超强吸水树脂堵漏技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂缝性地层漏失是影响钻井工程安全、效率、成本甚至油气层发现和保护的一项重要因素。裂缝性地层中孔隙、裂缝、溶洞交叉存在,也会单独存在。特别是钻遇大型的溶洞或裂缝发生恶性漏失时,堵漏困难,常规堵漏材料封堵效果较差。为了确保安全钻井,提高钻井效率,降低施工成本,以及提高油气层保护效果,研究对付裂缝性地层井漏的高效堵漏材料非常必要。
     本文针对裂缝性地层,对比分析了目前裂缝性地层漏失常用的堵漏方法,结合国内外新型堵漏技术调研,对超强吸水树脂堵漏技术进行了研究。并根据裂缝性地层特点及其孔缝空间的分布情况,运用流体渗流理论分析了裂缝-孔隙性双重介质中流体的渗流机理,引入超强吸水树脂吸水膨胀后形成粘弹性凝胶颗粒进入漏失通道架桥和阻塞的独特性,得出超强吸水树脂用于裂缝性地层堵漏的可行性。
     应用非牛顿流体力学、粘弹性力学等理论,对孔喉附近的流场分布(压力的分布、速度的分布、粘度的分布等)进行三维数值模拟分析,研究了聚合物溶液在多孔介质中的流变特性。并根据单个及多个吸水树脂颗粒在多孔介质中的作用情况,解释了超强吸水树脂的堵漏机理。研究表明,超强吸水树脂溶液流动到孔喉通道处,受压产生形变,因为粘弹性效应,使孔喉处的压力损失增加,阻力增加,产生滞留,从而封堵裂缝。
     本文在对超强吸水树脂吸水理论、性能等研究基础上,制定了一套系统的实验方案,分别从超强吸水树脂自身性能及堵漏性能两方面展开实验研究,并考虑多种影响因素,对其封堵效果进行实验评价和分析。通过实验得出,超强吸水树脂具有很好的封堵效果,承压能力大于4Mpa。
Fractured formation losses is an important factor which effects drilling engineering security,efficiency and cost,and effects the discovery and the protection of the oil&gas formation.Porosity,fracture and cavity overlapping exist in the fractured formation at the same time.and sometimes also alone.Particularly severe losses would happen when drill in the large-scale cavity or fracture.The plugging is so difficult that conventional lost circulation materials(LCM) often perform poorly.In order to ensure drilling security and efficiency,reduce constrction cost,and improve the effectiveness of the formation protection,it's very significant to study the LCM which can deal with the fractured formation losses.
     Combining with the plugging technology all over the world,this paper mainly analyses plugging methods in common use for fractured losses to the fractured formation,and researches on the Super Absorbent Resin(SAR) plugging technology.According to the characteristics of the fractured formation and the distribution of the apertures spaces,this paper analyses flow mechanics in fracture-porous double porosity by penetration mechanics theory.The SAR forms to a viscoelastic gel after water swelling,and easily enters loss channels for plugging.Then we obtains the feasibility of the SAR on plugging the fractured formation.
     This paper analyses rheological characteristics when the polymer solution flow into the porous medium.and the flow distribution (pressure distribution,velocity distribution and viscosity distribution,etc) is studied by three-dimennsional numerical simulation with the theory of Non-Newtonian hydrodynamics,viscoelastic mechanics and so on. Combining with single-SAR and milti-SAR granule flowing into the porous media,this paper describesplugging mechanism of the SAR. The results show that the SAR solution flows into the porethroat and distorts after compressing.Because of the viscoelasticity,pressure loss whichincrease the resistance,after that,the SAR stagnates and plug the fractures.
     Base on the water-absorbent theory and performance,and with the systemic of experimental program,we do the experimental researches on the SAR's own performance and plugging properties.With the consideration of a variety of factors,we evaluate and analyse on the plugging effect.The experiments show that the SAR has good plugging effectiveness and raise pressure resistance of the thief zone.The plugging strength is more than 4Mpa.
引文
[1]James R.Bruton,et al.Lost Circulation Control:Evolving Techniques and Strategies to Reduce Downhole Mud Losses.SPE/IADC 67735,2001.
    [2]Fidan E,Babadagli T,Kuru E.Use of Cement As Lost Circulation Material-Field Case Studies.IADC/SPE 88005,2004.
    [3]林英松,蒋金宝,秦涛.井漏处理技术的研究及发展.断块油气田.2005,12(2)4~7.
    [4]王德承.川东地区钻井堵漏剂研究应用综述,钻采工艺.1991,14(2):14~18.
    [5]姚晓,李华,步云鹏等.防漏水泥浆体系在吉林油田严重漏失地层中的作用.钻井液与完井液.2005,22(1):35~37.
