金属原子束流源的研制及Li和CO的快电子能量损失谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研制了一套金属原子束流源装置,将其成功地应用于快电子能量损失谱仪进行碱金属和碱土金属的快电子碰撞研究。重新设计改造了快电子能量损失谱仪的多道数据采集系统,并利用多线程技术解决了原有采集系统在高计数率条件下会丢失数据的问题。利用快电子能量损失谱方法研究了锂的内壳层激发自电离态和一氧化碳价壳层跃迁的振动态。在锂的自电离态的研究中,观测到两个光学禁戒跃迁,并研究了1s(2s2p~3P)~2P~0与1s(2s2p~1P)~2P~0的广义振子强度比的动量转移依赖特性。在一氧化碳的的研究中,测量了若干价壳层跃迁的Franck-Condon因子的动量转移依赖行为,确定了相关振动态的广义振子强度、光学振子强度和积分截面,并结合已有结果进行了分析比较。
     在第一章中,介绍了快电子能量损失谱方法及其理论基础。重点介绍了微分截面、积分截面、光学振子强度和广义振子强度的物理概念,以及利用快电子能量损失谱方法测量广义振子强度的理论基础。另外,简单介绍了混合气体法测量广义振子强度的理论依据和具体过程。
     在第二章中,介绍新研制的一套工作温度可达719℃的金属原子束流源装置。该装置可以获得较高的靶密度,并且得到的锂原子束流纯度高,没有发现可觉察的分子成份。该装置的收集效率达90%以上,污染小,可以连续工作一个月以上不需要中途清洗。同时该装置还具有加热效率高、对周围真空环境的热传导和热辐射小及引线方便等特点。
     在第三章中,结合快电子能量损失谱仪的需要,将原来技术上比较陈旧的数据获取系统进行了改造,并将原本不能用于扫描测量的商用采集卡DAQ2010,结合定时卡PCI8554,通过硬件和软件方面的设计改造,使其可以满足快电子能损谱对扫描测量的要求。通过采用多线程编程技术对控制软件算法的改进,解决了原有数据获取系统在高计数率条件下会丢计数的问题,提高了采集系统的容错能力。
     在第四章中,利用新研制的金属原子束流源结合快电子能量损失谱仪,在入射能量为2500 eV的条件下测量了锂原子在散射角度为0°、2°、4°和6°的电子能量损失谱,观测到两个光学禁戒跃迁(1s2s~2)。S和(1s2s~3S)3s~2S。同时还测量了光学允许跃迁1s(2s2p~3P)~2P~0与1s(2s2p~1P)~2P~0的广义振子强度比,并发现该比值不随动量转移的变化而变化。最后,在中间耦合框架下,解释了所观察到的现象。
     在第五章中,利用角分辨的快电子能量损失谱仪,在入射电子能量为2500 eV的条件下测量了散射角度范围为0.5°-7°的一氧化碳的振动分辨的电子能量损失谱,研究了一氧化碳A~1∏、D~1△、B~1∑~+、C~1∑~+和E~1∏电子态的振动能级的相对强度和广义振子强度。分析了一氧化碳A~1∏、B~1∑~+、C~1∑~+和E~1∏电子态中各振动能级的Franck-Condon因子的动量转移依赖特性。同时首次获得了D~1△的ν′=9-25和A~1∏的ν′=9-11的广义振子强度。而且在确定其它电子态的相对强度和广义振子强度的时候,充分考虑了D~1△的贡献。最后,利用测量的广义振子强度数据得到了A~1∏、B~1∑~+、C~1∑~+和E~1∏电子态的振动能级的光学振子强度和积分截面。作者还将本次实验结果与以前发表的实验结果和理论计算结果进行了比较,并解释了其中的异同。
In the present work,a resistively heated atomic beam source has been developed to provide vapor target for the fast electron energy loss spectrometer.A data acquisition system for the same spectrometer has been developed,where the multithreading technology is used to improve the accommodating-err ability.Two optically forbidden autoionizing states of(1s2s~2) ~2S and (1s2s ~3S)3s ~2S were observed in the electron energy loss spectra of lithium,and the momentum transfer dependence behaviors of the generalized oscillator strength ratios for 1s(2s2p ~3P)~2P~0 to 1s(2s2p ~1P)~2P~0 were investigated.The relative intensity distributions and generalized oscillator strengths for the valence shell vibronic bands of carbon monoxide were also determined.Then the momentum transfer dependence behaviors of Franck-Condon factors for these vibronic bands were investigated,and the optical oscillator strengths,as well as the integral cross sections of these transitions,were determined.All the present results were compared with the previous ones.
