诺帝对内皮祖细胞参与胶质瘤血管新生的影响及其作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年研究发现,在缺血、创伤和肿瘤等病理条件下检测到源于骨髓的内皮前体细胞或称为内皮祖细胞( endothelial progenitor cells, EPCs)迁移进入病变部位增殖、分化并形成新血管,参与组织修复或肿瘤进展。该过程类似于胚胎时期的血管形成或血管发生(vasculogenesis),表明EPCs是成人组织血管新生的重要参与细胞。肿瘤血管新生化在肿瘤的生长和演进中具有重要作用。近来提出的靶向肿瘤血管系统的抗瘤治疗策略不仅针对成熟的内皮细胞,还可能通过抑制EPCs骨髓动员、归巢来抑制血管新生。尽管介导EPCs血管效应的分子机制及EPCs在肿瘤血管新生化过程中募集、归巢、组装成血管过程的确切机制尚不完全明了,但已有研究表明血管内皮生长因子(vascular endothelial growth factor, VEGF)、趋化因子CXCL8 /白细胞介素-8 (interleukin-8, IL-8)、趋化因子CXCL12 /基质细胞衍生因子(stromal cell-derived factor-1,SDF-1)等是EPCs非常重要的调节者,EPCs在肿瘤生长和演进中发挥的重要作用已使其成为抗肿瘤治疗研究的新靶点。
     我室既往研究证实,自行研制的脂氧化酶抑制剂诺帝(Nordy)不仅具有抑制肿瘤细胞增殖的作用,还具有抗血管生成作用。诺帝能有效抑制分离培养的人脐静脉内皮细胞和人恶性胶质瘤微血管内皮细胞的功能活性,并能减低实验性胶质瘤的微血管密度。但诺帝对EPCs参与肿瘤血管新生过程的影响尚不清楚。
     本研究以人脐血源性EPCs为材料,研究诺帝对体外培养的EPCs血管形成活性的影响,并采用EPCs参与肿瘤血管新生模型检测诺帝对体内EPCs血管形成效应的影响。从人脐带血中分离培养获得EPCs,在体内、外检测其内皮细胞特性;检测我室自行合成的抗癌化合物诺帝(Nordy)对两个重要的促血管生长因子VEGF和CXCL8介导的EPCs活性的抑制作用,并研究诺帝对U87细胞裸鼠移植瘤中EPCs参与血管新生的影响。主要结果和结论如下:
     1.分离获得的EPCs具有克隆形成能力,体外诱导培养具有内皮细胞免疫表型(表达CD133、CD34、KDR、vWF和CD31)和功能(吞噬DiI-Ac-LDL,连接FITC-UEA-1,在Matrigel中形成小管样结构);在VEGF刺激下EPCs具有较强的增殖活性、迁移能力和体外形成小管样结构的能力。而100μmol/L诺帝作用24 h明显抑制VEGF诱导的EPCs增殖活性(P<0.05),25~50μmol/L诺帝作用48~72 h也明显抑制EPCs增殖活性(P<0.05);25~100μmol/L诺帝显著抑制VEGF诱导的EPCs迁移活性和体外形成小管样结构的能力(P<0.05)。
     2. EPCs表达高水平的CXCL8及其受体CXCR1和CXCR2,100μmol/L诺帝作用24 h明显抑制EPCs在蛋白水平(P<0.01)和mRNA水平(P<0.05)表达CXCL8及其受体CXCR1和CXCR2;外源性CXCL8通过刺激活化EPCs表达的CXCL8受体而诱导EPCs迁移运动,100μmol/L诺帝显著抑制CXCL8诱导的EPCs迁移能力(P<0.01)。
     3. EPCs能特异性归巢到人胶质瘤细胞裸鼠移植瘤组织,并整合形成新生血管。形态上,EPCs来源的内皮细胞与鼠源性内皮细胞相互连接,构成细长条索状的嵌合性微血管;还可见仅由EPCs来源的内皮细胞形成的条索样幼稚血管。EPCs来源的内皮细胞占肿瘤总血管内皮细胞的18%。体内诺帝治疗显著抑制U87移植瘤生长,使其体积减小(P<0.05),微血管密度降低(P<0.05);诺帝明显抑制EPCs整合形成肿瘤新生血管数(P<0.05),并对移植瘤新生血管异质性产生影响,表现为,EPCs来源的内皮细胞形成的幼稚血管结构不明显,管腔样或条索样结构少见,而仅呈单个或几个细胞聚集状态,与鼠源性内皮细胞连接不紧密。诺帝显著抑制移植瘤组织的VEGF和CXCL8蛋白表达(P<0.05)。
     结论:EPCs具有形成血管能力,并参与异种移植瘤血管新生,提示EPCs在恶性肿瘤血管新生过程中具有重要作用。体内、外研究表明诺帝可能通过抑制VEGF和CXCL8诱导的EPCs活性进而减少EPCs整合形成新生血管并影响新生血管异质性而发挥其抗肿瘤效应。
Both angiogenesis and vasculogenesis contribute to tumor neovascularization, which provides oxygen and nutrients for tumor cell survival and proliferation. Endothelial progenitor cells (EPCs) are important initiators of vasculogenesis in the process of tumor neovascularization. Accumulating evidences indicate that EPCs are actively recruited to sites of tumor where the cells differentiate in situ into mature ECs and integrate into new blood vessels. However, it is unclear how circulating EPCs contribute to the formation of tumor microvessels. EPCs can be mobilized from bone marrow into the blood stream and homed by a variety of angiogenic growth factors such as vascular endothelial growth factor (VEGF) and chemokines such as CXCL12 (stromal derived factor-1, SDF-1) and CXCL8 (interleukin-8, IL-8). Therefore, EPCs have been considerated as a promising target in anti-angiogenesis treatment strategy.
