鼠脑损伤后脑细胞外液中兴奋性氨基酸、葡萄糖与乳酸的含量变化及神经节苷酯GM1的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨损伤前后鼠脑细胞外液中兴奋性氨基酸、葡萄糖、乳酸的变化,并研究神经节苷酯GMI对大鼠脑损伤后的神经保护作用。
     方法:以自由落体硬膜外撞击方法制作轻度和重度大鼠脑损伤模型,利用微透析技术收集不同组别脑损伤前后的细胞外液,检测兴奋性氨基酸、葡萄糖、乳酸的变化。
     结果:对照组A组(假手术组)细胞外液中谷氨酸在伤后各时间段变化很小(P>0.05),基础水平为2.17±4-0.23μM。损伤组B组(损伤组)、C组(处理组)谷氨酸基础水平与对照组基本相同,伤后即迅速升高,各时间段波动明显,伤后15-30min时间段最高,B、C组谷氨酸分别为14.54±1.66和8.13±0.65μM(P<0.05),明显高于对照组,其后逐渐降低,至75-90min时间段接近对照组。
     A组细胞外液中乳酸在伤后各时间段变化很小(P>0.05),基础水平为0.47±0.01mM。B、C组乳酸基础水平与A组基本相同,伤后即迅速升高,各时间段波动明显,伤后15-30min时间段最高,B、C组乳酸分别为0.83±0.07和0.75±0.06μM(P<0.05),明显高于对照组,其后逐渐降低,至75-90min时间段接近对照组。
     A组细胞外液中葡萄糖在伤后各时间段变化很小(P>0.05),基础水平为0.42±0.03mM。B、C组葡萄糖基础水平与对照组基本相同,伤后即迅速降低,各时间段波动明显,伤后15-30min时间段达低谷,B、C组葡萄糖分别为0.27±0.02和0.33±0.02mM(P<0.05),明显低于对照组,其后逐渐回升,至75-90min时间段接近对照组。
     结论:脑损伤后早期,透析液中兴奋性氨基酸持续升高,有一个明显的峰值,证实了损伤引起的神经损害与兴奋性氨基酸有关,同时,为临床治疗、给药的时间窗的把握提供了理论根据。
     脑损伤后,早期使用GM1治疗,兴奋性氨基酸的曲线峰值明显下降,提示GM1对兴奋性氨基酸引起的脑损伤有明确的保护作用。为进一步的临床运用提供参考依据。
     脑损伤后,观察到早期使用GM1治疗,可以减轻脑组织中乳酸的堆积,增加葡萄糖含量,从而改善能量代谢,增强神经元细胞的存活,这为探索GM1在脑损伤后的神经保护提供了新的途径。
Objective: To study the change of excitability amino acid(EAA), glucose, lactic acid in mouse brain extracellular fluid(ECF), and to study the protective function of gangliosides GM1 on mouse brain.
     Methods: The change of Glutamic acid(Glu) in ECF of the control group A (sham-operation group) is not significant after injury(P> 0.05). In injury group B group (injury group), C group (treatment group), the basic level of Glu is same as that of control group A , Glu rised rapidly after injury, the undulation of Glu is obvious, and is highest during 15-30min after injury, Glu of group B and group C were 14.54±1.66 and 8.13±0.65μM respectively (P < 0.05), were higher than the control group obviously(P < 0.05), then reduced gradually to the level of group A after 75-90min.
     The change of lactic acid in ECF of the control group A (sham-operation group) is not significant after mjury(P> 0.05). In injury group B group (injury group), C group (treatment group), the basic level of lactic acid is same as that of control group A , lactic acid ascended rapidly after injury, the undulation of lactic acid is obvious, and is highest during 15-30min after injury, lactic acid of group B and group C were 0.83±0.07 and 0.75±0.06 u M respectively (P < 0.05), were higher than the control group obviously(P < 0.05), then reduced gradually to the level of group A after 75-90min .