     In chapter 1,the method of angle-resolved fast-electron-energy-loss spectroscopy were described. Then the basic conception of the optical and generalized oscillator strengths,the differential and integral cross section,as well as the elements for the measurements of the generalized oscillator strengths utilizing electron energy loss spectrometer,were introduced.In addition,the gas mixture method of measuring the generalized oscillator strengths were introduced.
     In chapter 2,A resistively heated atomic beam source has been developed to provide vapor target of the alkali and alkaline-earth metals.The operating temperature of the oven is as high as 719℃,and the target intensity is enough high for the investigation of the autoionizing states.The contamination of the vacuum system and electron optical system by metal vapor deposition has also been minimized by a black body trap,whose collection efficiency is more than 90%.So the beam source can work continually for more than one month without cleaning.The heat transfer to vacuum chamber,as well as electric and magnetic fields created by the heating currents,were minimized by some special design.
     In chapter 3,the new data acquisition system for the one dimensional multichannel fast electron energy loss spectrometer,which can work in scan acquisition mode and static acquisition mode,was described.The timing precision of the scan mode is less than 4μs by utilizing the gated signal generated by data acquisition card DAQ2010 and an AND logic circuit.A timer card PCI8554 was used to synchronize the data acquisition card and the personal computer.The scan voltage supply was controlled by the personal computer through the RS232 interface.The multi-threading technology was used in the acquisition software in order to improve the accommodatingerr ability of the acquisition system.
     In chapter 4,the electron energy loss spectra for the inner shell excitations of atomic lithium were measured at an incident electron energy of 2500 eV and scattering angles of 0°,2°,4°and 6°.Two optically forbidden transitions of(1s2s~2) ~2S and(1s2s ~3S)3s ~2S were observed.The generalized oscillator strength ratios for 1s(2s2p ~3P)~2P~0 to 1s(2s2p ~1P) ~2P~0 were determined, and they are independent of the momentum transfer.The phenomena was elucidated based on the framework of the intermediate coupling.
