氢化物发生—原子荧光法测定食品中的微量硒
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硒是人体的必须微量元素之一,对人体健康具有重大的意义。近年来,很多实验调查结果都表明,机体硒摄入水平与多种疾病的发生有关。在微量元素硒的性质不断被认识的今天,含硒材科尤其是含硒生物材料中硒的测定,在有关硒的研究中占有十分重要的地位。各种硒化合物的生理、生化作用、在环境中的迁移规律不仅取决于硒的总体水平,而且与硒存在的具体化学形态和各种化学形态的浓度密切相关。尽管在硒的分析以及形态分析方面已经做了大量的工作,但由于硒的生物化学作用以及对于人体健康的意义,发展实用的分析方法对环境中的硒进行监测,利用各种联用技术进一步探明不同形态存在的硒的生化行为,仍然意义重大。
    原子荧光法是上个世纪六十年代发展起来的分析技术,具有谱线简单、灵敏度高、检测限低和多元素分析的优点。氢化物发生的进样方法具有实现分析元素与基体的分离消除基体干扰、实现待测元素的预富集、进样效率高、易于实现自动化、进行价态分析等优点。本文运用氢化物发生-原子荧光法测定了食品中硒,创新之处在于研究了表面活性剂对硒的测定的影响,并在此基础上测定了康必硒中的Se(Ⅵ)、Se(Ⅳ),和有机硒。
    第一部分:建立了断续流动氢化物发生原子荧光法测定富硒食品中微量硒的方法。样品用硝酸高氯酸混酸消化,铁氰化钾为掩蔽剂,在优化的实验条件下,工作曲线在100μg/L范围内线性良好,相关系数为0.9999,方法的检测限为0.065μg/L,应用于测定鸡蛋、富硒米和富硒盐中微量硒,回收率分别为90.6%、98.5%和104.3%。
     第二部分:先以正交实验对仪器和氢化物发生条件进行了优化,在优化的条件下研究了阴离子表面活性剂、阳离子表面活性剂和非离子表面活性剂对硒的测定的影响,发现在CTAB浓度为0.1~0.8×10-5mol/L时,荧光强度增加,与水相相比,增加幅度达到22.72%,提高了分析的灵敏度;CTAB 浓度为0.2×10-5mol/L时,检测限较之水相中显著降低,同时提高了共存离子的允许限量,尤其对Cu2+的作用更为显著。
     把上述结果用于测定康必硒中的硒;确定了定量提取康必硒中硒的条件和提取
    
    率,以6mol/L的HCl定量还原Se(Ⅵ)为Se(Ⅳ),测定了康必硒中的Se(Ⅵ)、Se(Ⅳ)和有机硒,结果康必硒中99.5%以上的硒以有机硒的形式存在。
Selenium is a necessary trace element for the health of people. In recent years, many investigations show that many diseases are related to intaking level of selenium. At today when selenium is known more clearly, the determination of selenium in selenium-containing materials and selenium-containing biological matairals become more important for the study of selenium. The roles of selenium in biological systems and geochemical cycle not only depend on the total content of selenium but also depend on the forms in which it is present and the content of these forms. Although many works have been done in the fields of determanation and speciation of selenium, developing applied method to detect selenium in environment, appling hyphenated techniques to prove up the biological behavior of different chemical and biological forms are significant.
     Atomic fluorescence spectrometry(AFS) is an analytical technique which have been developed since 1960'.The technique has many virtues such as simple spectral line,high sensitivity,low detection limit and multi-element analysis.Hydride generation(HG) thchnique has the virtues of separating from matrix,eliminating interference of matrix,enriching elements, high sampling efficiency, apting to realize automatic analysis,speciation.In this paper,hydride generation-atomic fluorescence spectrometry(HG-AFS) was used to determine selenium in foods;the innovation of the paper was that the influence of surfactant on the determination of selenium was studied and on the basis, Se(Ⅵ)、Se(Ⅳ)and organic selenium in Kangbixi were determined.
     Part Ⅰ:A method was developed for the determination of trace selenium in selenium-enriched foods by intermittent flow-hydride generation-atomic fluorescence spectrometry. Samples were digested with a mixture of nitric acid and perchloric acid, potassium ferricyanide acted as masking agent. Under the optimized conditions, the working curve was linear in the range of 100μg/L and the correlation coefficient was 0.9999. The detection limit was 0.065μg/L. When the method was applied to determine trace selenium in eggs, selenium-enriched rice, and selenium-enriched salt the recoveries were 90.6%, 98.5%, and 104.3% respectively.