     The change of glucose in ECF of the control group A (sham-operation group) is not significant after injury(P> 0.05). In injury group B group (injury group), C group (treatment group), the basic level of glucose is same as that of control group A , glucose descended rapidly after injury, the undulation of glucose is obvious, and is highest during 15-30min injury, glucose of group B and group C were 0.27±0.02 and 0.33±0.02mM respectively (P < 0.05), were higher than the control group obviously(P < 0.05), then ascended gradually to the level of group A after 75-90min.
     Conclusion:, In the dialyzate, excitability amino acid ascended continually in the early after injury, then to a peak value, this confirmed the relationship between the brain injury and excitability amino acid .Simultaneously, it was the theory basis for the clinical treatment, and identified the medicine time window.
     After the early use of GM1, peak value of the excitability amino acid droped obviously, hinted that GM1 have the explicit protective function on the brain injury which caused by the excitability amino acid. Provided the reference for the further clinical utilization.
     After the brain injury, the early use of GM1 reduced the stack of lactic acid in brain tissue , and increased the content of glucose, thus improved energy metabolism , and were good for neuron cell, which may afford useful clues for the treatment of brain injury with GM1
引文
[1] 王忠诚神经外科学,(M)湖北科学技术出版社,2004:373
    [2] Sechi GP, Petruzzi V, Rosati G,et al. Brain interstitial fluid collected through implanted tissue cages. Brain Res, 1991, 564(1):154-8.
    [3] Tymianski M, Sattler R, Zabramski JM,et al.Characterization of neuroprotection from excitotoxicity by moderate and profound hypothermia in cultured cortical neurons unmasks a temperature-insensitive component of glutamate neurotoxicity. J Cereb Blood Flow Metab, 1998 ,18(8):848-67
    [4] Zhang H, Zhang X, Zhang T, et al. Excitatory amino acids in cerebrospinal fluid of patients with acute head injuries. Clin Chem ,2001, 47(8): 1458-62.
    [5] Yamamoto T, Rossi S, Stiefel M,et al. CSF and ECF glutamate concentrations in head injured patients. Acta Neurochir, Suppl (Wien) 1999;75:17-9.
    [6] Justice JB,Jr.Quantitative microdialysis of neurotransmitters.J Neurosci Methods,1993,48(2):263-276.
    [7] Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor-still lethal after eight years. Trends Neurosci,1995,18(2):57-58.
    [8] Landolt H,Langemann H,Alessandri B.A concept for the introduction of cerebral microdialysis in neurointensive care.Acta Neurochir (Suppl Wien),1996,67:31-33.
    [9] Yao T, Yano T, Nanjyo Y,et al.Simultaneous determination of glucose and L-lactate in rat brain by an electrochemical in vivo flow-injection system with an on-line microdialysis sampling. Anal Sci,2003,19(1):61-65.
    [10] Staub F,Graf R,Gabel P,Kochling M,et al. Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage.Neurosurgery, 2000,47(5):1106-15.
    [11] Badr AE,Yin W,Mychaskiw G,et al. Effect of hyperbaric oxygen on striatal metabolites: a microdialysis study in awake freely moving rats after MCA occlusion. Brain Res,2001, 916(1-2):85-90.
    [12] Feeny DM,Boyeson MG,Linn RT,et al.Responses to cortical injury: I.Methodology and local effects of contusions in the rat.Brain Res,1981,211(1):67-77.
    [13] Hall ED.High-dose glucocorticorid treatment improves neurological recovery in head injured mice.J Neurosurg,1985,62(6):882-887.
    [14] Gardner EL,Chen JP,Paredes W,et al. Overview of chemical of chemical sampling techniques.J Neurosci Meth, 1993,48:173-197.
    [15] Benveniste H, Huttmeier PC.Microdialysis theory and application.Prog Neurobiol, 1990,35(3): 195
    [16] L. Bianchi, m. A. Colivicchi, j. P. Bolam.et al .The release of amino acids from rat neostriatum and substantia nigra in vivo: a dual microdialysis probe analysis. Neuroscience 1998,87(1): 171-180.
    [17] Inao S, Marmarou A, Clarke GD, Andersen BJ, Fatouros PP, Young HF. Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury. J Neurosurg. 1988 Nov;69 (5):736-44.