     In chapter 5,the relative intensity distributions and generalized oscillator strengths for the vibronic bands of A~1Π,D~1Δ,B~1Σ~+,C~1Σ~+ and E~1Πof carbon monoxide were determined by an angle-resolved electron energy loss spectroscopy at an incident electron energy of 2500 eV and in an angular range of 0°-7°.The momentum transfer dependence behaviors of Franck-Condon factors for the vibronic bands of A~1Π,B~1Σ~+,C~1Σ~+ and E~1Πwere investigated.For the fist time, generalized oscillator strengths for v=9-11 of A~1Πand v=9-25 of D~1Δwere reported and the contribution from D~1Δwere taken into account when determining the relative intensities and generalized oscillator strengths for other transitions.The optical oscillator strengths,as well as the integral cross sections,of the vibronic bands of A~1Π,B~1Σ~+,C~1Σ~+ and E~1Πwere determined from the generalized oscillator strength data.The present experimental results were compared with previous works,and some differences between them have been explained.
引文
[1]徐克尊,现代物理知识,1,33(1993).
    [2]徐克尊,物理,27,737(1998).
    [3]自然科学学科发展战略研究报告一原子分子物理学.
    [4]分子的演化——原子分子激发态和态.态反应动力学.
    [5]T.A.卡尔森,光电子和俄歇能谱学,科学出版社,1983.
    [6]凤任飞,博士论文,中国科学技术大学(1993).
    [7]徐克尊,高等原子分子物理学(第二版),科学出版社,2006.
    [8]P.Lenard,Ann.Phys.8,149(1902).
    [9]L.G.Christophorou,Electron-molecule Interactions and Their Applications V 1 Academic Press,Inc,1984.
    [10]M.Inokuti,Rev.Mod.Phys.43,297(1971).
    [11]H.D.Cheng,L.F.Zhu,X.J.Liu,Z.S.Yuan,W.B.Li,and K.Z.Xu,Phys.Rev.A 71,032714(2005).
    [12]K.Schulz,G.Kaindl,and M.Dornke,Phys.Rev.Lett.77 3086(1996).
    [13]A.Filipponi,M.Borowski,D.T.Bowron,S.Ansell,A.Di Cicco,S.De Panfilis,and J.E Ities,Rev.Sci.Instrum.71 2422(2000).
    [14]李家明,物理学报,32,84(1983);田伯刚和李家明,物理学报,34 1401(1984).
    [15]R.D.Hudson,Rev.Geophys.Space phys.6,305(1971)
    [16]W.E Chan,G.Cooper and C.E.Brian,Phys.Rev.A 44,186(1991)
    [17]S.L.Wu,Z.E Zhong,R.E Feng,S.L.Xing,B.X.Yang,and K.Z.Ku,Phys.Rev.A 51,4494(1995)
    [18]K.Z.Xu,R.E Feng,S.L.Wu,Q.Ji,X.J.Zhang,Z.P.Zhong,Phys.Rev.A 53,3081(1996).
    [19]刘小井,博士论文,中国科学技术大学,2001.
    [20]X.J.Liu,L.E Zhu,X.M.Jiang,Z.S.Yuan,B.Cai,X.J.Chen,and K.Z.Xu,Rev.Sci.Instrum.72,3357(2001).
    [21]J.F.Ying,C.P.Mathers and K.T.Leung,Phys.Rev.A 47,R5(1993)o
    [22]J.T.Francies et al.,Phys.Rev.A 52,4665(1995),
    [23]J.J.Sakurai,Modem Quantum Mechanics,(Addison-Wesley,New York,1994) pg.395-400.
    [24]C.J.Joachain,Quantum Collision Theory,(North-Holland,Amsterdam,1975) pg.161-172.
    [25]H.Bethe,Ann.Phys.5,325(1930);Z.Phys.76,293(1932).
    [26]E.N.Lassettre,A.Skerbele and M.A.Dillon,J.Chem.Phys.50,1829(1969).
    [27]A.Z.Msezane,Z.Felfli,M.Ya.Amusia,Z.Chen,and L.V.Chernysheva,Phys.Rev.A 65,054701(2002).
    [28]M.Y.Amusia,L.V.Chernysheva,Z.Felfli,and A.Z.Msezane,Phys.Rev.A 67,022703(2003).
    [29]成华东,博士论文,中国科学技术大学,2005.