    
    
     Part Ⅱ:Instrument and hydride generation conditions were optimized with orthogonal experiment;under optimized conditions,the influence of anionic surfactant,cationic surfactant and nonionic surfactant on the determination of selenium was studied; when the concentration of CTAB was 0.1~0.8×10-5mol/L,the intensity of signal was enhanced 22.72% compared with the intensity of signal in water media,so the sensitivity was improved.In the media of 0.2×10-5mol/L CTAB,a three-fold improvement in detection limit was obtained;at the same time, the levels of tolerance of interfering elements in the selenium determination were increased, the effect was even more remarkable for Cu2+.
     Selenium in Kangbixi was determined in the media containing 0.2×10-5mol/L CTAB.In order to quantitatively extract selenium in Kangbixi,the extracting condition and extracting percentage were investigated.Se(Ⅵ)was reduced to Se(Ⅳ)with 6mol/L HCl. Se(Ⅵ)、Se(Ⅳ)and organic selenium in Kangbixi were determined, as a result ,99.5% selenium in Kangbixi was organic selenium.
引文
[1] 贾奎寿,叶素芳.微量元素硒与人体健康的研究.广东微量元素科学,2002,9(1):4-6
    [2] 吴万征,吴 忠.微量元素硒与人体健康.广东微量元素科学.2000,7(11):7-11
    [3]徐辉碧.硒的化学、生物化学及其在生命科学中的应用.华中理工大学出版社.1994,1-283
    [4] 徐芳,邱德仁,胡克季等.硒的化学与生物化学形态分析综述.光谱学与光谱分析.2002,22(2):332-340
    [5] 夏炳乐,李敏莉.Se-KIO3体系催化极谱测定烟草中的痕量硒.烟草科技.1996,2:28-29
    [6] 韩博,卢广忠,史言等.奶牛全血硒的两种测定方法对比研究.黑龙江省畜牧兽医 .1997,12:9-11
    [7] 邵亚男,崔世维.玻碳汞膜电极阴极溶出伏安法测定硒方法学初探.南通医学院学报.1995,15(1):146-147
    [8] 徐晖,张必成,王升富.微分脉冲阴极溶出伏安法测定环境水样中的痕量硒.环境化学.2001,20(4):386-391
    [9] 杨志明,李方实,江涛.阴极溶出伏安法测定硒酵母中微量硒.广东微量元素科学.2001,8(11):62-65
    [10] Recai ìnam, Gǔler Somer.A direct method for the determination of selenium and lead in cow's milk by differential pulse stripping voltammetry.Food Chemistry.2000,69:345-350
    [11] 张晓丽,王丽增,马成松等.痕量硒的吸附伏安法测定.山东大学学报(自然科学版).1995,30(2):186-189
    [12] 贺萍,许卉.催化动力学光度法测定茶叶中痕量硒.烟台大学学报(自然科学与工程版).1999,12(2):95-99
    [13] 李玉环,王锋.催化动力学光度法测定植物中的痕量硒 (IV).微量元素与健康研究.2002,19(2):64-66
    [14] 冯启利,温德云,邹洪生等.催化动力学光度法测定食品中的痕量硒(IV).南昌大学学报(理科版).1994,18(2):139-143
    [15] 刘长久,杨细群,刘继声.阻抑氧化甲基橙动力学光度法测定硒(IV).分析化学.2001,29(9):1030-1032
    [16] 吴远强,黄胜堂.分光光度法测定血清硒Se(IV)-SCN-RhB-Tween80体系.湖北师范学院学报(自然科学版).1999,19(2):77-79
    
    
    [17] 黄胜堂.高灵敏分光光度法测定微量硒罗丹明B-碘化物-吐温-80体系.数理医药学杂志,1999,12(2):
    [18] 胡俐娟.硒-硫氰酸钾-罗丹明B-明胶-OP体系分光光度法测定微量硒.分析实验室.1994,13(3):36-37
    [19] 解宏智,陈亮,周纪侃.荧光法测定蘑菇及其水解液中痕量硒的研究.分析测试学报.1998,17(1):61-63
    [20] 孙沂,李好枝,胡菊华.荧光分析法测定血浆和头发中硒含量的比值.微量元素与健康研究.2000,17(4):63-65
    [21] 谢文兵,姚金玉,马戈.平台石墨炉原子吸收法测定饲料中痕量硒.光谱学与光谱分析.1998,18(6):700-702
    [22] 陈燕萍,黄汉树.测定鱼中痕量硒的横向石墨炉原子吸收分光光度法.分析测试学报.1999,18(4):64-66
    [23] 董银根,沈惠君.VA-90气态原子化装置与 AA-6 70原子吸收分光光度计联用测定水中硒.光谱学与光谱分析.1999,19(6):864-865
    [24] 谭力红,祝凤荣.火焰原子吸收法间接测定水中硒.华南师范大学学报.2000,1:77-81
    [25] 姜建生,黄淦泉,钱沙华.交联壳聚糖在硒的形态分析中的应用研究.光谱学与光谱分析.1999,19(1):75-77
    [26] 仇佩虹,张华杰,吴丽慧.流动注射氢化物发生电加热石英管原子吸收光谱法测血清硒.理化检验-化学分册.2001,37(5):209-211
