喷射器内气液流动与混合性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在氢化、氯化、磺化、尾气吸收等诸多的化工过程中,气液流动、混合与传质是一种重要的生产方式。喷射器以其设计紧凑、制造简单,成本低廉、操作可靠,尤其是具有比传统静态混合器更强的混合效果和更高的传质系数成为极具发展潜力的多相混合(反应)器。对于喷射器内的气液流动和混合虽有不少研究,但是由于喷射器结构、研究方法、气液流动方式的不同,所得结论也各不相同,因而适用范围也不同,而且,较为系统的研究也很少见。因此本文采用先进的粒子成像测速PIV技术、激光诱导荧光PLIF法、计算流体动力学CFD模拟、CFD与群平衡方程耦合、以及化学实验法等研究手段,从气液两相流的首要问题-流型及其控制因素入手,首次较为系统的探讨了操作条件和喷射器几何结构对上喷式喷射器内气液两相的流动和混合性能的影响,并通过流体力学相似理论,分析喷射混合器设计和放大原则,从而为喷射混合器的理论发展和实际应用提供参考。
     (1)对水-空气和水-二氧化碳两种体系下的气液流型进行考察时,由于两种气体密度相差不大,由密度差所带的雷诺数也相差不大,因而对喷射器内的流型影响不大;而有无旋流器对流型有较大的影响。无旋流器时,在喷射器下部可形成喷射流,而加入旋流器后,气液两相在卷吸室内即开始接触和混合,液体射流不复存在,主要形成泡状流。
     (2)在无旋流器时,孔口雷诺数,混合段处气体雷诺数和气液比对喷射器内气液流型有较大影响:当孔口雷诺数在2.36×10~4-1.27×10~5范围内,气液比约小于等于0.2时,喷射器下部气液流型为泡状流,大于0.2时为喷射流。当喷射器内形成喷射流时,液体射流长度与孔口雷诺数、混合段入口处的气体雷诺数以及气液比有关:在相同的孔口雷诺数下,液体射流随着气体雷诺数和气液比的增大先增大后减小直至稳定在一定的长度。不同孔口雷诺数下的最大液体射流长度也是不同的。随着孔口雷诺数的增大,其对应的最大液体射流长度先增后减。当孔口雷诺数为5.84×10~4时最大。不同的孔口雷诺数下其最终稳定的长度也是不同的,该值随着孔口雷诺数的增大而逐渐减小。当液体射流瓦解后,气液两相可形成三种基本流型:泡状流、雾状流和块状流。当气体雷诺数ReG<5.0×10~2时,射流瓦解后喷射器扩散段内主要为泡状流,当ReG >4.5×10~3时,扩散段内主要为块状流,当气体雷诺数在5.0×10~2~4.5×10~3时,沿轴向流动方向依次为喷射流、雾状流和泡状流。因此喷射器内可以同时存在多种流型,也可以只有一种流型。
     (3)当有无旋流器喷射器内都形成泡状流时,气液混合效果最好。流场测试显示在无旋流器时,气泡矢量方向略显出旋转趋势,但大部分因为平均化而基本上平行于中心轴线或者壁面。当加入旋流器后,气泡时均化后的流场显示气泡上升运动的旋转程度增大了。
     (4)孔口雷诺数、气体雷诺数(混合段入口处,无旋流器时)和混合物雷诺数(有旋流器时)以及气液比影响着泡状流中气泡的具体分布:无旋流器时,气体倾向于在液体中分散成均匀的气泡。当孔口雷诺数相同时,随着气体雷诺数的增大气泡尺寸增大;当气体雷诺数相同时,随着孔口雷诺数的增大,气泡尺寸变小。有旋流器时,气泡分布与无旋流器时差异较大。气泡在中心轴线及两侧形成不对称的“气泡链”。当孔口雷诺数相同,而混合物雷诺数因气体流量增大而增大时,“气泡链”变粗。当气体流量不变时,孔口雷诺数和混合物雷诺数增大时,“气泡链”变细。
     (5)相同操作条件下,在低的气体流量下,无旋流器时的比表面积比有旋流器时大很多;当气体流量不断增大时,两者之间的差异逐渐减小。通过将群平衡方程与CFD模型耦合,对简化了的喷射器内气泡分布进行模拟,得出数值模拟结果与实验结果在分布趋势上比较一致,但模拟值比实验值要高。
     (6)利用化学实验方法,以NaOH和二氧化碳反应系统为基础,通过测定不同条件下喷射器内快速反应的效率对气液两相混合进一步讨论和分析,并对上述结论进行佐证,结果发现两者基本一致。无旋流器下,在孔口雷诺数一定时,随着气液比的增大,气液混合效果减小;不同孔口雷诺数下,当气液比相同时,较大孔口雷诺数下的气液混合效果较好。有旋流器时,当孔口雷诺数相同时,随着气液比的增大,气液混合效果增大;相同气液比下,孔口雷诺数较大时气液混合效果也较好。气液比较小时,各孔口雷诺数无旋流器时气液混合效果优于有旋流器的情况。随着气液比逐渐增大,有无旋流器时气液混合效果差异逐渐减小,直到在气液比约为1.4时,有旋流器下气液混合效果略优于无旋流器的情况。
     (7)从CO2体积浓度与NaOH转化率的关系来看,无论有无旋流器,在喷射器内对反应转化率和混合起主要作用的是流型而非反应物浓度。
     (8)利用CFD模型模拟了不同的喷射器结构:扩散角度、混合段长度、喉嘴距离、喉嘴面积比、两相进口面积比和操作参数即喷嘴速度对喷射器流动性能喷射系数、空气卷吸率、压力降的影响,结果发现:固定喷射器其他结构参数而仅改变扩散角度时,当扩散角度增大,喷射器内的压力降先增大后减小,而空气卷吸率和喷射系数随扩散角度增大而增大。在本章模拟范围内压力降最大值对应的扩散角度为3o;仅改变混合段长度时,随着混合段长度增加,即混合段长径比增大,喷射器压力降先增大后减小,约在长径比为3.0左右有一最大压力降。空气卷吸率和喷射系数随着混合段增长而减小;当喉嘴距离增大时,喷射器的压力降先增大后减小,约在喉嘴距离与喷嘴直径比为3左右时获得最大压力降。空气卷吸率和喷射系数也随着喉嘴距离的增大先增大后减小,在最大压力降时空气卷吸率也最大;喉嘴面积比增大时,喷射器的压力降减小,面积比减小到2.0左右,压力降改变很小。随着面积比的增大,空气卷吸率和喷射系数先增大后减小,当面积比约为3.0时,空气卷吸率最大;改变气相进口直径来改变两相进口面积比时,随着面积比的增大,压力降增大,空气卷吸率和喷射系数也增大;保持喷射器几何参数不变,改变操作条件即喷嘴速度时,随着喷嘴速度的增大,喷射器内压力降增大,空气卷吸率随喷嘴速度增大呈显著线性增加趋势,而喷射系数先增大后减小。
