广西大厂矿田铟的富集规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以分散元素地球化学理论为指导,从广西大厂矿田区域成矿地质背景分析入手,应用岩石学、构造地质学、稀土元素地球化学、微量元素地球化学、稳定同位素地球化学、包裹体地球化学等多学科知识对大厂矿田的矿床地质特征、矿床地球化学特征、矿床成因进行了比较系统和深入的研究,进而在全面总结成矿规律的基础上,开展了大厂矿田铟的富集规律研究工作。
     从大厂矿田区域地质特征分析入手,应用地洼学说成矿学理论,阐述了大厂矿田矿田经历了前地槽、地台及地洼(活化)三个大的构造发展演化阶段。矿区前地槽主要为沉积期,形成了前三叠纪的原岩地层,至印支期,区域上升成为地台,至燕山期,地台活化,进入地洼阶段,区域发生大规模构造、岩浆活动,地洼阶段为大厂矿田的重要形成时期。
     首次对大厂矿田中In与近矿围岩、岩浆岩以及矿石的微量元素、稀土元素地球化学特征的相互关系进行了研究,揭示了微量元素和稀土元素在成岩、成矿过程中所反映的地球化学行为特征,成矿物理化学环境特征表明In在相对偏氧化的弱碱性成矿环境中易得到富集。
     首次对大厂矿田中In与主要成矿金属元素的关系进行了研究,发现铟和锡之间存在正相关关系。In与Sn在地球化学行为的相似性,使得Sn与In同迁移、同沉淀。Sn在In的矿质活化、迁移及进入闪锌矿晶格过程中起着十分重要的作用;In与Zn之间呈负相关关系,说明In在闪锌矿结晶早期就进入晶格中,此外证明了In在趋向于高温时进入闪锌矿晶格中。
     首次对大厂矿田In与岩浆岩的关系进行了研究,研究表明在成矿作用过程中岩浆岩起到不可忽略的作用,越靠近岩体,铟的含量越局。
     通过对大厂矿田矿石与区域地层、岩浆岩稀土特征的研究,表明大厂矿田的成矿物质可能是多来源的,而不仅仅是某一个特定地层或岩浆岩所提供的。但是同车江组、五指山组、榴江组、罗富组、纳标组的稀土特征与矿石稀土特征有一定的共同点,总体表现为轻稀土富集、重稀土平坦,Eu和Ce亏损,反映出矿石对容矿岩石稀土元素的继承,即矿石的稀土元素主要来自容矿地层。
     通过对In在各个中段含量的变化研究,说明大厂矿田In的含量与深度成正相关关系,也证明了在同一矿体中,In的含量与成矿温度呈正相关关系。
     通过对大厂矿田In的富集规律的研究,以大厂矿田的矿床成因、成矿规律以及矿化在空间上所表现的各种富集变化规律为主要预测依据,提出了在大厂矿田有如下几个有利部位易形成富铟矿体:
     围绕龙箱盖花岗岩体是形成富铟矿体的有利部位,以前的工作都是围绕着花岗岩体寻找锡矿体、锑矿,而忽略了对其中铁闪锌矿、黄铁矿、磁黄铁矿等的研究,从目前掌握的情况来看,以及在铟的价值越来越大的情况下,在龙箱盖周围的矿体中大量的黄铁矿、磁黄铁矿和铁闪锌矿是具有巨大的经济价值的。
     100#矿体下部的105#矿体是另一个铟储量巨大的富铟矿体,从目前的勘探情况来看,100#矿体是世界上已知的铟储量最大的矿体,但是其成矿温度要比105#矿体低,且105#矿体是综合品位更高的锡石硫化物型矿体,105#矿体是下一个值得重点研究的对象。
     铜坑—长坡矿床也是区内另一个大型的富铟矿体。
With the guideline of the geochemical theory of rare earth element (REE), starting from analyses of regional metallogenic background of Dachang mine fields in Guangxi province, geological characteristics, geochemical characteristics and metallogenic genesis are studied systematically and deeply by using the knowledge of petrology, structural geology, REE geochemistry, geochemistry of trace element, stable isotope geochemistry and inclusions geochemistry. On the basis of summarizing of metallogenic regularities roundly, researches on the enrichment regularity of indium have been done.