     Nordy is a chiral compound of a natural lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA), synthesized in our laboratory. In previous study, we found that Nordy inhibited glioma cells proliferation, induced glioma cell apoptosis. Furthermore, it has been confirmed that Nordy inhibited angiogenesis in inflammatory diseases and cancers through its inhibitory effect on CXCR4-mediated production of CXCL8 and VEGF. It has also been found that Nordy could inhibit migration of glioma-derived microvascular endothelial cells to form tubule-like structures. However, the effect of Nordy on EPCs has not been identified.
     To investigate whether Nordy has influence on vasculogenic function of EPCs and their contribution to malignant glioma neovascularization, we isolated and cultured EPCs from human umbilical cord blood (HUCB) and examined their morphology and immunophenotype. Then, we explored the inhibitory effect of Nordy on the the response of EPCs to VEGF and CXCL8. Finally, we studied the influences of Nordy on EPCs contributions to malignant glioma neovascularization. The main results and conclusions are as follows:
     1. We isolated EPCs from HUCB. These EPCs expressed CD133, CD34, VEGFR-2 (KDR), CD31 and von Willebrand factor (vWF), and were capable of forming colonies. They could functionally uptake acetylated low-density lipoprotein (ac-LDL) and bind lectins. These EPCs were highly proliferative, migrated and formed capillary-like tubules in response to VEGF. Incubation of EPCs with 100μmol/L Nordy for 24 h initially inhibited the proliferative capacity of EPCs induced by VEGF (P < 0.05). Moreover,25~50μmol/L Nordy also exhibited inhibitory effect at 48~72 h. In addition, 25~100μmol/L Nordy impaired EPCs migratory and tubule-forming capability in vitro (P < 0.05).
     2. EPCs expressed high levels of CXCL8, CXCR1 and CXCR2 at mRNA and proteins, but reduced by treatment with 100μmol/L Nordy. Moreover, 100μmol/L Nordy impaired EPCs migratory capacity in vitro induced by CXCL8 (P < 0.05).
     3. When injected into mice bearing subcutaneously implanted human malignant glioma, EPCs specifically accumulated at the sites of tumors and differentiated into mature endothelial cells (ECs), which formed 18% of the tumor microvessel ECs. Nordy inhibited the growth of glioma xenografts, reduced tumor volume and microvessel density. Also, treatment with Nordy significantly inhibited production of VEGF and CXCL8 in tumor and attenuated incorporation of EPCs into tumor neovascularture. In addition, Nordy obviously influenced the morphology of tumor microvessles,that is, Nordy weakened the capability of EPCs-derived ECs to form typical lumina or strap-like structures in tumor, but EPCs-derived ECs just arranged by sing cell or clusters.
     In summary, the present results suggest that (1) EPCs constitute important components of tumor microvessel network and contribute to tumor neovascularization. (2) Nordy inhibited EPCs function induced by VEGF or CXCL8 in vitro and attenuated incorporation of EPCs into tumor neovascularture and also impacted tumor microvascular phenotype heterogeneity. This might be one of the mechanisms of the anti-cancer effection of Nordy.
引文
1. Gill M, Dias S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+) AC133(+) endothelial precursor cells. Circ Res, 2001, 88:167-174.
    2. Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med, 1999, 5:434-438.
    3. Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation, 2003, 107:2134-2139.
    4. Stellos K,Gawaz M. Platelets and stromal cell-derived factor-1 in progenitor cell recruitment. Semin. Thromb. Hemost. 2007, 33:159-164.
    5. Gao D, Nolan DJ, Mellick AS, et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science, 2008, 319:195-198.
    6. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275:964-967.
    7. Ho JW, Pang RW, Lau C, et al. Significance of circulating endothelial p rogenitor cells in hepatocellular carcinoma. Hepatology, 2006, 44: 836-843.
    8. Ferrari N, Glod J, Lee J, et al. Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene targeting vectors. Gene Ther, 2003,10: 647-656.
    9. Capillo M, Mancuso P, Gobbi A, et al. Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin Cancer Res, 2003,9:377-382.
    10.陈飞兰,张华蓉,卞修武,等。诺帝对大鼠C6脑胶质瘤的诱导分化治疗作用和对STAT3/p-STAT3表达的影响。中华神经外科杂, 2005, 21: 359-362.