     (9)利用相似原理和CFD模拟为气液喷射器的放大规则进行了简单的探讨,得出了力学相似和单值相似的几个准则数:面积比、流量比、雷诺数、欧拉数。CFD模拟结果显示若满足运动相似,就可认为几何相似的喷射器内气液流动和混合是一样的。
During the chemical engineering processes such as hydrogenation, chlorination, sulfonation and tail-gas absorption, it is an important mode of production for the gas-liquid two phases to flow, mix and transfer mass. Ejectors have many advantages over other traditional static mixers such as compacter design, easier to manufacture, lower cost and more secure operation especially their higher mixing effect and mass transfer coefficients. Therefore, ejectors become more developed and potential multi-phase mixers and reactors. Many reports have researched the gas-liquid flow and mixing in ejectors, but the results are different and had individual scope of application due to the different ejector geometries, study methods and the species of fluids. Moreover, the systematic research on the gas-liquid flow in the ejector is seldom reported. So based on the advanced techniques of particle imaging velocity, planar laser induced fluorescence, computational fluid dynamics simulation and its coupling with population balance model, conventional chemical experiments, the primary issue of gas liquid flow patterns and their influential factors were discussed at first and then the systematic study on the effect of operation conditions and geometric parameters on the flow and mixing characteristics of gas-liquid in up-flow ejectors. At last, the principles of design and scaled-up for the ejector were analyzed via the similarity theory of fluid dynamics. The results were obtained as follows.
     (1) When the experimental systems of water-air and water-dioxide were selected to research the flow patterns of gas-liquid in the up flow ejector with and without swirl using PLIF technology, gas species have little effect on the flow patterns of gas-liquid because the difference of two gases’densities are quite little and so the Reynolds numbers for the two gases are also little different. However the swirl body has great effect on flow pattern. In absence of swirl, the jet flow was observed in the lower part of ejector. If the swirl was added, the gas and liquid started to mix at the suction chamber and the liquid jet didn’t exist any more.