     Proceeding with analyses of regional metallogenic background of Dachang mine fields by using Diwa metallogenic theory, the author has explained that Dachang mine fields has undergone three big developing evolution stages, i.e. Pregeosyncline, platform and Diwa stage. The pregeosyncline period in which the protolith stratum of pre-Triassic was formed; during Indo-Chinese epoch, the region was arised and platform formed; When Yanshanian period, the platform was moved into Diwa stage by activating, large-scale tectonic and magmatic activities happed in that region, which was considered as significant forming stage of Dachang mine fields.
     The author, for the first time, have studied on the geochemical feature of the trace element and the REE of the country rock near orebody, magmatite and ore; pointed out the geochemical action feature of the trace element and REE in the ore-forming process and diagenetic stage, The physical chemical features suggest indium emplaced in relative oxidized and weakly alkaline ore-forming environment.
     The author, for the first time, has studied on the relationship between indium and other metallogenic element, and then discovers that there is positive relation between Sn and In. The similarity of geochemical behaviors of Sn and In made them migrate and deposit together. Sn play a very important role during the process of activating, migrating and entering sphalerite lattice. Negative relation between Sn and In show that In have entered the sphalerite lattice before the crystallization of sphalerite, in addition, it also proved that In tend to enter the sphalerite lattice under higher temperature.
     The author, for the first time, have studied on the relationship between indium and magmatite, the result shows that magmatite play a very important role during the diagenetic stage.The more near to the rock mass, the more high the content of indium.
     The research on the regional stratum and trace elemental feature of magmatite show that mineralizing materials are of multi-sources and are not derived from special stratum and magmatite. The geochemical feature of trace element Tongchejian group, Wuzhishan group, Liujian group and Nabiao group have in common with the feature of trace element of ore. It display generally that Light rare earth element enriched, weight rare earth element is flat, and Eu and Ce is loss. It also reflected ore inherited the rare earth element of host-rock.
     The research on the variety of indium in the different mean gradation illustrate that the content of indium kept positive relation to depth and proved that the content of indium has positive relation with metallogenic temperature in one orebody.
     Studied on the enrichment regularity of indium of Dachang mine field, based on the metallogenic genesis, rule and the variety of enrichment regularity in spatial, the author proposed some favorable place as follows:
     The first favorable place is around the Longxianggai granite rock mass. The formerly work focus on the granite rock mass which is liable with tin and antimony and neglect the study on marmatite, pyrite, and pyrrhotite. According the new exploration material and the rising of value of indium, plenty of pyrite, marmatite and pyrrhotite around the Longxianggai granite rock mass have very tremendous value.
     105 orebody, lied in the bottom of 100#orebody, is another large-scale enriched indium orebody. According the present exploration material,100 orebody is the known maximal indium reserves in the world, its metallgenic temperature is lower than the temperature of 105#, which is a tin spar-sulfide orebody with higher comprehensive grades. So, 105#orebody is the next key object.
     Tongkeng-Changpo mineral deposit is also another large-scale enriched indium orebody.
引文
[1]《矿产资源要求参考手册》编写组.矿产资源参考手册.北京:地质出版社,1972.133-152
    [2]张乾等.分散元素铟富集的矿床类型和矿物专属性.矿床地质,22(1),309-317
    [3]杨敏之.分散元素矿床类型、成矿规律及成矿预测.矿物岩石地球化学通报,19(4):381-383
    [4]涂光炽.关于超大型矿床的寻找与理论研究.地球科学进展,1989,(6)
    [5]涂光炽.广西大厂矿床成因并兼论锡石矿化物矿床形成条件.见:锡矿地质讨论会论文集.北京:地质出版社,1987:105-109