    11. Chen JH, Bian XW, Yao XH, et al. Nordy, a synthetic lipoxygenase inhibitor, ihinhibits the expression of formylpeptide receptor and induces differentiation of malignant glioma cells. Biochem Biophys Res Commun, 2006, 342:1368-1374.
    12. Chen JH, Yao XH, Gong W, et al. A novel lipoxygenase inhibitor Nordy attenuates malignant human glioma cell responses to chemotactic and growth stimulating factors. J Neurooncol, 2007, 84:223-231.
    13. Ping YF, Yao XH, Chen JH, et al. The anti-cancer compound Nordy inhibits CXCR4-mediated production of CXCL8 and VEGF by malignant human glioma cells. J Neurooncol, 2007, 84:21-29.
    14. Bian XW, Xu JP, Ping YF, et al. Unique proteomic features induced by a potential antiglioma agent, Nordy (dl-nordihydroguaiaretic acid), in glioma cells. Proteomics. 2008, 8:484-494.
    15. Bian XW, Jiang XF, Chen JH, et al. Increased angiogenic capabilities of endothelial cells from microvessels of malignant human gliomas. Int Immunopharmacol, 2006, 6: 90-99.
    1. Shaked Y, Bertolini F, Man S, et al. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell, 2005, 7:101-111.
    2. Chen JH, Bian XW, Yao XH, et al. Nordy, a synthetic lipoxygenase inhibitor, ihinhibits the expression of formylpeptide receptor and induces differentiation of malignant glioma cells. Biochem Biophys Res Commun, 2006, 342:1368-1374.
    3. Ping YF, Yao XH, Chen JH, et al. The anti-cancer compound Nordy inhibits CXCR4-mediated production of CXCL8 and VEGF by malignant human glioma cells. J Neurooncol, 2007, 84:21-29.
    4. Chen JH, Yao XH, Gong W, et al. A novel lipoxygenase inhibitor Nordy attenuates malignant human glioma cell responses to chemotactic and growth stimulating factors. J Neurooncol, 2007, 84:223-231.
    5. Bian XW, Jiang XF, Chen JH, et al. Increased angiogenic capabilities of endothelial cells from microvessels of malignant human gliomas. Int Immunopharmacol, 2006, 6: 90-99.
    6.陈飞兰,张华蓉,徐承平,卞修武。人脐静脉血内皮祖细胞的分离、扩增和生物学特征。临床心血管病杂志, 2008, 24:140-144。
    7. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275:964-967.
    8. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res, 2004, 95:343-353.
    9. Crosby JR, Kaminski WE, Schatteman G, et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res. 2000,87:728 -730.
    10. Prater DN, Case J, Ingram DA , MC Yoder. Working hypothesis to redefine endothelial progenitor cells. Leukemia, 2007, 21:1141-1149.
    11. Burger PE, Coetzee S, McKeehanWL, et al. Fibroblast growth factor recep tor-1 is expressed by endothelial p rogenitor cells. Blood, 2002, 100: 3527-3535.
    12. Salven P, Mustjoki S, Alitalo R, et al. VEGFR-3 and CD133 identify a population of CD34+-lymphatic /vascular endothelial precursor cells. Blood, 2003, 101: 168-172.
    13. Rehman J, Li J, Orschell CM, et al. Peripheral blood“EPC”are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation, 2003, 107:1164-1169.
    14. Ingram DA, Mead LE, Moore DB, et al. Vessel wall–derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 2005, 105:2783-2786.
    15. Rookmaaker MB, Verhaar MC, Loomans Cindy JM, et al. CD34+ Cells Home, Proliferate, and Participate in Capillary Formation, and in Combination With CD34- Cells Enhance Tube Formation in a 3-Dimensional Matrix. Arteriosclerosis, Thrombosis & Vascular Biology, 2005, 25:1843-185.
    16. Gill M, Dias S, Hattori K, Rivera ML, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+) AC133(+) endothelial precursor cells. Circ Res, 2001, 88:167-174.
    17. Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med, 1999, 5:434-438.
    18. Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation, 2003, 107:2134-2139.
    19. Stellos, K. & Gawaz, M. Platelets and stromal cell-derived factor-1 in progenitor cell recruitment. Semin. Thromb. Hemost. 2007, 33:159-164.
    20. Okamoto R, Ueno M, Yamada Y, et al. Hematopoietic cells regulate the angiogenic switch during tumorigenesis. Blood, 2005, 105:2757-2763.
    21. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 2005, 438:820-827.
    22. Shantsila E, Watson T, Lip GY. Antioxidant protection: yet another function of endothelial progenitor cells? Journal of Human Hypertension, 2007, 21:343-346.
    23. Gao, D. et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science, 2008, 319:195-198.
    24. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res, 1999, 85:221-228.
    25. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med, 2001, 7:1194-1201.
    26. Márcia Regina Machein, Sabine Renninger, Elisete de Lima-Hahn, Karl H. Plate. Minor Contribution of Bone Marrow-Derived Endothelial Progenitors to the Vascularization of Murine Gliomas. Brain Pathol, 2003, 13:582-597.