     (2) The Reynolds number at nozzle ReN, gas Reynolds number at the inlet of mixing tube ReG and gas to liquid flow rate ratio G/L have effects on the flow patterns. If ReN=2.36×10~4-1.27×10~5, when G/L≤0.2 the bubble flow exists. When G/L>0.2, the jet flow does. If the flow pattern is the jet flow, the liquid jet length depends on the ReN, ReG and G/L: when the ReN constant, the liquid jet length increases to the maximum at first and then decreases and at last stabilizes at some value. The maximum liquid jet lengths at different ReN are different which increases at first and then decreases with the ReN increasing. When ReN=5.84×10~4, the maximum liquid jet length is the maximum. In addition, the final stable length at different ReN is also different and it decreases with the ReN increasing. After the disintegrate of the liquid jet, the gas-liquid flow forms three patterns of bubble flow, cloudy flow and block flow. When ReG<5.0×10~2,the flow is bubble flow in the diffuser of the ejector. When ReG >4.5×10~3 , the flow is block flow in the diffuser of the ejector. When ReG =5.0×10~2~4.5×10~3时,the flow along the axial direction is jet flow, cloudy flow and bubble flow. In the ejector several flow patterns can coexist and also just occur one pattern such as bubble flow or jet flow.
     (3) When the bubble flow is present in the ejector, the mixing effect of gas and liquid is best. The bubble flow velocity and size distribution were discussed by the use of PIV measurement and CFD simulation. In the absence of swirl the directions of the average bubble velocity rotates a bit but the majority parallel to the axial line or the wall. When the swirl presents, the average flow field shows that the degree of upward motion of the rotation increases.
     (4) The nozzle Reynolds number, the gas Reynolds number (mixing tube inlet, no swirl) and the mixture Reynolds number (when there is swirl), and G/L affects the specific distribution of bubbles in bubble flow. When there is no swirl in the ejector, the gas tends to disperse into uniform bubbles in the liquid. At the same ReN, the bubble size increases with ReG increasing. At the same ReG, the larger the nozzle Reynolds number, the smaller the bubble size. In the presence of swirl, the bubble distributions are different from those in the absence of swirl. The bubbles are inclined to gather around the axial line asymmetrically and form“bubble chain”. If ReN is the same and the mixture Reynolds number increases with the gas flow rate increasing, the bubble chain becomes border. When the gas flow rate is unchangeable and ReN and ReM become larger, the bubble chain becomes thinner.
     (5) Under the same operating conditions, the specific surface area for the ejector without swirl is larger than that with swirl at lower gas flow rate. When the gas flow rate increases, the differences of the two decrease. The simulations of the bubble size distribution in the ejector with the coupling of PBM and CFD shows that the numerical simulation results obtained coincide with the experimental results in the bubble distribution more or less. However, the simulated value is higher than the experimental one.
     (6) Experiments based on the reaction of NaOH and carbon dioxide were conducted to further discuss the gas and liquid mixing characteristics under different operating conditions by measuring the conversion efficiency of the rapid reaction. The conclusions coincide with the above discussions. If there is no swirl and ReN are the same, the mixing effect reduces with the G/L increasing. At the same G/L, the gas and liquid mixes better at larger ReN. When there is swirl and ReN are certain, the mixing effect of gas-liquid increases along with the G/L increasing. If G/L is constant, the mixing is better at higher ReN.
     (7) The relationship between CO2 volumetric concentration and the conversion rate of NaOH shows that the flow patterns play a major role on the reaction and mixing rather than the concentration of reactants. At lower G/L, the mixing is better without swirl than that with swirl under all ReN conditions. With the increasing gas-liquid ratio, the differences gradually decrease between two ejectors with and without swirl until G/L<1.4. When G/L=1.4, the mixing in the ejector with swirl is slightly better than that without swirl.
