Nb对大线能量焊接高强度低合金钢热影响区组织和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用气电立焊和热模拟研究了实验室试制的两种不同铌量钢热影响区的组织和性能,并对工业试制的含铌高强度低合金钢的焊接性能进行了研究。
     实验室试制两种不同铌含量钢的实际焊接结果表明,焊接接头组织可划分为:焊缝、粗晶区、细晶区和不完全淬火区。在80kJ/cm左右的大热输入条件下,随着铌含量从0.014%变为0.17%,粗晶区的宽度增加约1.5mm,而总的热影响区宽度从7.5mm增加到8mm左右。粗晶区的组织则由低铌钢的针状铁素体和晶界铁素体组织变为高铌钢的粒状贝氏体,细晶区和不完全淬火区及母材的组织则由铁素体和珠光体转变为铁素体和贝氏体,这与铌的固溶抑制晶界铁素体的形核,推迟转变开始温度,促进了粒状贝氏体形成有关。
     实验室试制两种不同铌含量钢的焊接热模拟结果表明,不同峰值温度模拟后的组织比实际焊接热影响区各个区域的组织粗大,但组织类型基本一致。不同热输入模拟焊接粗晶区的结果表明,随着热输入的增大,粗晶区的组织发生了显著变化,低铌钢粗晶区组织由GB和一定量的AF为主,逐渐转变为PF和AF,最后完全转变为PF和P。而高铌钢粗晶区组织则由GB和少量的M,变为B+F,最后变为PF。
     硬度测试结果表明,焊缝由于含有大量针状铁素体硬度最高,而在靠近熔合线附件的粗晶区和不完全淬火区出现一定的软化,且高铌钢热影响区的硬度高于低铌钢,这与不同峰值温度模拟焊接热影响区的硬度结果相一致。另外,随着热输入的增大,两种钢粗晶区的硬度均不断降低。
     工业试制含铌低合金高强钢的实验结果表明,在42kJ/cm和55kJ/cm的实际线能量焊接时,粗晶热影响区仍具有良好的低温冲击韧性。
In this thesis, the microstructures and properties of heat affected zones (HAZ) in two different Nb content steels melted in laboratory were investigated by actual electro-gas welding and welding simulation, the welding properties of Nb-containing high strength low alloy steel (HSLA) produced in industry were also studyied.
     The results of actual welding showed that the microstructures of welding joints consisted of weld metal, coarse-grained region, fine-grained region and incomplete quenched region. At large heat input of 80kJ/cm, the width of coarse-grained heat affected zone (CGHAZ) increased approximately 1.5mm when the content of Nb increased from 0.014% to 0.17%, the whole HAZ width varied from 7.5mm to 8mm. with low Nb content steel, the microstructures of CGHAZ were AF and GF (grain boundary ferrite), which was granular bainite (GB) when Nb content increased. Correspondingly, the microstructures of fine-grained region, incomplete quenched region and base metal varied from polygonal ferrite (PF) and pearlite to ferrite and bainite. These changes of microstructures can be attributed to the Nb in solid solution, which suppressed GF nucleation, decreased transformation start temperature and promoted the formation of GB.
     Results of welding simulation with different peak temperature indicated that the microstructures of HAZ were coarser than that of actual welding, but the type of microstructures was in a good accordance. Welding simulation results showed that the microstructures of CGHAZ were obvious different with different heat input. With low Nb content, the microstructures varied from predominately GB and AF to PF and AF, finally they completely changed to PF and P with large heat input. While the microstructures of high Nb content steel varied from GB and a little amount of martensite to bainite and ferrite, then transformed to PF.
     Vickers-hardness tests showed that the weld metal had highest hardness because of a large amount of acicular ferrite, both the coarse-grain region near fusion line and incomplete quench region softened after welding. The hardness of steel with high Nb content was a little higher than that of the steel with low Nb content. Welding simulation also showed that the vickers-hardness decrease with heat input increasing.
     Results of Nb-containing HSLA steel produced in industry showed that the steel had good low temperature ductility with a heat input of 42kJ/cm and 55kJ/cm welding.
引文
[1]李敏,郑香增.大线能量焊接用钢的研究概况[J].山东冶金,2008(6): 8-12.
    [2]贾贵忱,吴执中,吕纯杰等.单面埋弧焊双面成形的焊接缺陷及防止措施[J].焊接,1995(8): 21-22.
    [3]姜焕中.电弧焊及电渣焊[M].北京:机械工业出版社,1995.
    [4]张文钺.焊接冶金学[M].北京:机械工业出版社, 1996, 189
    [5] Mitsuhiro Okatsu, Tohru Hayashi, Keniti Amano. Weldability of Advanced extremely-low carbon bainitic steel for thick plates of 570 MPa grade through as-rolled process [J]. Kawasaki Steel Technical Report, 1999, (40): 56-62.
    [6]习天辉.陈晓,袁泽喜.大线能量焊接用钢热影响区组织和性能的研究进[J].特殊钢, 2003, 24(5): 1-5.
    [7]郑磊.管线钢的碳含量和碳当量与焊接性的关系[J].焊管, 2004. 27(4): 72-74.
    [8]廖建国.大线能量焊接用厚钢板的发展[J].宽厚板, 2002, 8(2): 44-48.
    [9]屈朝霞,田志凌,杜则裕. 400 MPa级新一代钢铁材料焊接热影响区晶粒长图[J].焊接学报, 2002, 23(3): 29-31.