    [27] 李方实,Kurt J Irgolic1.微波消解FI-HG-AAS法测定血清中的痕量硒.南京化工大学学报.1999,21(5):
    [28] 白文敏,邓勃,蔡小嘉.毛细管气相色谱/原子吸收联用及大蒜油中痕量硒化学形态分析的研究.分析实验室.1994,13(1):9-12
    [29] 章军,傅庭治,曹幼琴.反相高效液相色谱法测定深层培养含硒构菌菌丝体中的硒蛋氨酸.分析化学.1995,23(1):49-51
    [30] 张顺妹,陈桂良.硒宝康胶囊的HPLC测定.中国医药工业杂志.1996,27(6):355-357
    [31] 何健,徐克威,齐顺成.陕南青茶中硒的高效液相色谱测定.西安公路学院学报.1992,12(3):103-106
    [32] 蓝元英,白志毅,林俊彬等.高效液相色谱荧光检测法测定福建乌龙茶中痕量硒.分析测试通报.1992,11(6):54-57
    [33] Jen. Jen-Fon,Yang Youn-Jung,Cheng Cheng-Hsien.Simultaneous speciation of aqueous selenium(Ⅳ)and Se(Ⅵ)by high-performance liquid chromatography with ultraviolet
    
    detection.Joural of Chromatography A.1997,791:357-360
    [34] Fangshi Li,Walter Goessler,Kart J.Irgolic Determination of trimethylseleonium iodide,selenomethionine,selenious acid and selenic acid using high-performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry.Journal of Chromatography A.1999,830:337-344
    [35] John J.Harwood,Wen Su .Analysis of organic and inorganic selenium anions by ion chromatography-inductively coupled plasma atomic emission spectrometry.Journal of Chromatography A .1997,788:105-111
    [36] 农晋琦,蔡端仁,欧阳政.硒半胱氨酸和硒胱氨酸的间接气相色谱法测定—溴化氰-气相色谱法色谱.1994,12(1):28-31
    [37] Zoltán Mester,Peter Foder.Selenium speciation with on-column preconcentration high-performance liquid chromatography-atomic fluorescence using ultrasonic nebulization technique.Analytica Chimica Acta.1999,386:89-97
    [38] Puskel E, Mester Z, Fodor P.Determination of Selenoamino Acids by High-Performance Liquid Chromatography-Hydraulic High-Pressure Nebulization-Atomic Fluorescence Spectrometry.Journal of Analytical Atomic Spectrometry.1999, 14(6):973-976
    [39] 李安模,魏继中.原子吸收及原子荧光光谱分析.2000.1-395
    [40] V.西赫拉等.原子荧光光谱学.1979.1-364
    [41] 《分析化学》编辑委员会.原子荧光光谱法.原子吸收及原子荧光分析(译文集).1975.1-162
    [42] 李果,吴联源,杨忠涛.原子荧光谱分析.地质出版社.1983.1-153
    [43] 郭小伟,原子吸收和原子荧光光谱的进展及其任务,矿岩测试,1992,11(1-2):
    [44] C.T.J. Alkamade. In proceedings of the Xth colloquium spectroscopicum international. Maryland . 1962,Spartan Books, Washington,DC.1963,143-170
    [45] J.D.Winefordner,T.J.Vickers. Atomic fluorescence spectroscopy as a means of chemical analysis. Analytical Chemistry,1964,36(1):161-165
    [46] A Kbar.Montaser, Velmer A.Fessel. Inductively coupled plasma as atomization cells for atomic fluorescence spectrometry. Analytical Chemistry. 1976, 48(11): 1490-1499
    [47] Donald R.Demers, Charly D.Allemand. Atomic fluorescence spectrometry with an inductively coupled plasma as atomization cell and pulsed hollow cathode lamps for excitation. Analytical Chemistry. 1981, 53:1915-1921
    [48] S.Greenfield, P.B.Smith, A.E.Breeze et al. Atomic absorption with an electrodeless high-frequency plasma torch. Analytica Chemica Acta. 1968, 41(2): 385-387
    [49] M.A.Kosinski, Hiroshi Uchida, J.D.Winefordner. Atomic fluorescence spectrometry with
    