    27. Justin G. Santarelli, Vikram Udani, Yun C. Yung, Sam Cheshier, Amy Wagers, Rolf A. Brekken, Irving Weissman, Victor Tse. Incorporation of Bone Marrow-derived Flk-1-expressing CD34+ Cells in the Endothelium of Tumor Vessels in the Mouse Brain. Neurosurgery, 2006,59: 374-382.
    28. Rehman J, Li J, Orschell CM, March KL. Peripheral blood“endothelial progenitor cells”are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation, 2003, 107:1164-1169.
    29. Capillo M, Mancuso P, Gobbi A, et al. Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin Cancer Res, 2003,9:377-382.
    30. Steele VE, Holmes CA, Hawk ET, et al. Potential use of lipoxygenase inhibitors for cancer chemoprevention. Expert Op in Investig Drugs, 2000, 9: 2121-2138.
    31. Wang ZY, Agarwal R, Zhou ZC, et al. Antimutagenic and antitumorigenic activities of nordihydroguaiaretic acid. Mutat Res, 1991, 261: 153-162.
    32. Dethlefsen SM, Shepro D, D’Amore PA. Arachidonic acid metabolites in bFGF- , PDGF-, and serum-stimulated vascular cell growth. Exp Cell Res, 1994, 212:262-273.
    33.吴晓华,王琳,史常旭。去甲二氢愈创木酸对大鼠卵巢功能的影响。第三军医大学学报, 2005, 27:1000-1002.
    34.陈飞兰,张华蓉,卞修武,等。诺帝对大鼠C6脑胶质瘤的诱导分化治疗作用和对STAT3/p-STAT3表达的影响。中华神经外科杂, 2005, 21: 359-362.
    35.戴超,卞修武,廖琼,等。诺帝抑制糖尿病大鼠视网膜毛细血管基底膜增厚的体视学观测。眼科新进展, 2006, 26: 650-654.
    36.刘丹宁,谢汉平,卞修武,等。诺帝滴眼液对碱烧伤诱导角膜新生血管的抑制作用。第三军医大学学报, 2006, 28: 580-583.
    37. Stoll BR, Migliorini C, Kadambi A, et al. A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy. Blood, 2003, 102: 2555-2561.
    38. Bertolini F, Paul S, Mancuso P, et al. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res, 2003, 63:4342-4346.
    39. Don?ate F, Juarez JC, Burnett ME, et al. Identification of biomarkers for the antiangiogenic and antitumour activity of the superoxide dismutase 1 (SOD1) inhibitor tetrathiomolybdate (ATN-224). British Journal of Cancer, 2008, 98:776-783.
    40. Bhatt RS, Seth P, Sukhatme VP. Biomarkers for monitoring antiangiogenic therapy. Clin Cancer Res, 2007, 15: 777s-780s.
    1. Roebuck KA. Regulation of interleukin-8 gene expression. J Interferon and Cytokine Res, 1999, 19:429-438.
    2. Chuntharapai A, Kim KJ. Regulation of the expression of IL-8 receptor A/B by IL-8: Possible function of each receptor. J Immunol, 1995, 155:2587-2594.
    3. Strieter RM,Kunkel SL. Chemokines and the lung. In lung: Scientific Foundations, 2nded. New York :Raven,1997,155-186.
    4. Sch raufstatter IU , Chung J , BurgerM. IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am J Physiol Lung Cell Mol Physiol, 2001, 280:1094-1103.
    5. Zhang W, Chen H, Chen Y, et al. Time-dependent effects of interleukin-8 gene expression in endothelial cells exposed on fluid shear stress. J Biomed Eng, 2002, 19:40-44.
    6. Kocher AA, Schuster MD, Bonaros N, et al. Myocardial homing and neovascularization by human bone marrow angioblasts is regulated by IL-8/ Gro CXC chemokines. Journal of Molecular and Cellular Cardiology, 2006, 40: 455-464.
    7. Strieter RM, Burdick MD, Gomperts BN, ey al. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev, 2005, 16: 593-609.
    8. Brenner W, Aicher A, Eckey T, et al. 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med, 2004,45: 512-518.
    9. Miller LJ, Kurtzman SH, Wang Y, et al. Expression of interleukin-8 receptors on tumor cells and vascular endothelial cells in human breast cancer tissues. Anticancer Res, 1998,18:77-82.
    10. Kido S, Kitadai Y, Hattori N, et al. Interleukin 8 and vascular endothelial growth factor-prognostic factors in human gastric carcinomas? Eur J Cancer, 2001, 37:1482-1487.
    11. Kitadai Y, Haruma K, Mukaida N, et al. Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8. Clin Can Res, 2000, 6:2735-2740.
    12. Luca M, Huang S, Gershenwald JE, et al. Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol, 1997, 151:1105-1113.
    13. Pugin J, Widmer MC, Kossodo S, et al. Human neutrophils secrete gelatinase B in vitroand in vivo in response to endotoxin and proinflammatory mediators. Am J Respir Cell Mol Biol, 1999, 20:458-464.
