogel B, Pausch F, Farlie P, et al. Isolated Anxa5+/Sca-1+ perivascular cells from mouse meningeal vasculature retain their perivascular phenotype in vitro and in vivo [J]. Exp Cell Res,2007,313(12):2730-2743.
    [73]Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases [J]. Ann Rev Pharmacol Toxicol,1996,36:83-106.
    [74]Facchinetti F, Dawson VL, Dawson TM. Free radicals as mediators of neuronal injury [J]. Cell Mol Neurobiol,1998,18(6):667-682.
    [75]Dimmeler S, Zeiher AM. Reactive oxygen species and vascular cell apoptosis in response to angiotensin Ⅱ and pro-atherosclerotic factors [J]. Regul Peptides,2000, 90(1-3):19-25.
    [76]Persidsky Y, Ramirez SH, Haorah J. Blood-brain barrier:structural components and function under physiologic and pathologic conditions [J]. J Neuroimmune Pharm.2006, 1(3):223-236.
    [77]Margaill I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke [J]. Free Radical Bio Med,2005,39(4):429-443.
    [78]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. Br J Cancer,1972,26(4):239-257.
    [79]Leist M, Nicotera P. Apoptosis, excitotoxicity and neuropathology [J]. Exp Cell Res, 1998,239(2):183-201.
    [80]Post A, Holboer F, Behl C. Induction of NF-κB activity during haloperidol-induced oxidative toxicity in clonal hippocampal cells:suppresion of NF-κB and neuroprotection by antioxidants [J]. J Neurosci,1998,18(20):8236-8246.
    [81]Cervantes M, Morali G, Vallejo GL. Melatonin and ischemia-reperfusion injury of the brain [J]. J. Pineal Res,2008,45(1):1-7.
    [82]Tan D-X, Manchester LC, Reiter RJ et al. Melatonin directly scavenges hydrogen peroxide:a potentially new metabolic pathway of melatonin biotransformation [J]. Free Radical Biol Med,2000,29(11):1177-1185.
    [83]Sahna E, Parlakpinar H, Turkoz Y, et al. Protective effects of melatonin on myocardial ischemia-reperfusion induced infarct size and oxidative changes [J]. Physiol Res,2005,54:491-495.
    [84]Zhao Y, Lu N, Li H, et al. High glucose induced human unbilical vein endothelial cell injury:involvement of protein tyrosine nitration [J]. Mol Cell Biochem,2008, 311(1-2):19-29.
    [85]Hwang JS, Kobayashi C, Agata K, et al. Detection of apoptosis during planarian regeneration by the expression of apoptosis-related genes and TUNEL assay [J]. Gene, 2004,333:15-25.
    [86]Li Y, Li Q, Wang Z, et al.15-HETE suppresses K+ channel activity and inhibits apoptosis in pulmonary artery smooth muscle cells [J]. Apoptosis,2009,14(1):42-51.
    [87]Hellstrom M, Gerhardt H, Kalen M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis [J]. J Cell Biol,2001,153(3): 543-553.
    [88]Motiejunaite R, Kazlauskas A. Pericytes and ocular diseases [J]. Exp Eye Res,2008, 86(2):171-177.
    [89]Welen K, Jennbacken K, Tesan T, et al. Pericyte coverage decreases invasion of tumor cells into blood vessels in prostate cancer xenografts [J]. Prostate Cancer P D, 2009,12(1):41-46.
    [90]Nishioku T, Dohgu S, Takata F, et al. Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice [J]. Cell Mol Neurobiol,2009,29(3):309-316.
    [91]Aslund F, Beckwith J. The thioredoxin superfamily:redundancy, specificity, and gray-area genomics [J]. J Bacteriol,1999,181(5):1375-1379.
    [92]Kerkar S, Speyer C, Tyburski J, et al. Reactive oxygen metabolites induce a biphasic contractile response in microvascular lung pericytes [J]. J Trauma,2001,51(3):440-445.
    [93]Labat-Moleur F, Guillermet C, Lorimier P, et al. TUNEL apoptosis cell detection in tissue sections:critical evaluation and improvement [J]. J Histochem Cytochem,1998, 46(3):327-334.
    [94]Kim J, Kim K, Shinn J, et al. The effect of antioxidants on glycated albumin-induced cytotoxicity in bovine retinal pericytes [J]. Biochem Bioph Res Co, 2002,292(4):1010-1016.