    [6]高振敏,李朝阳.分散元素矿床地球化学研究.见:中国科学院地球化学研究所等.资源环境与可持续发展.北京:科学出版社,1999.241-248
    [7]Kutina J.The role of mantle-rooted structural discontinuities in concentration of metals with an example from the Bohemian Massif set in the context of Central and Western Europe.Global Tectonics and Metallogeny,1996,5(3-4):79-92
    [8]Eby G.N., Scandium geochemistry of the Oka Carbonatitie complex, Oka, Quebec. American mineralogist,1973,58:819-825
    [9]谷团等.分散元素的超常富集与共生.矿物岩石地球化学通报,2001,19(1):60-63
    [10]Douthittt CB. The geochemistry of stable isotope of silicon. Geochi. Cosmochim,1982, Acta.,46(8):1449-1458
    [11]Emeleus, H. J., and Anderson, J. S. (1952):Modern Aspects of Inorganic Chemistry, second edition. Routledge and Kegan Paul, London
    [12]Panigrahi MK, Mookherjee A, Pantulu GVC, Gopalan K (1993) Granitoids around the Malanjkhand deposit:types and age relationship. Proc Ind Acad Sci, (Earth Planet Sci) 102:399-413
    [13]Hekinian R.Fevrier et al. Sulfur deposits from the East Pacific Rise 21 °N(Project RITA):General results. Marine Geology Res,1981, (4)
    [14]Hu Ruizhong, Bi xianwu, Su wen chao, et al. Gerich hydrothermal solution and abnormal enrichment of germanium in coal. Chinese science bulletin,1999, 44(2):257-258
    [15]Su wenchao, Hu ruizhong. Geochemistry of siliceous rocks and germanium mineralization of Lincang superlarge germanium deposit in Yunnan province. Chinese Science Bulletin,1999,44(2):156-157
    [16]USGS metal prices in the United States through 1998.1998.1 - 179
    [17]Zhuang Hanping, Lujiacan. Gernanium occurrence in Lincang superlarge deposit in Yunnan, China. Science in China,1998,41(Suppl):21-27
    [18]Zhang Baogui. Geochemistry of thallium in the gold ore belt, Guizhou province, southwestern China. Tu Guangzhi. Low-temperature Geochemistry. Beijing:Science Press,1996.8-15
    [19]Dexian Qin, Rusong Zhao and Jianwen Chen.Geology and geochemistry of the super-large modified emanated-sedimentary dachang tin deposit in guangxi province, paper to 30th IGC, China ocean press.
    [20]陈毓川.矿床的成矿系列研究现状与趋势.地质与勘探,1997,33(1)
    [21]张忠,张宝贵,龙江平,等.中国铊矿床开发过程中铊环境污染研究.中国科学(D辑),1997,27(4):331-336
    [22]张淑玲,王淑英.云南临沧地区帮卖盆地中含铀煤中锗矿的研究.铀矿地质,1987,(5):267-275
    [23]汪毓煌.滇西褐煤伴生元素锗的富集与评价.煤田地质与勘探,1992,(3):24-30
    [24]陈毓川,银剑钊,周剑雄,等.四川石棉县大水沟独立碲矿床地质特征.地质科学,1994,29(2),165-166
    [25]曹志敏,等.首例独立碲矿床成因探讨.中国科学(B辑),1995,(6),648-654
    [26]姚林波,等.渔塘坝独立硒矿床中硒赋存形式的电子探针分析研究.矿物学报,2001,(3),49-52
    [27]Kundezendorf N.Stoffers P, Gwozdz R. Regional variations of REE pattern in sediments from active plate boundaries.Marine Geology,1988,84:191 -199
    [28]Pincock, Allen &Holt. Statistical and Geostatical Methods and ore Reserve Estimation.30th IGC Abstracts Volume 3 of 3, Beijing, china,1996
    [29]陈毓川.一个锡石多饫放带中闪锌矿的成矿期与成矿特征.地质论评,1964,20(2):111-128
    [30]陈毓川.广西某矿带原生带状分布.地质论评.1965,23(1):29-40
    [31]Russell MJ, Couples GD, Lewis H. SEDEX genesis and super-deep boreholes:can hydrostatic pore pressures exist down to brittle-ductile boundary? IN:pasava,Kribek and Zak eds. Mineral Deposits.Balkma Rotterdam,1995:315-318
    [32]Russell MJ.The generation at hot springs of sedimentary ore deposits microbialites and life. Ore geology Reviews,1996,10:199-214
    [33]毛景文,陈睛勋,杨开泰,等.桂北地区中元古代层纹状锡矿化的发现及其意义.矿床地质,1988,(1):46
    [34]毛景文,等.桂北地区火成岩系列和锡多金属矿床成矿系列.北京:北京科技出版社,1998
    [35]Rona PA. Hydrothermal mineralization at oceanic ridges. Journal of the mineralogical association of Canada,1998,266, part 3
    [36]Larsen E.S. and Montgomery A., Sterrettite, a new mineral from Fairfield, Utah. American mineralogist,1940,25(8):513-518
    [37]Kutina J.Regional mantle-rooted Discontinuities extending transversely to the margin of cratons and adjacent mobile belts:Metallogenic implications.Global Tectonics and Metallogeny,1995,5(1/2):7-18
    [38]Ranta De.Applied mining geology:Ore reserve Estimation,Published by the Society of mining Engineers, Inc, Littleton, Colrado,1986
    [39]Progress in Geology of China (1993-1996)Papers to 30th IGC.Edited by geological society of China, China ocean press.