    14. Murdoch C, Monk PN, and Finn A. CXC chemokine receptor expression on human endothelial cells. Cytokine, 1999, 11:704-712.
    15. Benedetti S ,Erwin G,Meir V. Role of interleukin-8 as a survival factor for cultured endothelial cells. Proceedings of American association of cancer. Research, 2001, 42: # 4.
    16. Li A, Dubey S,Varney ML, et al. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol, 2003, 170: 3369-3376.
    17. Charalambous C, Pen LB, Su YS, et al. Interleukin-8 differentially regulates migration of tumor-associated and normal human brain endothelial cells. Cancer Res, 2005, 65:10347-10354.
    18. Janowska-Wieczorek A, Marquez LA, Nabholtz JM, et al. Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane. Blood, 1999, 93:3379-3390.
    19. Heymans S, Luttun A, Nuyens D, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med, 1999, 5:1135-1142.
    20. Fan YF, Ye JQ, Shen FX, et al. Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. Journal of Cerebral Blood Flow & Metabolism, 2008, 28: 90-98.
    21. He T, Peterson TE, Katusic ZS. Paracrine mitogenic effect of human endothelial progenitor cells: role of interleukin-8. Am J Physiol Heart Circ Physiol, 2005, 289: H968-H972.
    22. Ping YF, Yao XH, Chen JH, et al. The anti-cancer compound Nordy inhibits CXCR4-mediated production of IL-8 and VEGF by malignant human glioma cells. J Neurooncol, 2007, 84:21-29.
    1. Yoder MC, Mead LE, Prater D, et al. Re-defining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 2007, 109: 1801-1809
    2. Ferrari N, Glod J, Lee J, et al. Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors. Gene Ther, 2003,10:647-656.
    3. Fox SB, Leek RD, Weekes MP, et al. Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol, 1995, 177:275-83.
    4. Ho JW, Pang RW, Lau C, et al. Significance of circulating endothelial p rogenitor cells in hepatocellular carcinoma. Hepatology, 2006, 44: 836-843.
    5. Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 2002,109: 625-637.
    6. Ruzinova MB,Schoer RA,Gerald W,et al. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell, 2003, 4:277-289.
    7. De Palma M, Venneri MA, Roca C, et al. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nature Med, 2003, 9: 789-795.
    8. Peters BA, Diaz LA, Polyak K, et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nature Med, 2005, 11:261-262 .
    9. Stoll BR, Migliorini C, Kadambi A. A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy. Blood, 2003, 102:2555-2561.
    10. Bian XW, Chen JH, Jiang XF, et al. Angiogenesis as an immunopharmacologic target in inflammation and cancer. Int Immunopharmacol, 2004, 4: 1537-1547.
    11. Bian XW, Wang QL, Xiao HL, et al. Tumor microvascular architecture phenotype(T-MAP) as a new concept for studies of angiogenesis and oncology. J Neurooncol, 2006, 80: 211-213
    12. Orimo A, Gupta PB, Sqroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005, 121:335-348.
    13. Bertolini F, Shaked Y, Mancuso P, et al. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nature Rev. Cancer, 2006,6: 835-845.
    14. Duda DG, Cohen KS, Tomaso ED, et al. Differential CD146 expression on circulating versus tissue endothelial cells in rectal cancer patients: implications for circulating endothelial and progenitor cells as biomarkers for antiangiogenic therapy. J Clin Oncol, 2006, 24:1449-1453.
    15. Shaked Y,Bertolini F, Man S, et al. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell, 2005,7:101-111.
    16. Browder T, Butterfield CE, Kr?ling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res, 2000, 60:1878-1886.
    17. Klement G, Baruchel S, Rak J, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest, 2000,105:R15-R24.
    18. Bertolini F, Paul S, Mancuso P, et al. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res, 2003, 63:4342-4346.
    19. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nature Rev Cancer, 2004, 4:423-436.
    20. Ferrari N, Glod J , Lee J , et al. Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene targeting vectors. Gene Ther, 2003,10: 647-656.
    21. Yi L, Zhou ZH, Ping YF, et al. Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma. Modern Pathology, 2007,20:1061-1068.
    22. Yao XH, Ping YF, Chen JH, et al. Glioblastoma stem cells produce vascular endothelial growth factor by activation of formylpeptide receptor (FPR). J Patho. receiced.
    23. Yu SC, Ping YF, Yi L, et al. Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Let, 2008, in press.
    1. Pool EH, Dunlop GR. Cancer cells in the blood stream. Am J Cancer, 1934, 21: 99-103.
    2. Hladovec J, Rossman P. Circulating endothelial cells isolated together with platelets and the experimental modification of their counts in rats. Thromb Res, 1973, 3:665-674.
    3. George F, Poncelet P, Laurent JC, et al. Cytofluorometric detection of human endothelial cells in whole blood using S-Endo 1 monoclonal antibody. J Immunol, Methods,1991,139:65-75.