    [95]Sinha K, Degaonkar MN, Jagannathan NR, et al. Effect of melatonin on ischemia reperfusion injury induced by middle cerebral artery occlusion in rats [J]. Eur J Pharmacol,2002,428(2):185-192.
    [96]Reiter RJ, Paredes SD, Manchester LC, et al. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin [J]. Crit Rev Biochem Mol,2009,44(4): 175-200.
    [97]Skinner DC, Malpaux B. High melatonin concentrations in third ventricular cerebrospinal fluid are not due to galen vein blood recirculating through the choroids plexus [J]. Endocrinology,1999,140(10):4399-4405.
    [98]Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis [J]. Acta Neuropathol,1995, 90(3):228-238.
    [99]Ryter SW, Kim HP, Hoetzel A, et al. Mechanisms of cell death in oxidative stress [J]. Antioxid Redox Sign,2007,9(1):49-89.
    [100]Du J, Wang X, Miereles C, et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest,2004, 113(1):115-123.
    [101]Buendia B, Santa-Maria A, Courvalin JC. Caspase-dependent proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis[J].J Cell Sci.1999,112(11):1743-1753.
    [102]Love S. Oxidative stress in brain ischemia [J]. Brain Pathol,1999,9(1):119-131
    [103]Borner C. The Bcl-2 protein family:sensors and checkpoints for life-or-death decisions [J]. Mol Immunol,2003,39(11):615-647.
    [104]Kuwana T, Newmeyer DD. Bcl-2 family proteins and the role of mitochondria in apoptosis [J]. Curr Opin Cell Biol,2003,15(6):691-699.
    [105]Chen T, Lee M, Chen H, et al. Melatonin attenuates the postischemic increase in blood-brain barrier permeability and decreases hemorrhagic transformation of tissue-plasminogen activator therapy following ischemic stroke in mice [J]. J. Pineal Res, 2006,40(3):242-250.
    [106]Chetsawang B, Putthaprasart C, Phansuwan-Pujito P, et al. Melatonin protects against hydrogen peroxide-induced cell death signaling in SH-SY5Y cultured cells: involvement of nuclear factor kappa B, Bax and Bcl-2 [J]. J Pineal Res,2006,41(2): 116-123.
    [107]Baydas G, Reiter RJ, Akbulut M, et al. Melatonin inhibits neural apoptosis induced by homocysteine in hippocampus of rats via inhibition of cytochrome c translocation and caspase-3 activation and by regulating pro- and anti-apoptotic protein levels [J]. Neuroscience,2005,135(3):879-886.
    [108]Leon J, Acuna-Castroviejo D, Sainz RM, et al. Melatonin and mitochondrial function [J]. Life Sci,2004,75(7):765-790.
    [109]Martin M, Macias M, Escames G, et al. Melatonin-induced increased activity of the respiratory chain complexes Ⅰ and Ⅳ can prevent mitochondrial damage induced by ruthenium red in vivo [J]. J Pineal Res,2000,28(4):242-248.
    [110]Silva CLM, Tamura EK, Macedo SMD, et al. Melatonin inhibits nitric oxide production by microvascular endothelial cells in vivo and in vitro [J]. Brit J Pharmacol, 2007,151(2):195-205.
    [111]Yang Z, Mo X, Gong Q, et al. Critical effect of VEGF in the process of endothelial cell apoptosis induced by high glucose [J]. Apoptosis,2008,13(11):1331-1343.
    [112]Chen B, Jiang D, Tang L. Advanced glycation end-products induce apoptosis involving the signaling pathways of oxidative stress in bovine retinal pericytes [J]. Life Sci,2006,79(11):1040-1048.
    [113]Li J, Yuan J. Caspases in apoptosis and beyond [J]. Oncogene,2008,27(48): 6194-6206.
    [114]Lakhani SA, Masud A, Kuida K, et al. Caspases 3 and 7:key mediators of mitochondrial events of apoptosis [J]. Science,2006,311(5762):847-851.
    [115]Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases:structure, activation, substrates and functions during apoptosis [J]. Annu Rev Biochem,1999,68(1): 383-424.
    [116]Enari M, Sakahira H, Yokoyama H et al. A caspase-activated DNase that degrades DNA during apoptosis and its inhibitor ICAD [J]. Nature,1998,391(6662):43-50.
    [117]Green DR, Reed JC. Mitochondria and apoptosis [J]. Science,1998,281(5381): 1309-1312.
    [118]Espino J, Bejarano I, Ortiz A, et al. Melatonin as a potential tool against oxidative damage and apoptosis in ejaculated human spermatozoa [J]. Fertil Steril,2010,94(5): 1915-1917.