    [40]Murray RW et al.Rare earth elements as indicators of defferent marine depositional environments in chert and shale.Geology,1990,18(3):268-271
    [41]Bachinski DJ.Band strength and sulfur isotopic fractionation in coexisting sulfides.Econ.Geol.1969,64:56-65
    [42]Plimer IR. Exhalative Sn and W deposits associated with mafic volcanism as precursors to Sn and W associated with granites. Mineralium Deposite,1980, 15:275-289
    [43]韩发,等.大厂锡多金属矿床地质及成因.北京:地质出版社,1997:122-131
    [44]雷良奇.大厂长坡锡多金属矿床成因邹议.矿床地质,1986,5(3):87-96
    [45]韩发,R.W.哈钦森.大石锡多金属矿床热液喷气沉积成因的证据——含矿建造及热液沉积岩.矿床地质,1989,8(3):25-37
    [46]韩发.R.W.哈钦森.大厂锡多金属矿床喷气沉积成因的证据——矿床地质、地球化学特征.矿床地质,1990,9(4):309-324
    [47]韩发,R.W.哈钦森.大厂锡多金属矿床热液喷气沉积成因的证据——容矿岩石的微量元素及稀土元素地球化学.矿床地质,1989,8(3):33-41
    [48]曾云孚,张锦泉,刘文均,等.中国南方泥盆纪岩相古地理与成矿作用. 矿产与地质,1995,9(1)
    [49]叶俊,等.广西大石锡矿田泥盆系蚀变海相火山岩.地质论评,1989,35(3)
    [50]裴荣富,毛景文.锡矿床研究新进展述评.矿床地质,1989,8(2):91-94
    [51]戴问天.海底热液沉积成矿.地质与勘探,1985,(6)
    [52]翟裕生.金属成矿学研究的若干进展.地质与勘探,1997,33(1)
    [53]郜兆典,张妮.广西沉积矿床成矿系列成矿模式及控矿因素.广西地质,1998,(4),612
    [54]广西地质矿产局.广西壮族自治区区域地质志,北京:地质出版社,1985
    [55]茹廷锵.广西锰矿地质.北京:地质出版社,1992
    [56]吴诒.广西泥盆纪沉积相古地理及矿产.南宁:广西人民出版社,1987
    [57]Large RR.Australia volcanic hosted massive sulphide deposits:features, style and genetic models.Econ.Geol.1992,87:471-510
    [58]Marching V, ErzingerJ, Rosch H.Sediments from a hydrothermal field in the central valley of the Galapagos Rift spreading center. Marine Geology,1987,86: 243-251
    [59]Fryer BJ.Rare earth elements in iron-formations.In:Iron Formation:Facts and Problems.Eds.by Trendall A.F.and Morris B.C.Elsevier,Amsterdam,Science Publishers B.V.,1983:345-358
    [60]Fryer BJ.Rare earth evidence in Iron-formations for changing Precambrian oxidation states.Geochim,Cosmochim.Acta,1977,41:361-367
    [61]Fryer BJ.Fyfe WS and Kerrich R.Archaean volvanogenic oceans.Chem.Geol.,1979,24:25-33
    [62]蔡明海,梁婷,吴德成,等.广西丹池成矿带构造特征及其控矿作用.地质与勘探,2004,(6):5-10
    [63]Fouquet Y, Stackelberg UV, et al.Metallogenesis in back arc environments: the Lau basin example.Econ.egol.1993,88:2154-2181
    [64]Fouquet Y, Wafik A, et al.Tectonic settings and mineralogical and geochemical zonation in the Snake pit sulphide deposit(Mid-Atlantic ridge at 23N).Econ.Geol.,1993,88:2018-2036
    [65]Sugisaki R et al.Trassic bedded cherts in central Japan are not pelageic.Nature,1982,298:644-647
    [66]Juniper DN, Kleeman JD.Geochemical Exploration.1979
    [67]蔡宏渊.中国锡矿床的稀土元素地球化学特征.矿产与地质.1995,(Z1)
    [68]曾允孚,刘文均,陈洪德,等.华南右江复合盆地的沉积构造演化.地质学报,1995,(02)
    [69]Fisher W L,Megowen J H.Depositional systems in the Wilcox Group of Texas and their relationship to occurrence of oil and gas Galf coast.Assoc.Soc.Trans.1967(17):105-125