    [18] Faden Al. Dynorphin increases extracellular levels of excitatory amino acids in the brain through a non-opioid mechanism. J Neurosci. 1992 Feb;12(2):425-9.
    [19] Rose ME, Huerbin MB, Melick J, Marion DW, Palmer AM, Schiding JK, Kochanek PM, Graham SH. Regulation of interstitial excitatory amino acid concentrations after cortical contusion injury.Brain Res. 2002 Jul 5;943(1):15-22. Erratum in: Brain Res. 2003 Feb 21;964(1):following 167.
    [20] Palmer AM, Marion DW, Botscheller ML, Swedlow PE, Styren SD, DeKosky ST. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model.J Neurochem. 1993 Dec;61(6):2015-24.
    [21] Koura SS, Doppenberg EM, Marmarou A, Choi S, Young HF, Bullock R. Relationship between excitatory amino acid release and outcome after severe human head injury.Acta Neurochir Suppl. 1998;71:244-6.
    [22] Yamamoto T, Rossi S, Stiefel M, Doppenberg E, Zauner A, Bullock R, Marmarou A. CSF and ECF glutamate concentrations in head injured patients.Acta Neurochir Suppl. 1999;75:17-9.
    [23] Landolt H, Fujisawa H, Graham DI, Maxwell WL, Bullock R. Reproducible peracute glutamate-induced focal lesions of the normal rat brain using microdialysis.J Clin Neurosci. 1998 Apr;5(2):193-202.
    [24] Alessandri B, Landolt H, Langemann H, Gregorin J, Hall J, Gratzl O.Application of glutamate in the cortex of rats: a microdialysis study. Acta Neurochir Suppl. 1996;67:6-12.
    [25] Dhillon GS, Koenig ML. Evidence that metabolically active synaptosomes lack functional cyclic AMP-dependent protein kinase.Cell Signal. 1991;3(5):425-34.
    [26] Willison HJ, Almemar A, Veitch J et al. Acute ataxic neuropathy with cross-reactive antibodies to GD1b and GD3 gangliosides, Neurology 1994 Dec;44(12):2395-7
    [27] Nobile-Orazio E, Carpo M, Scarlato G. Gangliosides. Their role in clinical neurology. Drugs 1994 Apr;47(4):576-85
    [28] Schneider JS, Roeltgen DP, Mancall EL et al. Parkinson's disease: improved function with GM1 ganglioside treatment in a randomized placebo-controlled study. Neurology 1998 Jun;50(6):1630-6
    [29] Favaron M, et al. Natural and semisynthetic sphingolipids protect neurons in culture from glutamate induced toxicity in :Biggo G, et al eds. Excitatory amino acids and brain ischemia. Oxford, Pergamon press, 1990;93-102
    [30] Cunha GM, Moraes RA, Moraes GA et al. Nerve growth factor, ganglioside and vitamin E reverse glutamate cytotoxicity in hippocampal cells. Eur J Pharmacol 1999 Feb 12;367(1):107-12
    [31] 邓小明 朱诚 张光霁 兴奋性氨基酸类神经递质与缺血性脑损伤 国外医学神经病学神经外科分册1993,20,1;16-18
    [32] Schimada N, Grad R, Rosner G et al. Difference in ischemia-induced accumulation of amino acid in the cat cortex. Stroke; 1990;21:1445-1451
    [33] Tymianski M, Sattler R, Zabramski JM,et al.Characterization of neuroprotection from excitotoxicity by moderate and profound hypothermia in cultured cortical neurons unmasks a temperature-insensitive component of glutamate neurotoxicity. J Cereb Blood Flow Metab, 1998 ,18(8):848-67
    [34] 孙兴斌谢印芝尹昭云等神经节苷酯对低氧大鼠脑钙、钙调素及蛋白激酶Ⅱ的影响 航天医学与医学工程1996;9:115-117
    [35] Favaron M, et al. Natural and semisynthetic sphingolipids protect neurons in culture from glutamate induced toxicity in :Biggo G, et al eds. Excitatory amino acids and brain ischemia. Oxford, Pergamon press, 1990;93-102