    [119]Escames G, Lopez A, Garcia JA, et al. The role of mitochondria in brain aging and the effects of melatonin [J]. Curr Neuropharmacol,2010,8(3):182-193.
    [120]Menendez-Pelaez A, Poeggeler B, Reiter RJ, et al. Nuclear localization of melatonin in different mammalian tissues:immunocytochemical and radioimmunoassay evidence [J]. J Cell Biochem,1993,53(4):373-382.
    [121]Andrabi SA, Sayeed I, Siemen D et al. Direct inhibition of the mitochondrial permeability transition pore:a possible mechanism responsible for anti-apoptotic effects of melatonin [J]. FASEB J,2004,18(7):869-871.
    [122]Hibaoui Y, Roulet E, Ruegg UT. Melatonin prevents oxidative stress-mediated mitochondrial permeability transition and death in skeletal muscle cells [J]. J Pineal Res, 2009,47 (3):238-252.
    [123]Hara A, Hirose Y, Wang A, et al. Localization of Bax and Bcl-2 proteins, regulators of programmed cell death, in the human central nervous system [J]. Virchows Arch,1996,429(4-5):249-253.
    [124]Clark RS, Kochanek PM, Chen M, et al. Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury [J]. FASEB J,1999,13(8): 813-821.
    [125]Lawrence MS, McLaughlin JR, Sun GH, et al. Herpes simplex viral vectors expressing Bcl-2 are neuroprotective when delivered after a stroke [J]. J Cerebr Blood F Met,1997,17(7):740-744.
    [126]Sainz RM, Mayo JC, Rodriguez C, et al. Melatonin and cell death:differential actions on apoptosis in normal and cancer cells [J]. Cell Mol Life Sci,2003,60(7): 1407-1426.
    [127]Yoo Y, Yim S, Kim S, et al. Melatonin suppresses NO-induced apoptosis via induction of Bcl-2 expression in PGT-β immortalized pineal cells [J]. J Pineal Res,2002, 33(3):146-150.
    [128]Tigges U, Welser-Alves JV, Boroujerdi A, et al. A novel and simple method for culturing pericytes from mouse brain [J]. Micro vasc Res,2012,84 (1):74-80.
    [1]Rajkumar VS, Shiwen X, Bostrom M, et al. Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol.2006,169(6):2254-2265.
    [2]Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev.2008,22(10):1276-1312.
    [3]Song N, Huang Y, Shi H, et al. Overexpression of platelet-derived growth factor-BB increases tumor pericyte content via stromal-derived factor-1 alpha/CXCR4 axis. Cancer Res.2009,69(15):6057-6064.
    [4]Sundberg C, Friman T, Hecht LE, et al. Two different PDGF beta-receptor cohorts in human pericytes mediate distinct biological endpoints. Am J Pathol.2009, 175(1):171-189.
    [5]Zhang J, Cao R, Zhang Y, et al. Differential roles of PDGFR-alpha and PDGFR-beta in angiogenesis and vessel stability. FASEB J.2009,23(1):152-163.
    [6]Brindle NP, Saharinen P, Alitalo K. Signaling and functions of angiopoietin-1 in vascular protection. Circ Res.2006,98(8):1014-1023.
    [7]Makinde T, Agrawal DK. Intra and extravascular transmembrane signaling of angiopoietin-1-Tie2 receptor in health and disease. J Cell Mol Med.2008,12(3): 810-828.
    [8]Wang YL, Hui YN, Guo B, et al. Strengthening tight junctions of retinal microvascular endothelial cells by pericytes under normoxia and hypoxia involving angiopoietin-1 signal way. Eye.2007,21(12):1501-1510.
    [9]Feng Y, vom-Hagen F, Pfister F, et al. Impaired pericyte recrument and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression. Thromb Haemost.2007, 97(1):99-108.
    [10]Reiss Y, Knedla A, Tal AO, et al. Switching of vascular phenotypes within a murine breast cancer model induced by angiopoietin-2. J Pathol.2009,217(4):571-80.
    [11]Foo SS, Turner CJ, Adams S. Ephrin-B2 Controls Cell Motility and Adhesion during Blood-Vessel-Wall Assembly. Cell.2006,124(1):161-173.
    [12]Erber R, Eichelsbacher U, Powajbo V. EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J.2006,25(3):628-641.
    [13]Armulik A, Abramsson A, Betsholtz C. Endothelial/Pericyte Interactions. Circ Res.2005,97(6):512-523.