    4. Sbarbati R, de Boer M, Marzilli M, et al. Immunologic detection of endothelial cells in human whole blood. Blood, 1991,77:764-769.
    5. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275:964-967.
    6. Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A, 2000, 97:3422-3427.
    7. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature, 2008, 451: 937- 942.
    8. Roncalli JG, Tongers J, Renault MA, Losordo DW. Endothelial progenitor cells in regenerative medicine and cancer: a decade of research.Trends in Biotechnology, In Press, Corrected Proof, Available online 21 March 2008.
    9. McLean K, Buckanovich RJ. Myeloid cells functioning in tumor vascularization as a novel therapeutic target. Transl Res, 2008,151(2): 59-67.
    10. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res, 2004, 95:343-353.
    11. Crosby JR, Kaminski WE, Schatteman G, et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res, 2000,87:728 -730.
    12. Barber CL, Iruela-Arispe ML. The ever-elusive endothelial progenitor cell: identities, functions and clinical implications. Pediatr Res, 2006, 59:26R-32R.
    13. Ahn GO, Brown JM. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis:role of bone marrow-derived myelomonocytic Cells. Cancer Cell, 2008, 13 (3):193-205.
    14. Rohde E, Malischnik C, Thaler D, et al. Blood monocytes mimic endothelial progenitor cells. Stem Cells, 2006, 24:357-367.
    15. Lin Y, Weisdorf DJ, Solovey A, et al. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest, 2000, 105:71–77.
    16. Aicher A, Rentsch M, Sasaki K, et al. Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circ Res, 2007, 100:581-589.
    17. Teleron AA, Carlson B, Young PP. Blood donor WBC reduction filters as a source of human peripheral blood-derived endothelial progenitor cells (EPCs). Transfusion, 2004, 45:21-25.
    18. Kalka C, Masuda H, Tomono T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA, 1999, 97:3422-3427.
    19. Sharpe EE, Teleron AA, Li B, et al. The Origin and in Vivo Significance of Murine and Human Culture-Expanded Endothelial Progenitor Cells. Am J Pathol, 2006, 168:1710-1721.
    20. Rehman J, Li J, Orschell CM, et al. Peripheral blood“EPC”are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation, 2003,107:1164-1169.
    21. Rookmaaker MB, Vergeer M, van Zonneveld AJ, et al. EPC: mainly derived from the monocyte/macrophage-containing. Circulation, 2003,108:e150.
    22. Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J, et al. Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res, 2000, 87:341-343.
    23. Loomans CJ, Wan H, de Crom R, et al. Angiogenic murine endothelial. progenitor cells are derived from a myeloid bone marrow. fraction and can be identified by endothelial NO synthase expression. Arterioscler Thromb Vasc Biol, 2006, 26:1760-1767.
    24. Takahashi T, Kalka C, Haruchika M, et al. Ischemia- and cytokine-inducedmobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med, 1999, 5:434-438
    25. Bahlmann FH, Groot K, Spandau J, et al. Erythropoietin regulates endothelial progenitor cells. Blood, 2004, 103:921-926
    26. Hur J, Yoon CH, Kim HS, et al. Characterization of two types of EPC and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol, 2004, 24:288-293.
    27. Quirici N, Soligo D, Servida F, et al. Endothelial cells derived from human bone marrow CD133+ cells. Br J Hematol, 2001, 115:186-194.
    28. Kerjaschki D, Hurttary N, Raab I, et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med, 2006,12:230-2348.
    29. Grant MB, May WS, Caballero S, et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med, 2002, 8:607-612.
    30. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418:41-49.
    31. Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002, 109:337-346.
    32. Khakoo AY, Finkel T. Endothelial progenitor cells. Annu Rev Med, 2005, 56:79-101.
    33. Ingram DA, Mead LE, Moore DB, et al. Vessel wall–derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 2005,105:2783-2786.
    34. Ingram DA, Caplice NM, Yoder MC. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood, 2005,106:1525-1531.
    35. Ingram DA, Mead LE, Tanaka H, et al. Identification of a novel hierarchy of endothelial progenitor cells utilizing human peripheral and umbilical cord blood. Blood, 2004, 104:2752-2760.
    36. Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest, 2001, 108:391-397.
    37. Rabelink TJ, de Boer HC, de Koning EJP, et al. Endothelial progenitor cells: more than an inflammatory response? Arterioscler Thromb Vasc Biol, 2004, 24:834-838.
    38. Rookmaaker MB, Verhaar MC, Loomans CJM, et al. CD34+ cells home, proliferate, and participate in capillary formation, and in combination with CD34- cells enhance tube formation in a 3-dimensional matrix. Arterioscler Thromb Vasc Biol, 2005, 25:1843-1850.
    39. Harraz M, Jiao C, Hanlon HD, et al. CD34-blood-derived human endothelial cell progenitors. Stem Cells, 2001,19: 304-312.
    40. Schmeisser A, Garlichs CD, Zhang H, et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res, 2001,49:671-680.
    41. Romagnani P, Annunziato F, Liotta F, et al. CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res, 2005, 97:314-322.