     (8) The effects of geometric parameters (diffuser angle, mixing tube length, distance and area ratio between the nozzle outlet and mixing tube inlet, area ratio of gas-liquid inlet) and operating conditions such as nozzle velocity on the pressure drop, air entrainment and jet coefficient were predicted in detail. The results show that when the diffuser angle increases, the pressure drop first increases and then decreases. And the air entrainment rate and jet coefficient increases. In the scope of simulations, the corresponding diffuser angle to the maximum pressure drop is about 3o. If Changes in the mixing tube length is considered only, with its increasing the pressure drop first increases and then decreases. At about 3.0 aspect ratio of the mixing tube the maximum pressure drop occurs. The air entertainment rate and jet coefficient decreases with the increasing mixing tube length. When the distance from nozzle to mixing tube increases, the pressure drop, air entertainment rate and jet coefficient all increases firstly and then decreases. The maximum pressure drop and air entertainment rate both corresponds to the distance to nozzle diameter ratio of about 3.0. When nozzle to mixing tube area ratio increases, the pressure drop reduces. When the area ratio reduces to 2.0 or so, small changes is in pressure drop. With the area ratio increases, the air entertainment rate and jet coefficient first increase and the decrease. When the ratio is about 3.0, the air entertainment is largest. Changes in the diameter of gas inlet to change the two-phase area ratio of imports, along with the area ratio increases, the pressure drop, air entertainment and jet coefficient all increase. When nozzle velocity is different while the geometry is unchangeable, with the increased nozzle velocity, the pressure drop increases and there is a significant linear increasing in air entertainment rate. While the jet coefficient first increases and then decreases. It can be seen that for a particular ejector, there is a nozzle velocity which corresponds to the optimized ejector performance.
     (9) Using the similarity theory and CFD simulation the rules of the amplification of the ejector were discussed simply. It comes to the conclusion that there is some numbers for the scaled-up of the ejector based on the mechanics similarity and single-value similarity which are area ratio, flow ratio, Reynolds number and Euler number. CFD simulation results show that when the movements meet similarity, the gas-liquid flow and mixing in the similar geometries is the same.
引文
[1] D.K.Acharjee, P.A.Bhat, A.K. Mitra et al. Studies on momentum transfer in vertical liquid jet ejectors. Indian J. Technol. 1975,13:205-210.
    [2]谢拦漪,刘斌。液体喷射式环流反应器冷模与热模实验研究.沈阳化工学院学报,2003,17(2):118-122.
    [3]毕荣山,马连湘,姚云等.高Schmidt数下喷射器内湍流混合的多尺度模拟模型建立。计算机与应用化学,2007,24(11):1523-1526.
    [4] S.Balamurugan, Mayank D.Lad, Vilas G. Gaikar et al. Hydrodynamics and mass transfer characteristics of gas-liquid ejectors. Chem. Eng. J., 2007, 131:83-103.
    [5]张卫民,李秋小,缪列平。环路反应器工程研究。日用化学工业,1999,16:5-8.
    [6] Havelka P., Linek V., Sinkule J., Zahradnik J. and FialováM. Effect of the ejector configuration on the gas suction rate and gas hold-up in ejector loop reactors. Chem. Eng.Sci., 1997,52(11):1701-1713.
    [7]丁庆伟,马文凯,王宝斌。喷射反应器研究与进展。太原重型机械学院学报,2004,25(4):263-266,278.
    [8] Zhu Z.M., Hannon J., Green A. Use of high intensity gas-liquid mixers as reactors. Chem. Eng. Sci., 1992,47(9-11):2847-2852.
    [9] Hans Jurgen Henzler. Design of ejectors for single-phase material systems. Ger. Chem. Eng., 1983, 6: 292-300.
    [10] Rene F. Duveen. High performance gas liquid reaction technology. The Royal Society of Chemistry, Applied Catalysis Group. New frontiers in reactor design. Billingham, U K: The Royal Society of Chemistry. 1998. p1-14.
    [11]袁少明,周庚生,牛金平等。高气液比喷射反应器反应性能的研究.轻工机械,2003, 4:35-39.
    [12] Bhutada S.R and Pangarkar V.G. Gas induction and hold-up characteristics of liquid jet loop reactors. Chem. Eng. Commun.,1987,61:239-261.
    [13] Cunningham, R.G. and Dopkin, R.J. Jet breakup and mixing throat lengths for the liquid jet gas pump. Transcripts of ASME-Journal of Fluids Engineering, 1974,96, 216-226.
    [14] Bhat P.A., Mitra A.K., Roy A.N. Momentum transfer studies in a horizontal liquid jet ejector. Canadian Journal of Chemical Engineering,1975,50:313-317.
    [15] Ben Brahlm A., Prevost, Bugarel R. Momentum transfer in a vertical down flow liquid jet ejector: case of self gas aspiration and emulsion flow. International Journal of Multiphase Flow,1984,10(1):79-94.