    [14]Qi X, Okamoto Y, Murakawa T, et al. Sustained delivery of sphingosine-1-phosphate using poly (lactic-co-glycolic acid)-based microparticles stimulates Akt/ERK-eNOS mediated angiogenesis and vascular maturation restoring blood flow in ischemic limbs of mice. Eur J Pharmacol.2010,634(1-3):121-131.
    [15]Du W, Takuwa N, Yoshioka K, et al. SIP (2), the G protein-coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice. Cancer Res.2010,70(2):772-781.
    [16]Nicoli S, Standley C, Walker P, et al. MicroRNA-mediated integration of haemodynamics and Vegf signaling during angiogenesis. Nature.2010,464(7292): 1196-1200.
    [17]Larsson E, Fuchs PF, Heldin J, et al. Discovery of microvascular miRNAs using public gene expression data:miR-145 is expressed in pericytes and is a regulator of Fli 1. Genome Med.2009,1(11):108.
    [18]Berger M, Bergers G, Arnold B, et al. Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood.2005,105(3):1094-1101.
    [19]Nisancioglu MH, Mahoney-WM J, Kimmel DD, et al. Generation and characterization of rgs5 mutant mice. Mol Cell Biol.2008,28(7):2324-2331.
    [20]Manzur M, Ganss R. Regulator of g protein signaling 5:a new player in vascular remodeling. Trends Cardiovasc Med.2009,19(1):26-30.
    [21]Mitchell TS, Bradley J, Robinson GS, et al. RGS5 expression is a quantitative measure of pericyte coverage of blood vessels. Angiogenesis.2007,11(2):141-151.
    [22]Kawamura H, Li X, Goishi K, et al. Neuropilin-1 in regulation of VEGF-induced activation of p38 MAPK and endothelial cell organization. Blood.2008, 112(9):3638-3649.
    [23]Kim CO, Huh AJ, Kim MS, et al. LPS-induced vascular endothelial growth factor expression in rat lung pericytes. Shock.2008,30(1):92-97.
    [24]Liu Y, Wilkinson FL, Kirton JP, et al. Hepatocyte growth factor and c-Met expression in pericytes:implications for atherosclerotic plaque development. J Pathol. 2007,21(1):12-19.
    [25]Majumder S, Tamilarasan KP, Kolluru GK, et al. Activated pericyte attenuates endothelial functions:nitric oxide-cGMP rescues activated pericyte-associated endothelial dysfunctions. Biochem Cell Biol.2007,85(6):709-720.
    [26]Anfuso CD, Lupo G, Romeo L, et al. Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCalpha and the MAPK/ERK cascade. J Lipid Res.2007,48(4):782-793.
    [1]Sims DE. Diversity within pericytes. Clin Exp Pharmacol Physiol [J].2000, 27(10):842-846.
    [2]Ehler E, Karlhuber G, Bauer HC, et al. Heterogeneity of smooth muscle-associated proteins in mammalian brain microvasculature. Cell Tissue Res [J]. 1995,279(2):393-403.
    [3]Bandopadhyay R, Orte C, Lawrenson JG, Reid AR, et al. Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol [J].2001,30(1): 35-44.
    [4]Hughes S, Gardiner T, Hu P, et al. Altered pericyte-endothelial relations in the rat retina during aging:implications for vessel stability. Neurobiol Aging [J].2006,27(12): 1838-1847.
    [5]Donoghue L, Tyburski JG, Steffes CP, et al. Vascular endothelial growth factor modulates contractile response in microvascular lung pericytes. Am J Surg [J].2006, 191(3):349-352.
    [6]Markhotina N, Liu GJ, Martin DK. Contractility of retinal pericytes grown on silicone elastomer substrates is through a protein kinase A-mediated intracellular pathway in response to vasoactive peptides. IET Nanobiotechnol [J].2007,1(3):44-51.
    [7]Kawamura H, Sugiyama T, Wu DM, et al. ATP:a vasoactive signal in the pericyte-containing microvasculature of the rat retina. J Physiol [J].2003,551(Pt 3): 787-799.
    [8]Foo SS, Turner CJ, Adams S, et al. Ephrin-B2 Controls Cell Motility and Adhesion during Blood-Vessel-Wall Assembly. Cell [J].2006,124(1):161-173.
    [9]Edelman DA, Jiang Y, Tyburski J, et al. Pericytes and their role in microvasculature homeostasis. J Surg Res [J].2006,135(2):305-311.