    42. Zhao Y, Glesne D, Huberman E. A human peripheral blood monocyte derived subset acts as pluripotent stem cells. Proc Natl Acad Sci U S A. 2003,100:2426 -2431.
    43. Leri A, Kajstura J. Endothelial progenitor cells: unexpected disclosures. Circ Res, 2005, 97: 299-301.
    1. Shaked Y, Bertolini F, Man S, et al. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell, 2005,7:101-111.
    2. Nolan DJ, Ciarrocchi A, Mellick AS. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev, 2007, 21: 1546-1558.
    3. Duda DG, Cohen KS, Kozin SV, et al. Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors. Blood, 2006,107:2774-2776 .
    4. Rafii S, Lyden D. Cancer: A few to flip the angiogenic switch. Science, 2008, 319:163-164.
    5. Shaked Y, Ciarrocchi A, Franco M, et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science, 2006, 313:1785-1787.
    6. Spring H, Schuler T, Arnold B, et al. Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci USA, 2005,102:18111–18116.
    7. Zhang F, Hackett NR, Lam G, et al. Green fluorescent protein selectively induces HSP70-mediated up-regulation of COX-2 expression in endothelial cells. Blood, 2003, 102:2115–2121.
    8. Song S, Ewald AJ, Stallcup W, et al. PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol, 2005, 7: 870-879.
    9. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer, 2004, 4:71-78.
    10. Ahn GO, Brown JM. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis:role of bone marrow-derived myelomonocytic Cells. Cancer Cell, 2008, 13:193-205.
    11. Ito H, Rovira II, Bloom ML, et al. Endothelial progenitor cells as putative targets forangiostatin. Cancer Res, 1999, 59:5875–5877.
    12. Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002, 109:337–346.
    13. Moore MA. Putting the neo into neoangiogenesis. J Clin Invest, 2002, 109: 313–315.
    14. Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood, 2000, 95: 3106–3112.
    15. Marchetti S, Gimond C, Iljin K, et al. Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J Cell Sci, 2002, 115:2075–2085.
    16. Davidoff AM, Ng CY, Brown P, et al. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res, 2001, 7:2870–2879.
    17. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrowderived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med, 2001, 7:1194–1201.
    18. Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell, 2006,124:175-189.
    19. Kopp HG, Ramos CA, Rafii S. Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol, 2006,13:175-181.
    20. De Palma M, Venneri MA, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 2005, 8: 211-226.
    21. Conejo-Garcia JR, Benencia F, Courreges MC, et al. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med, 2004,10:950-958.
    22. Riboldi E, Musso T, Moroni E, et al. Cutting edge: proangiogenic properties of alternatively activated dendritic cells. J Immunol, 2005, 175:2788–2792.
    23. Schruefer R, Lutze N, Schymeinsky J, et al. Human neutrophils promote angiogenesisby a paracrine feedforward mechanism involving endothelial interleukin-8. Am J Physiol Heart Circ Physiol, 2005, 288:H1186-H1192.
    24. Puxeddu I, Alian A, Piliponsky AM, et al. Human peripheral blood eosinophils induce angiogenesis. Int J Biochem Cell Biol, 2005,37:628-636.
    25. Heissig B, Rafii S, Akiyama H, et al. Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9- mediated progenitor cell mobilization. J Exp Med, 2005, 202:739-750.
    26. Okamoto R, Ueno M, Yamada Y, et al. Hematopoietic cells regulate the angiogenic switch during tumorigenesis. Blood, 2005,105:2757-2763.
    27. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 2005, 438:820-827.
    28. Li B, Sharpe EE, Maupin AB, et al. VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J, 2006, 20:1495-1497.
    29. Du R, Lu KV, Petritsch C. HIF1αinduces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell, 2008,13(3):206-220.
    30. Shaked Y, Bocci G, Munoz R, et al. Cellular and molecular surrogate markers to monitor targeted and non-targeted antiangiogenic drug activity and determine optimal biologic dose. Curr Cancer Drug Tar, 2005, 5:551-559.
    31. Bertolini F, Mingrone W, Alietti A, et al. Thalido mide in multiple myeloma, myelodysplastic syndromes and histiocytosis. Analysis of clinical results and of surrogate angiogenesis markers. Ann Oncol, 2001, 12: 987-990.
    32. Paris F, Fuks Z, Kang A, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 2001, 293:293-297.
    33. Fuks Z, Persaud RS, Alfieri A, et al. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res, 1994, 54:2582-2590.
    34. Beaudry P, Force J, Naumov GN, et al. Differential effects of vascular endothelialgrowth factor receptor-2 inhibitor ZD6474 on circulating endothelial progenitors and mature circulating endothelial cells:implications for use as a surrogate marker of antiangiogenic activity. Clin Cancer Res, 2005,11(9):3514-3522.
    35. Gao D, Nolan DJ, Mellick AS, et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science, 2008, 319:195–198.
    36. Capillo M, Mancuso P, Gobbi A, et al. Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin. Cancer Res, 2003, 9:377-382.