    [16] Dutta N.N. and Raghavan K.V. Mass transfer and hydrodynamic characteristicsof loop reactors with down flow liquid jet ejectors. Chem. Eng. J., 1987,36:111-121.
    [17] Ben Brahlm A., Prevost M., Bugarel R. Momentum transfer in a vertical down flow liquid jet ejector: case of self gas aspiration and emulsion flow. Int. J. Multiphase Flow, 1984, 10(1): 79-94.
    [18] Otake T., Tone S., Kuboi R. et al. Dispersion of a gas by a liquid jet ejector. Int. Chem. Eng., 1981, 21: 72-80.
    [19] Zahradnik, J., F. Kastanek, J. Kratochvil and M. Rylek. Energy effectiveness of bubble column reactors with sieve tray and ejector type gas distributors. Chem. Eng. Commun.,1982a,15:27-40.
    [20] Zahradnik, J., F. Kastanek, J. Kratochvil and M. Rylek. Hydrodynamic characteristics of gas-liquid beds in contactors with ejector type gas distributors. Coll. Czech. Chem. Commun., 1982b,47:1939-1949.
    [21] Ogawa, S., H.Yamaguchi, S. Tone and T. Otake. Gas-liquid mass transfer in the jet reactor with liquid jet ejector. J. Chem. Eng. Jpn., 1983.16(5):419-425.
    [22] Rylek, M. and J.Zahradnik. Design of venturi type gas distributoras for bubble type reactors. Coll. Czech. Chem. Commun., 1984,49:1939-1948.
    [23] Bando Y., Kuraishi M., Nishimura M. et al. The characteristics of a bubble column with a gas-suction type, simultaneous gas-liquid injection nozzle. Int. Chem. Eng., 1990, 30: 729-737.
    [24] Dirix C.A.M.C. and van der Wiele K. Mass transfer in jet loop reactors, Chem. Eng. Sci., 1990,45:2333-2340.
    [25] Cramers P.H.M.R. van Dierendonck A.A. and Beenackers A.A.C.M. Influence of the gas density on the gas entrainment rate and gas hold-up in loop venture reactors. Chem. Eng. J., 1992,47:2251-2256.
    [26] Zahradnik J., Fialova M., Linek V., Sinkule J., Renickoca J., Kastanek F. Dispersion efficiency of ejector-type gas distributors in different operating modes. Chem. Eng. Sci.,1997,52(24):4499-4510.
    [27] Havelka P., Linek V., Sinkule J. et al. Hydrodynamic and mass transfer characteristics of ejector loop reactors. Chem. Eng. Sci., 2000,55(3): 535-549.
    [28] Cramers P.H.M.R. and Beenackers A.A.C.M. Influence of the ejector configuration, scale and the gas density on the mass transfer characteristics of gas-liquid ejectors. Chem. Eng. J., 2001,82:131-141.
    [29] Mandal A., Kundu G., Mukherjee D. Gas holdup and entrainment characteristics in a modified down flow bubble column with Newtonian and non-Newtonian liquid. Chem. Eng. Process. 2003, 42: 777-787.
    [30] Mandal A., Kundu G., Mukherjee D. Interfacial area and liquid-side volumetric mass transfer coefficient in a modified down flow bubble column. Can. J. Chem. Eng., 2003, 81: 212-219.
    [31] Zahradnik, J., J. Kratochvil and M. Rylek. Gas hold-up and interfacial mass transfer in gas-liquid tower contactors with ejector type gas distributors. Coll. Czech. Chem. Commun., 1985. 50:2535-2544.
    [32] Fadavi A. and Chisti Y. Gas holdup and mixing characteristics of a novel forced circulation loop reactor. Chemical Engineering Journal,2007,131: 105-111.
    [33] Gourich B., Belhaj Soulami M., Zoulalian A. and Ziyad M. Simultaneous measurement of gas hold-up and mass transfer coefficient by tracer dynamic technique in“Emulsair”reactor with an emulsion-venturi distributor. Chemcial Engineering Science,2005,60:6414-6421.
    [34] Moresi, M., Gianturco, G.B., Sebastini, E., The ejector loop fermenter: description and performance of the apparatus. Biotech. & Bioeng, 1983,25: 2889-2904.
    [35] Havelka P, Linek V, Sinkule J, et al. Hydrodynamic and mass transfer characteristics of ejector loop reactors。Chem. Eng. Sci., 2000,55(3): 535-549.