    inductively coulped plasma as excitation source and atomization cell. Analytical Chemistry. 1983, 55:688-692
    [50] N.Omenetto, H.G.C.Human, P.Cavalli et al. Laser excited atomic and ionic non-resonance fluorescence detection limits for several elements in an argon inductively coupled plasma. Spectrochimica Acta Part B. 1984,39(1): 115-117
    [51] Peter Stchur, Karl X. Yang, Xiandeng Hou et al. Laser excited atomic fluorescence spectrometry -a review. Spectrochimica Acta Part B .2001,56: 1565-1592
    [52] P.B.Stockwell, W.T.Corns. Environmental sensors based on atomic fluorescence. Analyst. 1994, 119:1641-1654
    [53] Jirí Dědina,Alessandro D’Ulivo. Argon shielded,highly fuel-rich,hydrogen-oxygen diffusion microflame—a new hydride atomizer. Spectrochimica Acta Part B. 1997,52:1737-1746
    [54] Stanley Greenfield. Atomic fluorescence spectrometry:progress and future prospects. Trends in Analytical Chemistry. 1995,14(9):435-442
    [55] Ipolyi-I, Fodor-P. Development of Analytical Systems for the Simultaneous Determination of the Speciation of Arsenic (As(III), Methylarsonic Acid, Dimethylarsinic Acid, As(V)) and Selenium (Se(IV), Se(VI)). Analytica Chimica Acta. 2000,413(1-2): 13-23
    [56] Patricia Smichowski U, Silvia Faras. Advantages and analytical applications of chloride generation, A review on vapor generation methods in atomic spectrometry . Microchemical Journal. 2000,67: 147-155
    [57] Alessandro D’Ulivo,Jirí Dědina. Interferences in hydride atomization studied by atomic absorption and atomic fluorescence spectrometry. Spectrochimica Acta Part B. 1996,51:481-498
    [58] W Holk. Gas-sampling technique for arsenic determination by atomic absorption spectrophotometry. Analytical Chemistry. 1969, 41(12): 1712-1715
    [59] Robert S.Braman, Lewis L.Justen, Craig C.Foreback. Direct volatilization-spectral emission type detection system for nanogram amounts of arsenic and antimony. Analytical Chemistry. 1972, 44(13): 2195-2199
    [60] Qiu Deren. Recent advances in fundamental studies of hydride generation. Trends in Analytical Chemistry.1995,14(2):76-82
    [61] 李淑萍,郭旭明,黄本立等。电化学氢化物发生法的进展及其在原子光谱分析中的应用。分析化学,2001,29(8):967-970
    [62] 郭小伟,郭旭明,断续流动氢化物发生法在AAS/AFS中的应用,光谱学与光谱分析,1995,15(3):97-101
    [63] A.E.Smith. Interference in the determination of elements that from volatile hydride with sodium borohydride using atomic-absorption spectrophotometry and the argon-hydrogen flame. Analyst. 1975,
    
    100:300-306
    [64] G.F.Kirkbright, M.Taddia. Application of masking agents in minimizine interferences from some metal ions in the determination of arsenic by atomic absorption spectrometry with the hydride generation technique. Analytica Chimica Acta. 1978, 100(9): 145-150
    [65] F.D.Pierce, H.R.Brown. Inorganic interference study of automated arsenic selenium determination with atomic absorption spectrometry. Analytical Chemistry. 1976, 48(4): 693-695