    [70]Bond G C.Kuming M A.construction of tectonic subsidence curves for the early Paleozoic miogeociine,southern Canadian Rocky Mountains:implications for subsidence mechanisms, age of breakup, and crustal thinning. Geol.Soc.Am.Bull, 1984(95):155-173
    [71]Vail P R, Audemard F, Bowman S A, et al. The straigraphic signatures of tectonics, custacy and sedimentology-an overview.in Einsele G.Et(edi):Cycles and events in stratigraphy,1991,617-659
    [72]Horseknecht D.W.Evolution from passive margin to foreland basin:the Atoda Formation of the Arkoma basin,South-Central U.S.A..in Allen P.A.,et(edi):Foreland basins.1986,327-346.
    [73]吴泰然.花岗岩及其形成的大地构造环境.北京大学学报(自然科学版)1995,(3)
    [74]Binns RA,Scott SD.Actively-forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin,Papua New Guinea.Econ.Geol.,1993,88:2226-2236
    [75]Herzig PM, Hannington MF et al.Gold-rich polymetallic sulfides from the Lau back-arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific.Econ.Geol.,1993,88:2182-2209
    [76]蔡明海,梁婷,吴德成,等.桂西北丹池成矿带花岗岩地球化学特征及其构造环境.大地构造与成矿学,2004,(3)
    [77]Bostrom K. Provenance and accumulation rates of opsaline silica, Al, Fe, Ti, Mn, Cu, Ni and Co in pacific pelagic sediment. Chemical Geology,1973,11(1-2): 123-148
    [78]Yamamoto K.Geochemical characteristics and deposition environment of cherts and associated rocks in the Franciscan and Shimena terranes.Sediment Geology, 1987,52:65-108
    [79]常兆山,杨忠芳.Wedepohl模式简介.地质地球化学,1996,(3)
    [80]Wedepohl K H.The composition of the continental crust[J].Geochim Cosmochim Acta,1995,59:1217-1232
    [81]蔡宏渊.中国锡矿床的稀土元素地球化学特征.矿产与地质,1995(S1)
    [82]魏俊浩,王思源,吕国芳,等.华北地台南缘中元古代官道口群热水沉积硅质岩的地球化学特征.地球科学,1996,(1)
    [83]陈毓川,毛景文,王平安.桂北地区金属矿床成矿历史演化程式.地质学报,1994,(4)
    [84]李孝全,刘文均,郑荣才.广西地质,1994,(1)
    [85]李勇,曾允孚.陆相岩石地层结构及其构成单元.中国区域地质1994,(3)
    [86]韩发,沈建忠.大厂锡矿床硅、氧同位素地球化学.矿物学报,1994,(2),172-180
    [87]Large RR. Australia volcanic hosted massive sulphide deposits:features, style, and genetic models. Econ. Geol.,1992,87:471-510
    [88]Rona PA, Scott SD.A special issue on sea-floor hydrothermal mineralization: new perspectives. Econ. Geol.,1993,88:1935-1976
    [89]Halbach P, Pracejus B, Marten A. Geology and mineralogy of massive sulphide ore from central Okinawa trough, Japan. Econ. Geol.,1993,88:2210-2225
    [90]戴塔根,龚铃兰,张起钻.应用地球化学.长沙:中南大学出版社,2005.1-268
    [91]Person M, Garvan A. A sensitivity of the driving forces o nfluid flow during continental-rift basin evolution.Geol.Soc.Am.Bull.,1994,106:461-475
    [92]Bailey RC. Trapping of aqueous fluids in the deep crust. Geophys. Res.Lett., 1990,17(8):1129-1132
    [93]Komninou A, Yardley BW.Fluid-rock interactions in the Rhine Graben:A thermodynamic model of the hydrothermal alteration observed in deep drilling. Geochim.et Cosmochim.Acta,1997,61(3):515-531
    [94]牟保磊.元素地球化学.北京:北京大学出版社,1999