    [36] Wen Jianping, Na Ping, Huang Lin, Chen Yunlin. . Local overall gas-liquid mass transfer coefficient in a gas-liquid-solid reversed flow jet loop reactor. Chem. Eng. J., 2007,88:209-213.
    [37] Elgozali A., Linek V., FialováM et al.. Influence of viscosity and surface tension on performance of gas-liquid contactors with ejector type gas distributor. Chem. Eng. Sci.,2002,57:2987-2994.
    [38]张远君、王慧玉、张振鹏编译.张中钦、张远君校.两相流体动力学-基础理论及工程应用.北京:北京航空学院出版社. 1987.
    [39]林宗虎、李永光、卢家才等著.气液两相流旋涡脱落特性及工程应用.北京:化学工业出版社. 2001.
    [40]林宗虎等编著.气液两相流和沸腾传热.西安:西安交通大学出版社. 2003.
    [41]郑亦朋.西安:西安交通大学热能工程专业硕士研究生论文. 1984.
    [42] Aubin J., Sayze L., Bertrand J., Fletcher D.F., Xuereb C. PIV measurements of flow in an aerated tank stirred by a down- and an up-pumping axial flow impeller. Experimental Thermal and Fluid Science, 2004, 28: 447-156.
    [43] Deen N.G. and Hjertager B.H.. Particle image velocimetry measurements in an aerated stirred tank. Chem. Eng.Commun., 2002, 189: 1208-1221.
    [44] Deen N.G., Solberg T., Hjertager B.H. Flow generated by an aerated Ruston impeller: two-phase PIV experiments and numerical simulations. Can. J. Chem. Eng., 2002, 80: 1-15.
    [45] Danckwerts, P.V. The definition and measurement of some characteristics of mixtures. Applied Scientific Research, 1953, A3: 279-296.
    [46] Zwiertering T N, The degree of mixing in continuous flow systems, Chem. Eng. Sci., 1959, 11: 1.
    [47] Curl, R.L. Dispersed phase mixing: 1. Theory and effects in simple reactors.AIChE Journal, 1963, 9: 175-181.
    [48]弗罗门特GF,比肖夫KB.反应器分析与设计,邹仁均等译,北京:化学工业出版社,1985,2:119。
    [49] Ng D. Y., Rippoin D. W. T. The effect of incomplete mixing on conversion in homogeneous reactions, Third Eur. Symp, Chem. Reaction. Eng., 1965, 161.
    [50] Ritchie, B.W. and A.H. Tobgy. A three-environment micromixing model for chemical reactors with arbitrary separate feedstreams. Chem. Eng. J., 1979, 17: 173-182.
    [51] Mehta, R.V. and J.M. Tarbell. A four-environment model of mixing and chemical reaction. Part I-Model development. AIChE Journal, 1983a, 29: 320-328.
    [52] Mehta, R.V. and J.M. Tarbell. A four-environment model of mixing and chemical reaction. Part II-Comparison with experiments. AIChE Journal, 1983b, 29: 329-337.
    [53] Villermaux, J. and J.C. Devillon. Représentation de la coalescence et de la redispersion des domaines de segregation dans un fluide par un modèle d’interaction phénoménologique. In Proceedings of the 2nd International Symposium on Chemical Reaction Engineering, pp.1-13. New York: Elsevier. 1972.
    [54] Mao, K. W. and H.L. Toor. Second-order chemical reactions with turbulent mixing. Industrial and Engineering Chemistry Fundamentals, 1971, 10: 192-197.
    [55] Ottino J M, Ranz W E, Macosko C W. A lamellar model for analysis of liquid mixing, Chem. Eng. Sci., 1979, 31: 877.
    [56] Angst W, Bourne J R, Sharma R N. Mixing and fast chemical reaction-IV, The dimensions of the reaction zone, Chem. Eng. Sci., 1982, 37: 585.
    [57] Baldyga, J. and J.R. Bourne. A fluid-mechanical approach to turbulent mixing and chemical reaction. Part II. Micromixing in the light of turbulence theory. Chem. Eng. Commun., 1984b, 28: 243-258.
    [58]李希,微观混合问题的理论与实验研究.浙江大学博士论文,杭州:浙江大学化学工程系,1992。
    [59]李希,陈甘棠,戎顺熙.微观混合问题的研究(III)—物质的细观分布形态与分布规律,化学反应工程与工艺,1990,6(4):15。
    [60] Fox RO. Computational models for turbulent reacting flows. Cambridge: Cambridge University Press: 2003.