    [66] B.Welz, M.Melcher. Mechanisms of transition metal interferences in hydride generation atomic-absorption spectrometry. Part 3, releasing effect of iron(( ) on nickel interference on arsenic and selenium. Analyst. 1984, 109: 577-579
    [67] R.M.Brown, R.C.Frey, J.L.Moyers et al. Interference by volatile nitrogen oxides and transition-metal catalysis in the preconcentration of arsenic and selenium as hydride. 1981, 53: 1560-1566
    [68] R.Bye. Interference from bivalent cations in the determination of selenium by hydride-generation and atomic-absorption spectrometry, a discussion of the claim that the metal ions are reduced to the metallic state by sodium borohydride. Talanta. 1986, 33(8): 705-706
    [69] 张卓勇,曾宪津,黄本立.氢化物发生技术中化学干扰的研究进展.光谱学与光谱分析.1991,11(2):68-76
    [70] M.Verlinden, J. Baart, H.Deelstra. Optimization of the determination of selenium by atomic-absorption spectrometry: Comparison of two hydride generation system. Talanta .1980, 27(8):633-639
    [71] L.Halica,G.M.Russell. Simultaneous determination, by hydride generation and inductively coupled plasma atomic emission spectrometry, of arsenic, antimony, selenium and tellurium in sillicate rocks containing the noble metals and in sulphide ores. Analyst. 1986, 111: 15-18
    [72] B.Welz,M.Melcher. Mutual interactions of elements in the hydride technique in atomic absorption spectrometry. Part 1, influence of selenium on arsenic determination. Analytica Chemica Acta,1981,131:17-25
    [73] N.E.Parisis. A.Heyndricky. Methode for improving the sensitivity and reproducibility of hydride-forming elements by atomic absorption spectrometry. Analyst ,1986,111:28-284
    [74] R.E.Sturgeon,S.N.Willie. G.I.Sproule et al. Sequestration of volatile element hydrides by platinum group elements for graphite furnace atomic absorption. Spectrochimica Acta Part B. 1989,44(7):667-681
    [75] B.Welz. M.Melcher. Investigations on atomisation mechanisms of volatile hydride-forming elements in a heated quartz cell. Part 1, gas-phase and surface effects: decomposition and atomisation of arsine. Analyst. 1983, 108:213-224
    
    
    [76] W.H.Evans, F.J.Jackson, Dorothy Dellar. Evaluation of a method for determination of total antimony, arsenic and tin in foodstuffs using measurement by atomic-absorption spectrophotometry with atomisation in a silica tube using the hydride generation technique. Analyst. 1979, 104: 16-34
    [77] D.Bax,J.T.van Elteren, J.Agterdenbos. The determination of arsenic with hydride generation AAS. A study of factors influencing the reactions in the absorption cuvette. Spectrochimica Acta Part B. 1986,41(9):1007-1013
    [78] S.Akman,Spectrochimica Acta Part B. 1982,37:903-
    [79] J.Agterdenbos, J.P.M.Van Noort, F.F.Peters et al. The determination of selenium with hydride generation AAS-(. Descriptions of the apparatus used and study of the reactions in the absorption cuvette. Spectrochimica Acta Part B. 1985, 40(3): 501-515