    37. Schuch G, Heymach JV, Nomi M, et al. Endostatin inhibits the vascular endothelial growth factor-induced mobilization of endothelial progenitor cells. Cancer Res, 2003, 63:8345-8350.
    38. Rabascio C, Muratori E, Mancuso P, et al. Assessing tumor angiogenesis: increased circulating VE-cadherin RNA in patients with cancer indicates viability of circulating endothelial cells. Cancer Res, 2004, 64: 4373-4377.
    39. McLean K, Buckanovich RJ. Myeloid cells functioning in tumor vascularization as a novel therapeutic target. Transl Res, 2008,151(2): 59-67.
    40. Kuwana M, Okazaki Y, Kodama H, et al. Endothelial differentiation potential of human monocytederived multipotential cells. Stem Cells, 2006, 24:2733-2743.
    41. Rehman J, Li J, Orschell CM, et al. Peripheral blood“endothelial progenitor cells”are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation, 2003,107:1164-1169.
    42. Rajantie I, Ilmonen M, Alminaite A, et al. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood, 2004,104:2084-2086.
    1. Fischer I, Gagner JP, Law M et al. Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol. 2005;15;297-310.
    2. Cogle CR, Scott EW. The hemangioblast: Cradle to clinic. Exp Hematol. 2004;32;885-890.
    3. Nikolova G, Strilic B, Lammert E. The vascular niche and its basement membrane. Trends in Cell Biology. 2007;17;19-25.
    4. Calabrese C, Poppleton H, Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11;69-82.
    5. Aghi M, Chiocca EA. Contribution of bone marrow-derived cells to blood vessels in ischemic tissues and tumors. Mol Ther. 2005;12;994-1005.
    6. Davidoff AM, Ng CY, Brown P et al. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res. 2001;7;2870-2879.
    7. Ruzinova MB, Schoer RA, Gerald W et al. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell. 2003;4;277-289.
    8. Bian XW, Chen JH, Jiang XF et al. Angiogenesis as an immunopharmacologic target in inflammation and cancer. Int Immunopharmacol. 2004;4;1537-1547.
    9. Shaked Y, Bertolini F, Man S et al. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell. 2005;7;101-111.
    10. Quesada AR, Munoz-Chapuli R, Medina MA. Anti-angiogenic drugs: from bench to clinical trials. Med Res Rev. 2006;26;483-530.
    11. Eichhorn ME, Strieth S, Dellian M. Anti-vascular tumor therapy: recent advances, pitfalls and clinical perspectives. Drug Resistance Updates. 2004;7;125-138.
    12. Murohara T, Ikeda H, Duan J et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000;105;1527-1536.
    13. Kalka C, Masuda H, Takahashi T et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA. 2000;97;3422-3427.
    14. Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275;964-967.
    15. Peichev M, Naiyer AJ, Pereira D et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood. 2000;95;952-958.
    16. Quirici N, Soligo D, Caneva L et al. Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol. 2001;115;186-194.
    17. Shi Q, Rafii S, Wu MH et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;929;362-367.
    18. Machein MR, Renninger S, Lima-Hahn L et al. Minor contribution of bone marrow-derived endothelial progenitors to the vascularization of murine gliomas. Brain Pathol. 2003;13;582-597.
    19. Asahara T, Masuda H, Takahashi T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85;221-228.
    20. Asai J, Takenaka H, Kusano KF et al. Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation. 2006;113;2413-2424.
    21. Yoder MC, Mead LE, Prater D et al. Re-Defining Endothelial Progenitor Cells Via Clonal Analysis and Hematopoietic Stem/Progenitor Cell Principals. Blood. 2007;109;1801-1809.
    22. Urbich C, Dimmeler S. Endothelial progenitor cells functional characterization. Trends Cardiovasc Med. 2004;14;318-322.
    23. Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest. 1999;103;1231-1236.
    24. Santarelli JG, Udani V, Yung CY et al. Incorporation of Bone Marrow-derived Flk-1-expressing CD34+ Cells in the Endothelium of Tumor Vessels in the Mouse Brain. Neurosurgery. 2006;59;374-382.
    25. Yamaguchi J, Kusano KF, Masuo O et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation. 2003;107;1322-1328.
    26. Mancuso P, Burlini A, Pruneri G et al. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood. 2001;97;3658-3661.
    27. Beerepoot LV, Mehra N, Vermaat JSP et al. Increased levels of viable circulating endothelial cells are an indicator of progressive disease in cancer patients. Ann Oncol. 2004;15;139-145.
    28. Rehman J, Li J, Orschell CM et al. Peripheral blood“endothelial progenitor cells”are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107;164-1169.
    29. McCarty MF, Liu W, Fan F et al. Promisses and pitfalls of anti-angiogenic therapy in clinical trials. Trends Mol Med. 2003;9;53-58.
    30. Rafii S, Lyden D, Benezra R et al. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer. 2002;2;826-835.
    31. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407; 249-257.
    32. Jain RK. Normalization of Tumor Vaculature: An Emerging concept in Antiangiogenic Therapy. Science. 2005;307;58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700