    [95]Hustion DL, Sie SH, Suter CF et al.Trace elements in sulphide minerals from eastern Australia volcanic-hosted massive sulphide deposit. Econ.Geol,1995,90: 1167-1196
    [96]Kerr RA.Geman super-deep hits bottom.Science,1994,266:545
    [97]赵鹏大,等.地质勘探中的统计分析.武汉:中国地质大学出版社,1990
    [98]刘春学,秦德先.变异函数在广西大石锡矿的应用.昆明理工大学学报,2000,26(1)
    [99]洪托,秦德先.广西大厂92号矿体矿产资源综合利用研究.昆明理工大学学报,,2000,26(1)
    [100]Norman D I, Kyle P K and Charles B.. Analysis of trace elements including REE in fluid inclusion liquid. Econ. Geol.,1989,84:161 - 166
    [101]Ghazi A M, Vanko D A, Roedder E, et al. Inductively coupled plasma-mass spectrometry. Geochim. Cosmochim. Acta,1993,57 (18):4513-4516
    [102]Banks D A, Yardely B W D, Campell A R, et al. REE composi2 tion of an aqueous magmatic fluid inclusions study from the Capitan pluton. New Mexico, USA. Chem. Geol.,1994,13:259-27
    [103]王中刚,于学元,赵振华,等.稀土元素地球化学.北京:科学出版社,1989:1-495
    [104]王中刚.稀土元素地球化学.北京:科学出版社,1989
    [105]Fleet A j. Hydrothermal and hydrogeneous ferromanganese deposits. In: Rona P.A., et al.eds.Hydrothermal process at sea floor spreading centers. Amsterdam: Elservier Science Publishers BV.,1983:537-570
    [106]Large RR.Australia volcanic hosted massive sulphide deposits:features, style, and genetic models. Econ. Geol.,1992,87:471-510
    [107]张哲儒,白振华,章振根.大厂矿田成矿条件及硫同位素体系的热力学分析.地球化学,1987,(1):79-86
    [108]徐文忻,伍勤生.大厂锡多金属矿田同位素地球化学初步研究.矿产地质研究院学报,1986,(2)31-41
    [109]蔡明海,毛景文,梁婷,等.大厂锡多金属矿田铜坑——长坡矿床流体包裹体研究.矿床地质,2005,(3):228-241
    [110]卜国基,浅谈铟.镉在大厂矿田的分布及综合回收前景.广西地质,2000,(1):37-40
    [111]Gemmell JB, Large RR. Stringer system and alteration zones underlying the Hellyer vocanogenic massive sulfide deposit,Tasmania.Econ.Geol.,1992, 87:620-649
    [112]Eldridge CS, Williams N, Walshe JL. Sulfur isotope variability in sediment-hosted massive sulphide deposits as determined using the iron microprobe SHRIMP:Ⅱ.A study of the H.Y.C.deposit at McArthur river, Northern Territory, Australia Econ.Geol.,1993,88(1):1-26
    [113]涂光炽.分散元素可形成独立矿床——一个有待开拓深化的新矿床领域.中国矿物岩石地球化学新进展.兰州:兰州大学出版社,1994,234
    [114]蔡明海,毛景文,梁婷,等.大厂锡多金属矿田铜坑——长坡矿床流体包裹体研究.矿床地质,2005,(3):228-241
    [115]Adachi M, Yamamoto K, Suigiski R. Hydrothermal chert and associated siliceous rocks from the Northern Pacific:Their Geological significance as indication of ocean ridge activity.Sedimentary Geology,1986,47(1-2):125-148
    [116]Rona PA.Criteria for recognition of hydrothermal mineral deposits in ocean crust.Economic Geology,1978,73(2):135-160
    [117]Graf JL. Rare earth elements as hydrothermal tracers during the formation of massive sulphide deposits in volcanic rocks. Econ.Geol.,1977,72(4):527-548
    [118]韩发,等.Sedex型矿床成矿系统.地学前缘.1999,6(1),139-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700