    [80] 北京海光仪器公司.AFS系列双道氢化物发生原子荧光光度计.现代科学仪器.2 0 0 1,6:70-72
    [81] 周根林.氢化物发生-原子荧光光谱法在冶金等分析中的应用.矿冶.1998,7(3):92-97
    [82] 郭小伟,郭旭明.氢化物发生-无色散原子荧光分析法进展及在环境分析中的应用.上海环境科学.14(7):28-32
    [83] 王永芳.氢化物发生原子荧光法在食品分析中的应用.中国卫生检验杂志. 2000,10(5):633-634
    [84] 陈晓云.氢化物发生-无色散原子荧光分析法的进展及在农产品检测分析中的应用前景.辽宁农业科学.2000,(3 ):42-44
    [85] 江志刚,张建武,氢化物 -原子荧光法测定海产品中的微量砷,光谱实验室。16(3) :333-336
    [86] Faouzia El-Hadri,Angel Morales-Rubio,Miguel de la Guardia. Atomic fluorescence spectrometric determination of trace amounts of arsenic and antimony in drinking water by continuous hydride generation. Talanta. 2000,52:653-662
    [87] N.V.Semenova,F.M.Bauzá de Mirabó,R.Forteza,et al. Sequential injection analysis system for total inorganic arsenic determination by hydride generation-atomic fluorescence spectrometry. Analytica Chimica Acta. 2000,412:169-175
    [88] 于铁力,李洵,王艳茹等. 巯基棉富集-氢化物原子荧光法连续测定地下水中硒、砷. 工业水处理. 1997,17(6):28-29
    [89] 韩宏伟,王永芳,赵馨.氢化物发生-原子荧光光谱法同时测定保健食品中砷、汞的研究.中国食品卫生杂志. 2000,12(5):7-11
    [90] 索有瑞.氢化物发生原子荧光光谱法测定临床样品微量砷和硒.分析科学学报.1997,13(4):312-315
    
    
    [91] 阮新,李秀勇,阮健.微波消解—原子荧光光谱法定量测定山梨糖醇液中的砷.分析测试技术与仪器.2001,7(1):37-40
    [92] 陈新焕,傅明,袁智能.氢化物发生-原子荧光光谱法测定茶叶中的微量砷.食品科学.2001,22(1):68-70
    [93] 周俊明,程向红.流动注射氢化物发生-蒸气贮存脉冲进样原子荧光法测定地质样品中的痕量砷.光谱实验室.1998,15(5):28-31
    [94] 陈宏靖.原子荧光光谱法测定食品中的镉.实用预防医学.2002 ,9(5):562
    [95] 袁爱萍.原子荧光光谱法测定食品中的镉.分析化学.1997,25(10):1199-1201
    [96] 李贵峰.氢化物发生原子荧光法测定海水中痕量铅.海洋环境科学.1997,16(2):78-80
    [97] 任萍.氢化物发生-原子荧光法测定地球化学样品中的痕量铅.分析科学学报.1998,14(4):309-311
    [98] 翟毓秀,郝林华.氢化物发生原子荧光光谱法测定食品和饲料中的铅.分析科学.2000,28(2):176-179
    [99] 刘岩,江志刚.氢化物-原子荧光法测定葡萄酒中的微量铅.青岛大学学报.1997,10(3):42-45
    [100] 陈新焕,袁智能,傅明等.氢化物发生-原子荧光法测定茶叶中的铅.化学世界.2002,1:19-21
    [101] 孙汉文,锁然,张德强等.同时测定中草药中痕量铅和汞的氢化物原子荧光法.分析测试学报.2002,21(3):67-69
    [102] 郑瑾,边文耀,高美叶.氢化物发生 -原子荧光光谱法测定尿中铅.内蒙古大学学报 (自然科学版).2002,33(5):538-540
    [103] 阮新,杨立红,李秀勇.微波消化-氢化物原子荧光法测定水产品中的铅.光谱实验室.2001,18(4):449-452
    [104] 殷红,刘德成,安可.氢化物发生-原子荧光光谱法测定婴幼儿玩具中的铅.中国公共卫生.2002,18(9):1109
    [105] 刘乐君,常逸.氢化物发生-原子荧光光谱法同时测定土壤中的砷和锑.湖南农业大学学报 (自然科学版).2001,27(3):212-214
    [106] 索有瑞.氢化-AFS法测定青藏高原中草药中的微量砷、锑、硒和汞.光谱学与光谱分析.1997,17(5):103-107
    [107] 刘汉东,梅俊,陈恒初等.流动注射在线萃取非水介质氢化物发生原子荧光光谱法测定铜矿石中痕量锑.分析实验室.2002,21(4):34-36
    [108] 薄萍,王爽,边疆等.氢化物发生无色散原子荧光法测定化妆品中的总锑.中国卫生检验
    
    杂志.2000,10(4):427-429
    [109] 焦献聪. 氢化物发生原子荧光法测定饮用水中的微量锑.仪器仪表与分析监测.1999,2:49-53
    [110] 杨君,张耀庭,李松青. 氢化物发生-原子荧光法检测食品包装材料中微量锑. 中国食品卫生杂志. 2002,14(2):16-17
    [111] 丁根宝.流动注射 -氢化物发生双道原子荧光仪同时测定水样中砷和锑.理化检验-化学分册.2001,37(3):119-120
    [112] 贾进铎.氢化物发生-原子荧光光谱法测定镍基高温合金中痕量硒和碲.理化检验-化学分册.2001,37(3):104-106
    [113] 吕运开,孙汉文.尿中痕量碲测定的萃取-氢化物发生原子荧光光谱法.分析测试学报.2000,19(4):24-27
    [114] 李春玉.氢化物发生-无色散原子荧光光谱法测定高纯阴极铜中砷、锑、铋、硒和碲.光谱实验室.1998,15(6):69-71
    [115] 郭德济,黎柳升,王光明.氢化物-无色散原子荧光法同时测定钢铁中痕量硒和碲.光谱学与光谱分析.1998,18(6):719-723
    [116] 冯先进,王肇中.氢化物-原子荧光光谱法测定高纯铅中痕量碲.冶金分析.2002,22(2):54-56