    [6]徐同台等.钻井工程防漏堵漏技术.石油工程出版社.北京:石油工业出版社,1997.
    [7]郑有成,天然气工业,川东北地区恶性井漏处理技术探索.
    [8]汪海阁等.中石油深井钻井技术现状与面临的挑战.石油钻采工艺,2005,27(2):4~8.
    [9]王柏文等.XA溶胀型随钻堵漏剂的研制与应用.钻井液与完井液.2005,22(2):41~43.
    [10]徐晓秋,刘廷栋,李景庆等.高吸水性树脂的工艺与配方.北京:化学工业出版社,2004.
    [11]邹新禧.超强吸水剂.北京:化学工业出版社,1991.
    [12]Zweigle,M.L.,et al.Cross-linked,water-swellable polymer microgels.U.S.Patent 4,172,066.1979.
    [13]Walker,C.O.,Method for Controlling Lost Circulation of Drilling Fluids With Water Absorbent Polymers.U.S.Patent 4,635,726.1987.
    [14]Reid,A.L.,et al.Method of reducing circulation fluid loss using water absorbing polymer.Patent 5,086,841.1992.
    [15]Heying,T.L.,U.S.Patent 0040812 A1.
    [16]Fang C C,Thaemlitz C.New OSPAR-Compliant Technologies for Managing Drilling-Fluid Lost-Circulation Events.SPE 94434,2005.
    [17]修留勇,贾平军,高学生等.LXC-005井胶质复合堵漏材料水泥浆堵漏技术.石油钻采工艺.2004,26(5):32-34.
    [18]赵忠举,徐同台,卢淑等.2004年国外钻井液技术的新进展.钻井液与完井液.2005,22(4):60-71.
    [19]Ivan,C.d.,et al:"Making a Case for Rethinking Lost Circulation Treatments in Induced Fractures",paper presented at SPE Annual Technical Conference and Exhibition held in San Antonio,Texas(29 September-2 October 2002).
    [20]Hassan l.El-Hassan,et al.Using a Novel Fiber Cement System to Control Lost Circulation:Case Histories from the Middle East and the Far East.SPE 85324.2003.
    [21]Nick Low,et al.Designing Fibered Cement Slurries for Lost Circulation Applications:Case Histories.SPE 84617.2003.
    [22]http://www.oilfield.slb.com/media/services/cementing/lostcirculation/instanseal.pdf.
    [23]王正良等.JPD吸水膨胀型聚合物堵漏剂的研究.石油钻探技术.2004,32(1):32~34.
    [24]oil technology overseas,OTO production.
    [25]Ching-Jen Chang et al.superabsorbent polymeric compositions and process for producing the same.
    [26]Chang,Ching-Jen et al.Superabsorbent polymeric compositions and process for producing the same.United states patent,4,914,170.1990.
    [27]Fang,Cindy Ching et al.Method and biodegradable super absorbent composition for preventing or treating lost circulation.United States Patent 20060094604.2006.
    [28]Fujita,et al.Method for preparing highly absorbent hydro-gel polymers.United states patent,4,320,040.1982.
    [29]Verret,Robin J.Method for decreasing lost circulation during well operation.US Patent 6,976,537.2003.
    [30]Theodore L.Heying.Methods for Reducing Lost Circulation in Wellbores.U.S.Patent 6,581,701.2003.
    [31]www.westcoastdrilling.com,PRODUCT,INFORMATION,G-STOP.
    [32]Frisque,Alvin J.Clay-polymer concentrates for beneficiating clays.US Patent 4,128,528.1978.
    [33]Ansell L.Reid.Polymer composition comprising phosphorous-containing gelling agent and process thereof.US.Patent 5,034,139.1991.
    [34]王松,潘建琼.WS-1凝胶堵漏剂的研究与应用.河南石油.1998,5(12):23~25.
    [35]张歧安,徐先国,董维等.延迟膨胀颗粒堵漏剂的研究与应用.钻井液与完井液.2006,23(2):21~24.
    [36]周效全.高分子吸水树脂在油田化学中的应用.钻采工艺.1998,21(5):66~67.
    [37]傅强编著.裂缝性基岩油藏的石油地质动力学.北京:地质出版社2002.
    [38]张厚福,方朝亮,高先至等.石油地质学,石油工业出版社.北京.1999.
    [39]崔迎春 刘媛 陈玉林等.裂缝性油气储层保护技术研究.石油钻采工艺.2003,25(6):10~13.
    [40]柏松章等.碳酸盐岩潜山油田开发.石油工业出版社.北京.1996.
    [41]James R.Gilman.Practical Aspects of Simulation of Fractured Reservoirs.iReservoir.com.Littleton,CO,USA.2003.
    [42]李治平.油气层渗流力学.石油工业出版社.北京.2001.