    [36] Feuertein GZ, Liu T, Barone FC, Cytokines, inflammation, and brain injury:role of tumor necrosis factor alpha. Cerebrovase Brain Metab Rev,1994,6(4):341-360
    [37] Mahadik SP, Marker TK, Murthy JN et al, Temporal changes in superoxide dis-mutas.gtathione peroxide and catalase levels in,primary and peri-ischemic tissue: Mono-sialoganglioside(GM1) treatment effects. Mol-chem Neuropathol, 1993;18(1-2):1-14
    [38] Nisson OG, Brand L, Ungersted U et, al Detection of brain ischemia using intracerebrchal microdialysis: subaranoid hemorrhage and delayed ischemic deterioration. Neruosurgery, 1999,45(5): 1176-1184
    [39] MeldrumBS. Excitatory amino acid receptor and their role in epilepsy and cerebral ischemia. Ann N Y Acad Sci, 1996,757:492
    [40] Pesson L, Valtysson J, Enblad P et al, Neurochemical using intracerebral microdialsis in patients with subarachnoid hemorrhage. J Neurosurg,1996,84(4):606-616
    [41] Alessandri B, Landolt, H. Langemann, J. Gregorin, J. Hall, and 0. Gratzl.Application of Glutamate in the Cortex of Rats: A Microdialysis Study. Acta Neurochir, 1996, 67 (Suppl): 6-12.
    [42] 张均田 脑缺血、葡萄糖/能量代谢障碍与神经退行性疾病,中国药理学通报;2000,Jun;16(3):241-6
    [43] Biros MH, Dimlich RVW. Brain lactate during partial global ischemia and reperfusion: Effect of pretreatment with dichloroacetate in a rat model. Am J EmergMed, 1987, 5;271
    [44] Devaskar SU, Rajakumar PA, Mink RB, et al, Effect of development and hypoxie ischemia upon rabbit brain transport expression. Brain Res,1999,823;113
    [45] L. Bianchi, m. A. Colivicchi, j. P. Bolam.et al .The release of amino acids from rat neostriatum and substantia nigra in vivo: a dual microdialysis probe analysis. Neuroscience 1998,87(1): 171-180.
    [1] Ungerstedt U, Rostami E. Microdialysis in neurointensive care. Curr Pharm Des,2004,10(18):2145-52. Review.
    [2] 韩济生主编.神经科学原理.第二版.北京:北京医科大学出版社,1999:28-34.
    [3] Benveniste H, Huttmeier PC.Microdialysis theory and application.Prog Neurobiol, 1990,35(3): 195
    [4] Menacherry SD,Hubert W,Justice JB et al. In vivo calibration of microdialysis probes for exogenous compounds.Anal Chem,1992, 64(6):577-83
    [5] Hillered L,Persson L. Theory and practice of microdialysis-prospect for future clinical use. Acta Neurochir (Suppl Wien), 1999, 75:3-6.
    [6] Faden AI. Dynorphin increases extracellular levels of excitatory amino acids in the brain through a non-opioid mechanism. J Neurosci. 1992 Feb;12(2):425-9.
    [7] Alessandri. H. Landolt, H. Langemann, J. Gregorin, J. Hall, and 0. Gratzl.Application of Glutamate in the Cortex of Rats: A Microdialysis Study. Acta Neurochir, 1996, [Suppl] 67: 6-12.
    [8] Di X, Gordon J, Bullock R. Fluid percussion brain injury exacerbates glutamate-induced focal damage in the rat.J Neurotrauma,1999, 6(3): 195-201
    [9] Matsushita Y, Shima K, Nawashiro H ,et al. Real time monitoring of glutamate following fluid percussion brain injury with hypoxia in the rat. Acta Neurochir Suppl 2000;76:207-212
    [10] Runnerstam M, Bao F, Huang Y, Shi J, et al.A new model for diffuse brain injury by rotational acceleration: Ⅱ. Effects on extracellular glutamate, intracranial pressure, and neuronal apoptosis. J Neurotrauma,2001,18(3):259-273.