    [117] 汤志勇,张士玉,邱海鸥等.流动注射在线离子交换预富集-氢化物发生原子荧光光谱法测定痕量碲的研究.分析实验室.1997,16(5):21-24
    [118] 李贵峰.氢化物发生-原子荧光法测定环境水样中痕量锡.中国环境监测.1999,15(6):23-25
    [119] 艾军,周俊明.HG-AFS法测定多金属矿中的痕量锡.分析实验室.2001,20(2):17-19
    [120] 冯信平,彭黎旭,谢德芳.氢化物发生-原子荧光法测定热带水果中的锡.热带作物学报.2001,22(4):6-10
    [121] 聂燕,李缙扬,万春燕.氢化物无色散原子荧光法测定罐头食品中的锡.食品科学.1999,7:59-61
    [122] 陈青川,杨慧芬.食品中无机锗与-132的分别测定.光谱学与光谱分析.1998,18(11):77-80
    [123] 宋伟明,倪刚,胡奇林等.氢化物-原子荧光光谱法测定保健食品中痕量锗.宁夏大学学报(自然科学版).2001,22(1):54-56
    [124] 刘先国,方金东.氢化物发生-原子荧光光谱法测定地质试样中的痕量锗.光谱实验室.2002,19(1):140-142
    
    
    [125] 史建波,董纪珍,谭春华等.流动注射在线共沈淀分离富集HG-AFS测定痕量锗.理化检验-化学分册.2001,37(8):357-359
    [126] 孙汉文,锁然,吕运开.碱式模式氢化物发生原子荧光法测定食用菌中痕量锗.分析实验室.2001,20(1):82-84
    [127] 李光道,孙雅易、汤志勇等.氢化物发生-原子荧光法大气粉尘样品中痕量铋的研究. 同济医科大学学报.1996,25(4):276-279
    [128] 冯先进,符斌.氢化物发生-无色散原子荧光法测定镍中痕量铋.冶金分析.1998,18(2):24-26
    [129] 王永芳,韩宏伟,赵馨.氢化物发生-原子荧光法测定生物样品中的铋.微量元素与健康研究.2000,17(2):62-63
    [130] 刘汉东,汤志勇,张隋成等.悬浮液氢化物发生原子荧光光谱法测定化探样品中痕量铋.光谱实验室.1996,13(2):12-15
    [131] 李中玺,童开源,郭小伟.氢化物发生-原子荧光法直接测定锑及其化合物中的硒和铋.光谱学与光谱分析.2001,21(5):655-657
    [132] 邱海鸥,姜浩,汤志勇.流动注射在线氢化物发生-原子荧光光谱法测定环境水样中痕量无机汞和有机汞.环境科学与技术.2000,4:24-26
    [133] 陶钢,王红,牛星梅.气动进样原子荧光法测定环境水样中痕量汞和砷.中国环境监测.2000,16(6):19-21
    [134] 谢永臻,庄峙厦,张志刚等.流动注射氢化物发生原子荧光法测定中药中的微量 As、Hg.分析科学学报.1997,13(4):296-299
    [135] 弓振斌,侯静,郭旭明等.垃圾渗滤液中As和Hg的流动注射蒸气发生非色散原子荧光光谱法测定.分析测试学报.2001,20(4):36-39
    [136] 董清木,骆劲松.氢化物发生-原子荧光光谱法测定电池中的汞.光谱实验室.2002,19(4):482-484
    [137] 易国庆,陈庆胜,余泳红等.氢化物发生-原子荧光光谱法测定海鲜中的汞.中国卫生检验杂志.2001,11(2):183
    [138] 吴辉,卢胜利,孙艳丽等. 水样品中汞砷联合测定的研究-氢化物发生原子荧光光谱法. 中国环境监测. 2000,16(2):14-17
    [139] 张朝晖.海洋生物样品中硒的氢化物发生-原子荧光分析(HG-AFS).青岛海洋大学学报.2001,31(3):375-381
    [140] 栗晹,刘世熙,曹槐.微波消解、流动注射-氢化物发生原子荧光光谱法测定三七中硒含量.2002,19(2):209-212
    
    
    [141] 彭琨,吴珩.原子荧光法测定食品中砷和硒.理化检验-化学分册.2000,36(12):557-558
    [142] He YZ, Elazouzi H, Cervera ML.Completely Integrated Online Determination of Dissolved Selenium(IV) and Total Inorganic Selenium in Sea-Water by Flow-Injection Hydride Generation Atomic Fluorescence Spectrometry. Journal of Analytical Atomic Spectrometry. 1998,13(11):1291-1296
    [143] He YZ,MoredapineiroJ,Cervera-ML. Direct Determination of Dissolved Selenium(IV) and Selenium(VI) in Sea-Water by Continuous-Flow Hydride Generation Atomic Fluorescence Spectrometry. Journal of Analytical Atomic Spectrometry .1998,13(4):289-293
    [144] I Ipolyi, Zs Stefánka, P Foder. Speciation of Se(( ) and the selenoamino acids by high performance liquid chromatography-direct hydride generation-atomic fluorescence spectrometry .Analytica Chimica Acta .2001, 435:367-375
    [145] Gomezariza-JL, Sanchezrodas-D, Morales-E.Inorganic and Organic Selenium Compound Speciation with Coupled HPLC-MW-HG-AFS. Applied Organometallic Chemistry.1999, 13(10): 783-787
    [146] Gomezariza-JL, Sanchezrodas-D,Delatorre-MAC.Column-Switching System for Selenium Speciation by Coupling Reversed-Phase and Ion-Exchange High-Performance Liquid-Chromatography with Microwave-Assisted Digestion-Hydride Generation-Atomic Fluorescence Spectrometry.Journal of Chromatography A. 2000,889(1-2): 33-39