    [61] Rosner, D.E. Transport Processes in Chemically Reacting Flow Systems. New York: Butterworths. 1986.
    [62] Peters, N. Turbulent Combustion. Cambridge Monographs on Mechanics. Cambridge: Cambridge University Press. 2000.
    [63] Poinsot, T. and D. Veynante, Theoretical and Numerical Combustion. Philadelphia, PA: R. T. Edwards. 2001.
    [64] Veynante, D. and L. Vervisch, Turbulent combustion modeling. Progress in Energyand Combustion Science, 2002, 28: 193-266.
    [65] Drew D., Lahey R.T.Jr. Phase distribution mechanisms in turbulent two-phase flow in a circular pipe. J. Fluid Mech. 1982, 117:91-106.
    [66] Lee S.J., Lahey R.T.Jr, Jones O.C. Jr. The prediction of two-phase turbulence and phase distribution phenomena using a k-e model. Jap. J. Multiphase Flow. 1989, 3: 335-368.
    [67] Antal S. P., Lahey R. T. Jr, Flaherty J. E. Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int. J. Multiphase Flow. 1991, 17(5): 635-652.
    [68] Lopez de B.M., Lee S.J., Lahery R. T. Jr et al. The prediction of two-phase turbulence and phase distribution phenomena using a Reynolds Stress Model. Trans. Of the ASME, J. of Fluids Engineering. 1990, 112: 107-113.
    [69] Lopez de B.M., Lahey R.T.Jr, Jones O.C. Jr. Development of a k-e model for bubbly two-phase flow. Trans. Of the ASME, J. of Fluids Engineering. 1994, 116: 128-134.
    [70] Ishii M., Mishima K., Two-fluid modeling and hydrodynamic constitutive relations. Nucl. Engng. Des. 1984, 82: 107-116.
    [71] Lahey R.T., The analysis of phase separation and phase distribution phenomena using two-fluid models. Nucl. Engng. Des. 1990, 122: 17-25.
    [72] Sato Y., Sadatomi M., Sekoguchi K., Momentum and heat transfer in two-phase bubbly flow I. Int. J. Multiphase Flow. 1981, 7: 167-177.
    [73] Sano M. and Mori K. Bubble Formation from Single Nozzles in Liquid Metals. Trans.JIM, 1976, 17: 344-352.
    [74] Thomas, A., Tu S. and Janke, D., Frequency of Bubble formation in Water and Liquid Iron, Steel Research, 1997, 68(5): 198-200.
    [75] Sano M. Fujita Y. and Mori K. Formation of Bubbles at Single Nonwetted Nozzles in Mercury. Metallurgical Transactions B, 1976, V7B(June): 300-301.
    [76] Iguchi M., Kawabata H., Nakajima K., Morita Z., Metallurgical Transactions B, 1995,V26B: 67.
    [77] Irons, G.A. and Guthrie, R.I.L. Bubble Formation at nozzles in Pig Iron, Metallurgical Transactions B, 1978, 9B(March): 101-110.
    [78] Davis, K.G., Irons, G.A. and Guthrie, R.I.L. X-Ray Cinematographic Observations of Gas Injection into Liquid Metals, Metallurgical Transaction B, 1978, 9B(December): 721-722.
    [79] Iguchi M., Chihara T., Takanashi N., Ogawa Y., Tokumitsu N., Morita Z. X-ray Fluoroscopic Observation of Bubble Characteristics in a Molten Iron Bath. ISIJ International, 1995, 35(11): 1354-1361.
    [80] Kumar R. and Kuloor N.R. The Formation of Bubbles and Drops. Advances in Chemical Engineering, vol.8, (New York, London: Academic Press, 1970), 255-368.
    [81] Clift R., Grace J.R. and Weber M.E. Bubbles, Drops and Particles. Academic Press Inc., 1978.
    [82] Tsuge H., Hydrodynamics of Bubble Formation from Submerged Orifices. Encyclopedia of Fluid Mechanics, vol. 3, (Houston, TX: Gulf Publishing Co., 1986), 191-232.
    [83] Rabiger N. and Vogelpohl A. Bubble Formation and its Movement in Newtonian and Non-Newtonian Liquid. Encyclopedia of Fluid Mechanics, vol. 3, (Houston, TX: Gulf Publishing Co., 1986), 58-88.