    [11] Rose ME, Huerbin MB, Melick J,et al.Regulation of interstitial excitatory amino acid concentrations after cortical contusion injury. Brain Res 2002 May 10;935(1-2):40-46.
    [12] Hayes J, Tipton KF, Bianchi L, Corte LD. Complexities in the neurotoxic actions of 6-hydroxydopamine in relation to the cytoprotective properties of taurine. Brain Res Bull. 2001 May 15;55(2):239-45.
    [13] Bullock R, Zauner A, Woodward JJ,et al. Factors affecting excitatory amino acid release following severe human head injury.J Neurosurg,1998, 89(4):507-18.
    [14] Maeda T,Katayama Y,Kawamata T, et al. Mechanisms of excitatory amino acid release in contused brain tissue:effects of hypothermia and in situ administration of Ca2+ on extracellular levels of glutamate.J Neurotrauma ,1998 , 15(9):655-664
    [15] Rossi DJ, Oshima T, Attwell D.Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature, 2000, 403 (6767): 316-321
    [16] Rao VL, Baskaya MK, Dogan A, et al. Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. J Neurochem 1998 May;70(5):2020-2027.
    [17] Tanaka K, Watase K, Manabe T,et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997, 276 (5319): 1699-1702.
    [18] Zwienenberg M, Gong QZ, Berman RF ,et al. The effect of groups Ⅱ and Ⅲ metabotropic glutamate receptor activation on neuronal injury in a rodent model of traumatic brain injury. Neurosurgery, 2001,48(5): 1119-1126 .
    [19] Katoh H, Sima K, Nawashiro H,et al. The effect of MK-801 on extracellular neuroactive amino acids in hippocampus after closed head injury followed by hypoxia in rats .Brain Res 1997 May 30;758(1-2):153-62.
    [20] Globus MY, Alonso O, Dietrich WD, et al. Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem, 1995 ,65(4):1704-1711.
    [21] Bentzer P, Davidsson H, Grande PO. Microdialysis-based long-term measurements of energy-related metabolites in the rat brain following a fluid percussion trauma. J Neurotrauma, 2000, 17(5):441-447.
    [22] Krishnappa IK, Contant CF, Robertson CS. Regional changes in cerebral extracellular glucose and lactate concentrations following severe cortical impact injury and secondary ischemia in rats. J Neurotrauma, 1999, 16(3):213-224.
    [23] Marklund N, Salci K, Lewen A,et al.Glycerol as a marker for post-traumatic membrane phospholipid degradation in rat brain. Neuroreport,1997,8(6):1457-1461.
    [24] Lewen A, Hillered L.Involvement of reactive oxygen species in membrane phospholipid breakdown and energy perturbation after traumatic brain injury in the rat. J Neurotrauma , 1998, 15(7):521-30.
    [25] Sakamoto KI,Fujisawa H,Koizumi H,et al.Effects of mild hypothermia on nitric oxide synthesis following contusion trauma in the rat.J Neurotrauma, 1997; 15(5):349-353.
    [26] Bell MJ, Kochanek PM, Carcillo JA,et al. Interstitial adenosine, inosine, and hypoxanthine are increased after experimental traumatic brain injury in the rat. J Neurotrauma 1998 Mar; 15(3):163-70
    [27] Hillered L,Persson L. Theory and practice of microdialysis-prospect for future clinical use. Acta Neurochir (Suppl Wien), 1999, 75:3-6.
    [28] Unterberg AW,Sakowitz OW,Sarrafzadeh AS,et al. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage.J Neurosurg, 2001,94(5):740-749.
    [29] Staub F,Graf R,Gabel P,Kochling M,et al. Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage.Neurosurgery, 2000,47(5): 1106-1115.
    [30] Schulz MK,Wang LP,Tange M,et al. Cerebral microdialysis monitoring:determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg, 2000 ,93(5):808-814.
    [31] Hutchinson PJ,Maskell LB,Richards HK,et al. Clinical cerebral microdialysis:a methodological study. J Neurosurg, 2000,93(1):37-43.