    [147] T Guerin, A Asteuc, M Astruc.Speciation of arsenic and selenium compounds by HPLC hyphenated to specific detectors: a review of the main separation techniques.Talanta.1999, 50:1-24
    [148] 郭建军.硒营养与人体健康.生物学通报,2000,35(4),21-22
    [149] 雷联会,刘铸.人体营养与健康中的微量元素硒.国外医学医学地理分册,1998,19(2):51-54
    [150] Li Fangshi, Goessler W. Optimiztion of microwave digestion for the determination of selenium in human urine by flow injection hydride generation atomic absorption spectrometry.Analytical Communication, 1998, 35: 361-364
    [151] Cai Yong. Speciation and analysis of mercury,arsenic,and selenium by atomic fluorescence spectrometry.Trends in Analytical Chemistry, 2000, 19(1): 62-66
    [152] 徐宝玲.氢化物-原子荧光法测定硒时元素的干扰及其消除.分析化学,1985,13(1):29-33
    [153] 戚文彬,浦炳寅.表面活性剂与分析化学.中国计量出版社.北京.1987,1-281
    [154] Hanwen Sun, Ran Suo, Yunkai Lu. Determination of zinc in food using atomic fluorescence spectrometry by hydride generation from organized media. Analytica Chimica Acta. 2001, 457:305-310
    
    
    [155] J.M.Gutierrez, Y.Madrid, C.Cámara. Sensitized determination of mercury by cold vapour generation from micellar media and atomic absorption spectrometry. Spectrochimica Acta .1993, 48B: 1551-1558
    [156] A.Sanz-medel, M.C.Valdés-Hevia y Temprano, N.Bordel García et al.The use of surfactants to obtain cadmium atoms at room temperature and its application for the cold vapour AAS determination of the metal. Analytical Proceedings. 1995,32:49-52
    [157] A.Sanz-medel, M.C.Valdés-Hevia y Temprano, N.Bordel García et al. Generation of Cadmium atoms at room temperature using vesicles and its application to cadmium determination by cold vapor atomic spectrometry. Analytical Chemistry. 1995, 67:2216-2223
    [158] A.Aizpún Fernández, M.R. Fernández de la Campa, A.Sanz-Medel et al. Determination of arsenic by inductively-coupled plasma atomic emission spectrometry enhanced by hydride generation from organized media. Talanta. 1992, 39(11): 1517-1523
    [159] M.C.Valdés-Hevia y Temprano, B. Aizpún Fernández, M.R.Fernández de la Campa et al. Study of the influence of ordered media on the determination of lead by hydride generation inductively coupled plasma atomic emission spectrometry. Analytica Chimca Acta. 1993, 283:175-182.
    [160] Hill-SJ, Pitts-L.Worsfold-P.Investigation into the Kinetics of Selenium(VI) Reduction Using Hydride Generation Atomic Fluorescence Detection. Journal of Analytical Atomic Spectrometry.1995, 10(5): 409-411
    [161] Zs.Stefánka, I.Ipolyi, M.Dernovics, Comparison of sample preparation methods based on proteolytic enzymatic processes for Se-speciation of edible mushroom(Agaricus bisporus) samples. Talanta, 2001. 55. 437-447

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700