    [10]Kerkar S, Speyer C, Tyburski J, et al. Reactive oxygen metabolites induce a biphasic contractile response in microvascular lung pericytes. J Trauma [J].2001,51(3): 440-445.
    [11]Yamanishi S, Katsumura K, Kobayashi T, et al. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am J physiol heart Circ physiol [J].2006,290(3):H925-34.
    [12]Reber F, Gersch U, Funk RW. Blockers of carbonic anhydrase can cause increase of retinal capillary diameter, decrease of extracellular and increase of intracellular pH in rat retinal organ culture. Graefes Arch Clin Exp Ophthalmol [J].2003, 241(2):140-148.
    [13]Peppiatt CM, Howarth C, Mobbs P, et al. Bidirectional control of CNS capillary diameter by pericytes. Nature [J].2006,443(7112):700-704.
    [14]Dai M, Nuttall A, Yang Y, et al. Visualization and contractile activity of cochlear pericytes in the capillaries of the spiral ligament. Hear Res [J].2009,254(1-2): 100-107.
    [15]Fernandez-Klett F, Offenhauser N, Dirnaql U, et al. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc NatlAcad Sci USA[J].2010,107(51):22290-22295.
    [16]Kamouchi M, Kitazono T, Ago T, et al. Calcium influx pathways in rat CNS pericytes. Brain Res Mol Brain Res [J].2004,126(2):114-120.
    [17]Cao C, Goo JH, Lee-Kwon W, et al. Vasa recta pericytes express a strong inward rectifier K+ conductance. Am J Physiol regul Integr Comp Physiol [J].2006, 290(6):R1601-7.
    [18]Hirao M, Oku H, Goto W, et al. Effects of adenosine on optic nerve head circulation in rabbits. Exp Eye Res [J].2004,79(5):729-735.
    [19]Williams M, Kerkar S, Tyburski JG, et al. The roles of cyclic adenosine monophosphate -and cyclic guanosine monophosphate-dependent protein kinase pathways in hydrogen peroxide-induced contractility of microvascular lung pericytes. J Trauma [J].2003,55(4):677-682.
    [20]Burnette JO, White RE. PGI2 opens potassium channels in retinal pericytes by cyclic AMP-stimulated, cross-activation of PKG. Exp Eye Res [J].2006,83(6): 1359-1365.
    [21]Takata F, Dohgu S, Nishioku T, et al. Adrenomedullin-induced relaxation of rat brain pericytes is related to the reduced phosphorylation of myosin light chain through the cAMP/PKA signaling pathway. Neurosci Lett [J].2009,449(1):71-75.
    [22]Kolyada AY, Riley KN, Herman IM. Rho GTPase signaling modulates cell shape and contractile phenotype in an isoactin-specific manner. Am J Physiol Cell Physiol [J].2003,285(5):C1116-21.
    [23]Lee JS, Kang Decker N, Chatterjee S, et al. Mechanisms of nitric oxide interplay with Rho GTPase family members in modulation of actin memebrane dynamics in pericytes and fibroblasts. Am J Pathol [J].2005,166(6):1861-1870.
    [24]Kutcher ME, Kolyada AY, Surks HK, et al. Pericyte Rho GTPase mediates both pericyte contractile phenotype and capillary endothelial growth state. Am J Pathol [J]. 2007,171(2):693-701.
    [25]Kotecki M, Zeiger AS, Van Vliet KJ, et al. Calpain- and talin-dependent control of microvascular pericyte contractility and cellular stiffness. Microvasc Res [J].2010, 80(3):339-348.
    [26]Lee S, Zeiger A, Maloney JM, et al. Pericyte actomyosin-mediated contraction at the cell-materual interface can modulate the microvascular niche. J Phys Condens Matter [J].2010,22(19):194115.
    [27]Kutcher ME, Herman IM. The pericyte:cellular regulator of microvascular blood flow. Microvasc Res [J].2009,77(3):235-246.
    [28]Hamilton NB, Attwell D, Hall CN. Pericyte-mediated regulation of capillary diameter:a component of neurovascular coupling in health and disease. Front Neuroenergetics [J].2010,2. pii:5.
    [29]Pournaras CJ, Rungger-Brandle E, Riva CE, et al. Regulation of retinal blood flow in health and disease. Prog Retin Eye Res [J].2008,27(3):284-330.
    [30]Yemisci M, Gursoy-Ozdemir Y, Vural A, et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med [J].2009.15(9):1031-1037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700