    [30]M.A.DiIlon and E.N.Lassettre,J.Chem.Phys.62,2373(1975).
    [31]朱林繁,刘小井,李文斌,苑震生,成华东,钟志萍,徐克尊,原子核物理评论19,150(2002).
    [32]钟志萍,博士论文,中国科学技术大学,1997.
    [1]Ross K J and Sonntag B 1995 Rev,Sci.Instrum.66 4409.
    [2]High Temperature Materials and Technology,edited by I.E.Campbell and E.M.Sherwood (Wiley,New York,1967).
    [3]Boron Nitride Properties,Carborundum,Belgium.
    [4]E D.Johnson,J.Am.Ceram.Sot.33 168(1950).
    [5]R.Kieffer and E Benesovsky,Metalurgia 58 119(1958).
    [6]G.Economos and W.D.Kingery,J.Am.Ceram.Sot.36 403(1953).
    [7]R.A.Lewis,Ph.D.thesis,Southampton University,1984.
    [8]关振铎,《无机材料物理性能》,清华大学出版社,1992年03月第1版
    [9]张玉民、阮耀钟,《热学》,高等教育出版社,1991,11
    [10]N.E Ramsey,Molecular Benms(Oxford University Press,Oxford,1955).
    [11]庄礼贤、尹协远、马晖扬,《流体力学》,中国科学技术大学出版社1991,7
    [12]姜维春,本科毕业论文,中国科学技术大学,2003.
    [1]Liu X J et al.Application of a multichannel detection system to the high-resolution fast electron energy loss spectrometer.Rev.Sci.Instrum.,2001,72(8):3357.
    [2]刘小井.基于微通道板的电子探测器的性能研究.核技术,2002,25(4):257.
    [3]X J Liu,L F Zhu,Z S Yuan et al.2003 Phys.Rev.Lett.91 193203
    [4]宁宇进.电子能量损失符合谱仪的一维位置灵敏探测器的读出系统.核电子学与探测技术,2001,21(3):214.
    [5]杨涛.电子能量损失符合谱仪前端电子学和数据获取系统.核电子学与探测技术,2001,21(3):211.
    [6]杨涛.一种无延迟线的恒比定时器.核电子学与探测技术,2002,22(3):244.
    [7]江锡满.快电子能量损失谱仪的一种新的多道测量方法.核技术,2003,26(2):165.
    [1]D L Ederer,T Lucatorto and R P Madden 1970 Phys.Rev.Lett.25 1537
    [2]A M Cantù,W H Parkinson,G Tondello and P Tozzi 1977 J.Opt.Soc.Am.77 2144
    [3]Mehlman G,Ederer D L,Saloman E B and Cooper J W 1978 J.Phys.B 11 L689
    [4]G Mehlman,J W Cooper and E B Saloman 1982 Phys.Rev.A 25 2113
    [5]T A Ferret,D W Lindle,P A Heimann,W D Brewer,U Becker,H G Kerkoff and D A Shirley 1987 Phys.Rev.A 36 3172
    [6]B Langer,J Viefhaus,O Hemmers,A Menzel,R Wehlitz and U Becker 1991 Phys.Rev.A 43 1652
    [7]L M Kieman,J-P Mosnier,E T Kennedy,J T Costello and B F Sonntag 1994 Phys.Rev.Lett.72 2359
    [8]L M Kiernan,M-K Lee,B F Sonntag,P Sladeczeck,P Zimmermann,E T Kennedy,J-P Mosnier and J T Costello 1995 J.Phys.B 28 L161
    [9]Y Azuma,S Hasegawa,F Koike,G Kutluk,T Nagata,E Shigemasa,AYagashita and I Sellin 1995 Phys.Rev.Lett.74 3768
    [10]T JMcllrath and T B Lucatorto 1977 Phys.Rev.Lett.38 1390
    [11]B Sonntag and P Zimmermann 1992 Rep.Prog.Phys.55 911 and the references therein
    [12]L M Kiernan,M K Lee,B F Sonntag et al.1996 J.Phys.B 29 L181
    [13]P Ziem,R Bruch and N Stolterfoht 1975 J.Phys.B 8 L480
    [14]D J Pegg,H H Haselton,R S Thoe et al.1975 Phys.Rev.A 12 1330
    [15] M R(?)dbro, R Bruch and P Bisgaard 1979 J. Phys. B 12 2413
    