    [32] Landolt H,Langemann H,Alessandri B.A concept for the introduction of cerebral microdialysis in neurointensive care.Acta Neurochir (Suppl Wien), 1996,67:31-33.
    [33] Vespa P, Prins M, Ronne-Engstrom E,et al.Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg,1998, 89(6):971-982.
    [34] Koura SS, Doppenberg EM, Marmarou A,et al.Relationship between excitatory amino acid release and outcome after severe human head injury Acta Neurochir Suppl(Wien), 1998,71:244-6.
    [35] Goodman JC, Valadka AB, Gopinath SP,et al.Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med,1999, 27(9): 1965-73.
    [36] Marion DW, Puccio A, Wisniewski SR,et al.Effect of hyperventilation on extracellular concentrations of glutamate, lactate, pyruvate, and local cerebral blood flow in patients with severe traumatic brain injury. Crit Care Med, 2002,30(12):2619-2625.
    [37] Lee GJ, Park JH, Park HK.Microdialysis applications in neuroscience.Neurol Res. 2008 Sep;30(7):661-8. Epub 2008 Jul 15.
    [38] Uehara T, Sumiyoshi T, Itoh H, Kurata K.Lactate production and neurotransmitters; evidence from microdialysis studies. Pharmacol Biochem Behav. 2008 Aug;90(2):273-81. Epub 2008 Apr 8. Review.
    [39] Microdialysis sampling method for evaluation of binding kinetics of small molecules to macromolecules.Anal Chem. 2008 Apr 15;80(8):2993-9. Epub 2008 Mar 21.
    [40] van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH.Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav. 2008 Aug;90 (2):135-47. Epub 2007 Sep 14. Review.
    [41] Zhou SN, Ouyang G, Pawliszyn J.Comparison of microdialysis with solid-phase microextraction for in vitro and in vivo studies.J Chromatogr A. 2008 Jul 4; 1196-1197:46-56. Epub 2008 Feb 26.
    [1] Matsushita Y et al. Real-time monitoring of glutamate following fluid percussion brain injury with hypoxia in the rat. J Neuronranma,2000,17(2):143-153
    [2] Roberts WA, Eaton SA, Salt TE. Excitatory amino acid receptors mediate synaptic responses to visual stimuli in superior colliculus neurones of the rat.Neurosci Lett 1991 Aug 19;129(2):161-4
    [3] Lindholm D. Models to study the role of neurotrophic factors in neurodegeneration. J Neural Transm Suppl 1997;49:33-42
    [4] Hick D et al. Growth factors and gangliosides as neuroprotective agents in excitotoxicity and ischemia. Gen Pharmacol, 1998;Mar;30(3):265
    [5] Skaper SD, Leon A. Monosialogangliosides, neuroprotection, and neuronal repair processes. J Neurotrauma 1992 May;9 Suppl 2:S507-16
    [6] Itoh M, Fukumoto S, Iwamoto T, et al. Specificity of carbohydrate structures of gangliosides in the activity to regenerate the rat axotomized hypoglossal nerve. Glycobiology, 2001 ;Feb;11(2): 125
    [7] Willison HJ, Almemar A, Veitch J et al. Acute ataxic neuropathy with cross-reactive antibodies to GD1b and GD3 gangliosides, Neurology 1994 Dec;44(12):2395-7
    [8] Nobile-Orazio E, Carpo M, Scarlato G Gangliosides. Their role in clinical neurology. Drugs 1994 Apr;47(4):576-85
    [9] Schneider JS, Roeltgen DP, Mancall EL et al. Parkinson's disease: improved function with GM1 ganglioside treatment in a randomized placebo-controlled study. Neurology 1998 Jun;50(6): 1630-6
    [10] Favaron M, et al. Natural and semisynthetic sphingolipids protect neurons in culture from glutamate induced toxicity in :Biggo G, et al eds. Excitatory amino acids and brain ischemia. Oxford, Pergamon press, 1990;93-102