    [84] Chuang S.C. and Goldschmidt V.W. Bubble Formation due to a Submerged Capillary Tube in Quiescent and Coflowing Streams. J. Basic Eng., 1970, 92: 705-711.
    [85] Kawase Y. and Uibrecht J.J. Formation of Drops and Bubbles in Flowing Liquids. Ind. Eng. Chem. Process Des. Dev., 1981, 20(4): 636-640.
    [86] Morgenstern I.B.V. and Mersmann A. Aeration of Highly Viscous Liquids. Germ. Chem. Eng., 1982, vol.5: 374-379.
    [87] Wang Z., Mukai K. and Izu D. Influence of Wettability on the Behavior of Argon Bubbles and Fluid Flow inside the Nozzle and Mold. ISIJ International, 1999, 39(2): 154-163.
    [88] Hua Bai. Argon bubble behavior in slide-gate tundish nozzles during continuous casting of steel slabs. Thesis for the degree of Doctor of Philosophy in Mechanical Engineering. Graduate College of the University of Illinois at Urbana-Champaign. 2000.
    [89] Wang Tiefeng, Wang Jinfu. Numerical simulation of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model. Chem. Eng. Sci., 2007, 62: 7107-7118.
    [90] Wang T.F., Wang J.F., Jin Y.. A CFD-PBM coupled model for gas-liquid flows. AIChE. Jouranl, 2006, 52: 125-140.
    [91]杨宝华。快速射流混合技术的数值模拟和实验研究.华东理工大学硕士论文。2005。
    [92]劳力云,郑之初,吴应湘等。关于气液两相流流型及其判别的若干问题.力学进展,2002, 32(2): 235-249.
    [93]陈珙,王保良,杨江等。基于小波分析的气液两相流流型模糊辨识.高校化学工程学报,1999,13(4): 303-308.
    [94] Cramers P.H.M.R., Beenackers A.A.C.M., and van Dierendonck L.L. Hydrodynamics and mass transfer characteristics of a loop-venturi reactor with a downflow liquid jet ejector. Chem. Eng. Sci., 1992, 47: 3557-3564.
    [95] YaoYun, Guo Fang-fei, Zhou Bo et al. Experimental measurement of gas-liquid flow field in up-flow ejectors with and without swirl. J. Chem. Eng. Japan. 2009. (Accepted)
    [96]姚云,郭方飞,周波等.气液喷射器内的气液流型分析.高校化学工程学报,2008,22(5):895-899.
    [97]姚云,郭方飞,周波等.喷射器内气-液两相流流型及其转换特性的研究.高校化学工程学报.已接受.
    [98] Chuang S.C. and Goldschmidt V.W., Bubble Formation due to a Submerged Capillary Tube in Quiescent and Coflowing Streams. J. Basic Eng., 1970, 92: 705-711.
    [99] Kawase Y. and Uibrecht, J.J. Formation of Drops and Bubbles in Flowing Liquids.Ind. Eng. Chem. Process Des. Dev., 1981, 20 (4): 636-640.
    [100] Morgenstern I.B.V. and Mersmann A. Aeration of Highly Viscous Liquids. Germ. Chem. Eng., 1982, 5: 374-379.
    [101]许联锋,陈刚,李建中等。气液两相流气泡运动速度场的PIV分析与研究.实验力学,2002,17(4):458-463.
    [102] Luo H.,Svendsen H. F.. Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions. AIChE Journal, 1996, 42(5): 1225-1233.
    [103]姚云,毕荣山,郑世清.不同进料方式下气液喷射器内流体流动和混合特征.青岛科技大学学报(自然科学版),2008,29(5):426-431.
    [104]田俊波.喷射器结构参数的设计计算.化工装备技术, 1997, 18(3):11-13.
    [105] Kandakure M.T., Gaikar V.G., Patwardhan A.W. Hydrodynamic aspects of ejectors. Chem. Eng. Sci., 2005, 60: 6391-6402.
    [106]毕荣山.高Schmidt数下喷射器内湍流反映的实验研究和多尺度模拟.青岛科技大学博士论文. 2008.
    [107] Manninen M., Taivassalo V.and Kallio S. On the mixture model for multiphase flow. VTT Publications 288, Technical Research Centre of Finland. 1996.
    [108]张思青,沈东,王难贵.水射流泵相似条件及相似准则的确定.水泵技术,1995,5:15-18.
    [109]黄祥麟.相似律在水喷射泵中的应用.机电设备,2002,3:1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700