    [16] D Rassi, V Pejcev and K J Ross 1977 J. Phys. B 10 3535
    
    [17] J A Tanis, J Y Chesnel, F Fremont et al. 1998 Phys. Rev. A 57 R3154
    
    [18] J A Tanis, J Y Chesnel, F Fremont et al. 1999 Phys. Rev. Lett. 83 1131
    
    [19] J A Tanis, J Y Chesnel, F Fremont et al. 2000 Phys. Rev. A 62 032715
    
    [20] J Rangama, D Hennecart, N Stolterfoht et al. 2003 Phys. Rev. A 68 040701
    
    [21] J W Cooper, M J Conneely, K Smith, S Ormonde 1970 Phys. Rev. Lett. 25 1540
    
    [22] Vo Ky L, Faucher P et al. 1998 Phys. Rev. A 57 1045
    
    [23] A K Bhatia and A Temkin 1976 Phys. Rev. A 13 2322
    
    [24] A K Roy and B M Deb 1997 Phys. Lett. A 234 465
    
    [25] Z Y Zhou and S I Chu 2007 J. Phys B 40 4379
    
    [26] K T Chung 1998 Phys. Rev. A 57 3518
    
    [27] K T Chung 1979 Phys. Rev. A 20 1743
    
    [28] K T Chung 2004 Radiation Physics and Chemistry 70 83 and references therein
    
    [29] H Feshbach 1958 Ann. Phys. (N.Y.) 5 537
    
    [30] H Feshbach 1962 Ann. Phys. (N.Y.) 19 287
    
    [31] U Fano 1961 Phys. Rev. 124 1866
    
    [32] A Temkin, A K Bhatia, J N Bardley 1972 Phys. Rev. A 5 1663
    
    [33] X J Liu, L F Zhu, Z S Yuan et al. 2003 Phys. Rev. Lett. 91 193203
    
    [34] S L Wu, Z P Zhong, R F Feng et al. 1995 Phys. Rev. A 51 4494
    
    [35] X J Liu, L F Zhu, X M Jiang et al. 2001 Rev. Sci. Instrum. 72 3357
    
    [36] K J Ross and B Sonntag 1995 Rev. Sci. Instrum. 66 4409
    
    [37] W H E Schwarz, W Butscher, D L Ederer et al. 1978 J. Phys. B 11 591
    
    [38] H D Cheng, L F Zhu, X J Liu et al. 2005 Phys. Rev. A 71 032714
    [1] K. N. Klump and E. N. Lassettre, 1974 J. Chem. Phys. 60 4830
    [2] Michael Dillon and Mineo Kimura, 1995 J. Chem. Phys. 102, 1561
    
    [3] M. Kimura, M. A. Dillon, R. J. Buenker, G. Hirsch, Y. Li and L. Chantranupong 1996 Zeitschrift fur Physik D 38 165
    
    [4] I. Borges Jr., P. J. S. B. Caridade, and A. J. C. Varandas 2001 Journal of Molecular Spec-troscopy 209 24
    
    [5] Glenn Stark.Brenton R. Lewis, Stephen T. Gibson, AND Julian P. England 1999 The Astro-physical Journal, 520 732
    
    [6] S. R. Federman, M. Fritts, S. Cheng, K. M. Menningen, David C. Knauth, AND K. Fulk 2001 The Astrophysical Journal Supplement Series 134 133
    
    [7] F. B. Yousif and J. Pablo Flores 2003 Phys. Rev. A 68 053404
    
    [8] A. G. Middleton, M. J. Brunger, and D. J. O. Teubner, 1993 J. Phys. B 26, 1743
    
    [9] Michael J.Brunger and Stephen J.Buckman 2002 Physics Reports 357 215
    
    [10] J. C. Nickel, P. W. Zetner, G. Shen, and S. Trajmar 1989 J. Phys. E 22 730
    
    [11] M. Allan 1995 J. Phys. B 28 4329
    
    [12] M. J. Brunger and P. J. O. Teubner 1990 Phys. Rev. A 41 1413
    
    [13] A. G. Middleton, M. J. Brunger, P. J. O. Teubner, M. W. B. Anderson, C. J. Noble, G. Woeste,K. Blum, and C. Fullerton 1994 J. Phys. B 27 4057
    
    [14] M. A. Dillon, in Creation and Detection of the Excited State, edited by A. A. Lamola (Marcel Dekker, New York, 1971), pp. 375 - 428.
    