    [11] Skaper SD, Leon A, Facci L. Ganglioside GM1 prevents death induced by excessive excitatory neurotransmission in cultured hippocampal pyramidal neurons. Neurosci Lett 1991 May 13;126(1):98-101
    [12] Frontczak-Baniewicz M, Gadamski R, Barskov I et al. Beneficial effects of GM1 ganglioside on photochemically-induced microvascular injury in cerebral cortex and hypophysis in rat. Exp Toxicol Pathol 2000 May;52(2):111-8
    [13] Ledeen RW. Biology of gangliosides: neuritogenic and neuronotrophic propertie, J Neurosci Res 1984;12(2-3):147-59
    [14] Cunha GM, Moraes RA, Moraes GA et al. Nerve growth factor, ganglioside and vitamin E reverse glutamate cytotoxicity in hippocampal cells. Eur J Pharmacol 1999 Feb 12;367(1):107-12
    [15] Wu G, Lu ZH, Ledeen RW. Induced and spontaneous neuritogenesis are associated with enhanced expression of ganglioside GM1 in the nuclear membrane. J Neurosci 1995 May;15(5 Pt 2):3739-46
    [16] Schneider JS, Kean A, DiStefano L. GM1 ganglioside rescues substantia nigra pars compacta neurons and increases dopamine synthesis in residual nigrostriatal dopaminergic neurons in MPTP-treated mice. J Neurosci Res 1995 Sepl;42(1):117-23
    [17] Duchemin AM, et al, GM1 increase the content and mRNA NGF in brain of aged rats. Neurorreport, 1997;8 (17):3823-3827
    [18] Rosenberg PA, Azenman E. Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-pooreultures of rat cerebral cortex. Neuro lett,1998,103(2):162
    [19] Mahadik SP, Vilim F, Korenovsky et al. GM1 ganglioside protects nucleus basalis from excitotoxin damage: reduced cortical cholinergic losses and animal mortality. J Neurosci Res 1988 Aug;20(4):479-83
    [20] Tanaka K, et al. Effect of the ganglioside GM1 on cerebral metabolism,microcirculation, recovery kinetics of EcoG and histology, during the recovery period following focal ischemia in cats. Stroke, 1986; 17:1170
    [21] Karpiak SE et al. Ganglioside reduce mortality due to ischemia:protection of memberane function. Stroke, 1987; 18:164
    [22] 孙兴斌 谢印芝等神经节苷酯对低氧大鼠脑钙、钙调素及蛋白激酶Ⅱ的影响航天医学与医学工程 1996:9:115-117
    [23] Mahadik SP, Marker TK, Murthy JN et al, Temporal changes in superoxide dis-mutas.gtathione peroxide and catalase levels in,primary and peri-ischemic tissue: Mono-sialoganglioside(GM1) treatment effects. Mol-chem Neuropathol,1993;18(1-2): 1-14
    [24] Ortiz A, Mahadik SP, Hungund BL et al, Monosialoganglioside (GM1) restores membrane fatty acid levels in ischemictissue after cortical focal ischemia in rat.Neurochem Int 1993 Aug;23(2): 163-72
    [25] Komatsumoto S, et al, Effect of the ganglioside GM1 on neurologic function,electroen- cephalogram amplitude and histology in chronic middle cerebral artery occlusion in cats. Stroke;1988;19(8):1027
    [26] Italian Acute Stroke Studay Group. The Italian hemodilution trial in acute stroke.Stroke 1987;18:670
    [27] Argentino C et al. GMl ganalioside therapy in acute ischemic stroke. Stroke 1989;20:1143-1149
    [28] Heiss WD et al.In: Proceeding of the "Second International Symposium on Pharmacology of Cerebral Ischemia", 3-5, Oct. Marburg Germany 1988
    [29] Hoffbrand BI, Bingley PJ, Oppenheimer SM et al. Trial of ganglioside GMl in acute stroke. J Neurol Neurosurg Psychiatry. 1989 May;52(5):685-6.
    [30] Livia Candelise, Alfonso Ciccone. Gangliosides for acute ischemic stroke. Stroke. 2002;33:2336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700