    [43]林安村.”吊灌”法在完井和堵漏作业中的应用.天然气工业.1983,3(1):31~33.
    [44]左凤江,丁玉兴,虞海法等.水化膨胀复合堵漏工艺技术.钻井液与完井液.2006,23(5):57~58.
    [45]胥永杰.高陡复杂构造地应力提取方法与井漏机理研究.西南石油学院.2005.
    [46]何更生.油层物理.石油工业出版社.北京.1994.30~31.
    [47]许元泽.聚合物流体渗流机理研究.力学进展.1992,22(1):20~33.
    [48]W.kozicki,P.Q.Kuang.Linearized Capillary Hybrid Model of Viscoelastic Flow in Porous Media.Int.J.Eng.Fluid Meh.,Vol.5,No.2,1992,161~195.
    [49]Francis A.L.Dullien.New Network Permeability Model of Porous Media.AIChEJ.,Vol.21,No.2,1975(3),299~307.
    [50]Alkibides C.Payatakes,Chi Tien,Raffi M.Turian.Numerical Solution of Stead State Incompressible Newtonian Flow through Constricted Tubes.AIChEJ.,Vol.19,No.1,1973(1),67~77.
    [51]E.f.Blick,F.Clvan.Porous-Media Momentum Equation for Highly Accelerated Flow.SPE Reservoir Engineering(Aug.1988),1048~1052.
    [52]夏惠芬.粘弹性聚合物溶液的渗流理论及其应用.石油工业出版社.北京.2002.
    [53]P.W.Chang,et al.Selective Emplacement of Xanthan/Cr(Ⅲ)Gels in Porous Media.SPE17589,1988.
    [54]Bird,R.B.,Steward,W.E.,and Lightfoot,E.N.:Transport Phenomena,Wiley,New York.1960.
    [55]Sadowski,T.J.,and Bird,R.B."Non-Newtonian Flow through Porous Media-1:Theoretical," Trans.Soc.Rheol.,9,243(1965).
    [56]Sadowski,T.J.:"Non-Newtonian Flow through Porous Media-2:Experimental,"Trans.Soc.Rheol.9,251(1965).
    [57]Savings,J.G.:"Non-Newtonian Flow through.Porous Media"Ind.Eng.Chem.,61,18(1969).
    [58]王立军.聚合物溶液粘弹性对提高驱油效率的作用.大庆博士论文.
    [59]周光全,刘孝敏.粘弹性理论.中国科学技术大学出版社.合肥.1996.
    [60]杨挺青.粘弹性力学.华中理工大学出版社.武昌.1990.
    [61]R,M.克里斯坦森著,郝松林译.粘弹性力学引论.科学出版社.北京.1990.
    [62]Marshall RJ and Metzner AB.Flow of Viscoelastic Fluids through Porous Media.I&EC Fundam.Vol.16,No.3,August,1967.
    [63]Jennings,R.K et al.Factors Influencing Mobility Control by Polymer Solutions.Journal of Petroleum Technology,1971,391~401.
    [64]Savins,J.G.Non-Newtonian flow through porous media.Ind.Eng.Chem.1969,61:18~47.
    [65]孔凡顺.聚合物溶液的粘弹性对残余油的微观作用机理.大庆石油学院硕士论文.2005.
    [66]韩式方.非牛顿流体本构方程和计算解析理论.科学出版社.北京.2000年,112.
    [67]C.D.Ivan.et al.Aphron-Base Drilling Fluid:Evolving Technologies for Lost Circulation Control.SPE 71377.2001.
    [68]Frederick B Growcock,et al.Application of Water-Base and Oil-Based Aphrons in Drilling Fluids.SPE 80208.2003.
    [69]Wang Demin,et al.Study of the Mechanism of Polymer Solution With Visco-Elastic Behavior Increasing Microscopic Oil Displacement Efficiency and the Forming of Steady"Oil Thread"Flow Channels.SPE 68723.2001.
    [70]王凤琴.乳状液在多孔介质中的微观渗流特征.西北大学学报.2003,33(5):603~607.
    [71]王丽华,陆敏.膨胀型止水带吸水性能的研究.中国建筑防水.1997,5:14~16.
    [72]严君凤.新型堵漏材料的合成.钻井液与完井液.1998.15(1):42~44.
    [73]Walker,Clarence O.Encapsulated water absorbent polymers as lost circulation additives for aqueous drilling fluids.U.S.Patent 4664816.
    [74]中国石油天然气总公司发布.SY/T5840-93.钻井用桥接堵漏材料室内试验方法.中华人民共和国石油天然气行业标准.1993年.
    [75]刘波,柳平林.聚合物胶囊增稠堵漏技术实验研究.油田化学.2001,24(1):72~75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700