    [15] A. Skerbele and E. N. Lassettre 1966 J. Chem. Phys. 44 4066
    [16] J. P. Doering 1979 J. Chem. Phys. 71 20
    
    [17] Yan Li, Michael Honigmann, K. Bhanuprakash, Gerhard Hirsch, and Robert J. Buenker 1992 J. Chem. Phys. 96 8314
    
    [18] B. R. Lewis, J. P. England, and S. T. Gibson 2001 Phys. Rev. A 63 022707
    [19]14.Kato,H.Kawahara,M.Hoshino,H.Tanaka,M.J.Brunger and Y.-K.Kim,J.Chem.Phys.126,064307(2007)
    [20]H.Kawahara,H.Kato,M.Hoshino,H.Tanaka and M.J.Brunger Phys.Rev.A 77,0127132008
    [21]Y.-K.Kim,J.Chem.Phys.126,064305(2007)
    [22]E.N.Lassetre and S.M.Silverman,1964 J.Chem.Phys.40,1256
    [23]V.D.Meyer,A.Skerbele,and E.N.Lassettre,1965 J.Chem.Phys.43,805
    [24]E.N.Lassettre and A.Skerbele,1971 J.Chem.Phys.54,1597
    [25]A.Skerbele and E.N.Lassettre,1971 J.Chem.Phys.55,424
    [26]Z.P.Zhong,R.E Feng,K.Z.Xu,S.L.Wu,L.F.Zhu,X.J.Zhang,Q.Ji,and Q.C.Shi 1997Phys.Rev.A 55,1799
    [27]L.Chantranupong,K.Bhanuprakash,M.Honigmann,G.Hirsch,and R.J.Buenker,1992Chem.Phys.161,351
    [28]L.Chantranupong,G.Hirsch,K.Bhanuprakash,R.J.Buenker,M.Kimura,and M.A.Dillon,1992 Chem.Phys.164,183
    [29]Alexandre B.Rocha,Itamar Borges,Jr.,and Carlos E.Bielschowsky,1998 Phys.Rev.A 57,4394
    [30]Lin-Fan Zhu,Heng-Feng Ren,Xiao-Jing Liu,Zhen-Sheng Yuan,Yi Wu,and Ke-Zun Xu 2005 J.Chem.Phys.122,224303
    [31]L.Campbell,M.J.Brunger,P.J.O.Teubner,B.Mojarrabi,and D.C.Cartwright 1997 Aust.J.Phys.50 525
    [32]M.E.Rosenkrantz and K.Kirby 1989 J.Chem.Phys.90 6528
    [33]Kate Kirby,Marcy E.Rosenkrantz and David L.Cooper 1992 Phys.Rev.L 68 3865
    [34]S.G.Tilford and J.D.Simmons 1972 Journal of Physical and Chemical Reference Data 1147
    [35]朱林繁,刘小井,李文斌,苑震生,成华东,钟志萍,徐克尊,原子核物理评论19,150(2002).
    [36]N.M.Cann,A.J.Thakkar,J.Electron Spectrosc.Relat.Phenom.123,143(2002).
    [37]X.J.Liu,L.F.Zhu,Z.S.Yuan,W.B.Li,H.D.Cheng,J.M.Sun,and K.Z.Xu,J.Electron Spectrosc.Relat.Phenom.135,15(2004).
    [38]S.L.Wu et al.(unpublished)
    [39]R.W.Field,O.Benoist d'Azy,M.Lavollée,R.Lopez-Delgado and A.Tramer 1983 J.Chem.Phys.78 2838
    [40]M.Eidelsberg,F.Rostas,J.Breton and B.Thieblemont 1992 J.Chem.Phys.96 5585
    [41]K.Kirby,and D.L.Cooper 1989 J.Chem.Phys.90 4895
    [42]W.F.Chan,G.Cooper and C.E.Brion 1993 Chem.Phys.170 123
    [43]M.Eidelsberg,J.J.Benayoun,Y.Viala and F.Rostas 1991 A&AS 90 231
    [44]C.Letzelter,M.Eidelsberg,and F.Rostas 1987 Chem.Phys.114 273
    [45]L.C.Lee and J.A.Guest 1981 J.Phys.B 14 3415
    [46]I.Kanik,G.K.James and J.M.Ajello 1995 Phys Rev.A 51 2067
    [47]G.Stark,P.L.Smith,K.Ito and K.Yoshino 1992 ApJ 395 705
    [48]M.Ciocca,I.Kanik and J.M.Ajello 1997 Phys Rev.A 55 3547

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700