    [10] Ohkita S, Ashi M W, Homma H, etal. Improvement of HAZ toughness of HSLA steel by finely dispersed titanium oxide [J]. Nippon Steel Technical Report, 1988, 37(4): 9-14.
    [11]钱百年,李晶丽,斯重遥等. C, Al, Ti对钢焊接热影响区韧性的影响[J].材料研究学报, 1995, 9(2): l19-l24.
    [12]陈茂爱,唐逸民,楼松年. Ti对低合金高强钢焊接粗晶热影响区组织及韧性的影响[J].特殊钢, 200l, 22(5): 5-8.
    [13] Shin-ichi Deshimaru, Ikuo Hirai, Kenichi Amano. Production of heavy-gauge steel plates suitable for high-heat input welding in the arctic region. Kawasaki Steel Technical Report, 1987, (17):34-40.
    [14]栾世珍. Nb及Ti对C-Mn钢焊接粗晶区晶粒度,组织及韧性的影响[J].宝钢技术, l993(4): 48-52.
    [15] Adrian H and picketing F B. Effect of Ti additions on austenite grain growth kinetics of medium carbon V-Nb steels containing 0.008-0.018 % N [J]. Material Science and Technology, 1991, 7:l76-182.
    [16]马成勇,田志凌,杜则裕等.超低碳贝氏体钢及其焊接特性[J].钢铁, 2002, 37(6): 68-73.
    [17] Mitsuo Hisata, Takanori Miyake, Fumimaru Kawabata. 420MPa Yield Strength Steel Plate with Superior Fracture Toughness for Arctic Offshore Structures [J]. Kawasaki Steel Technical Report. 1999, (40):49-55.
    [18]高季明,历焕波,郭燕燕等.大线焊接能量下RE对C-Mn钢熔敷金属低温韧性的影响[J].东北大学学报, 1994, 15(3):313-314.
    [19] Kimura Tatsumi, Sumi Hiroyuki, Kitani Yasushi. High tensile strength steel plates and welding consumables for architectural construction with excellent toughness in welded joint-“JFE EWEL”technology for excellent quality in HAZ of high heat input weld joints [J]. JFE Technical Report, 2005, (5):45-52.
    [20]张莉芹,袁则喜,陈晓等.大线能量低焊接裂纹敏感性钢的焊接(一)[J].焊接技术, 2002, l9(7): 29-34.
    [21]张莉芹,卜勇,陈晓.大线能量低焊接裂纹敏感性钢的焊接(二)[J].焊接技术, 2002, l9(8): 35-38.
    [22]高甲生,张庆安,洪永昌等.低碳钢焊接热影响区TiN粗化的动力学[J].金属热处理学报, l999, 20(4): l8-21.
    [23]尹桂全,高甲生,洪永昌等.微量Nb对微Ti钢焊接HAZ奥氏体晶粒长大的影响[J].焊接学报, l998, l9(1): l3-18.
    [24]児岛明彦.应用微细粒子开发焊接热影响区高韧性技术HTUFF[J].世界钢铁, 2004(6): 55-58.
    [25] R A Farrar. Acicular ferrite in carbon-manganese weld metals: an overview [J]. J.Mat. Sci., 1987(22): 3812-3820.
    [26]郭桐,韦明,侯彩霞等.改善大线能量焊接韧性的冶炼技术研究[J].宽厚板, 2007(2): 19-21.
    [27] Jinichi Takalnura. S. Mizoguchi. Roles of Oxides in Steels Performance. Proc. of the 6th inter. Iron and Steel Cong. Japan: Nagoya. ISIJ, 1990, 591
    [28] S. Mizoguchi. Jinichi Takalnura. Control of Oxides as Inoculants. Proc. of the 6th inter. Iron and Steel Cong. Japan: Nagoya. ISIJ, 1990, 598
    [29] T. Sawai, M. Wakoh, Y. Uwshima, S. Mizoguchi. Effect of Zr on the Precipitation of MnS in Low Carbon Steels. Proc. of the 6th inter. Iron and Steel Cong. Japan: Nagoya. ISIJ, 1990, 605
    [30] S. Ogibayashi, K. Yamaguchi, H. Goto. The Features of Oxides in Ti-deoxidized Steel. Proc. of the 6th inter. Iron and Steel Cong. Japan: Nagoya. ISIJ, 1990, 612
    [31]宋凤明,李自刚等.大线能量焊接用结构钢的研究进展.焊接, 2006, 55(19): 69
    [32]刘中柱,桑原守.氧化物冶金技术的最新进展及其实践.炼钢, 2007, 23(3): 7.
    [33]荆洪阳,霍立兴,张玉凤.铌对高强度钢焊接热影响区中马氏体-奥氏体组元形态的影响[J].焊接学报, 1997, 18(1): 37-42.
    [34] Hattingh R J, Pienaar G. Weld HAZ embrittlement of Nb containing C-Mn steels [J]. International Journal of Pressure Vessels and Piping, 1998, 75(9): 661-677.
    [35] Y.Q. Zhanga, H.Q. Zhang, W.M. Liu, H. Hou. Effects of Nb on microstructure and continuous cooling transformation of coarse grain heat-affected zone in 610MPa class high-strength low-alloy structural steels. Mater Sci Eng A2009;499:182-186.
    [36]张英乔,张汉谦等.铌对高强度结构钢大热输入焊接热影响区组织和性能的影响[J].焊接学报, 2008, 29(9): 96-100.
    [37]张英乔,刘伟明,张汉谦等.焊接热循环及铌对原油储罐用钢粗晶热影响区组织和性能的影响[J].焊接, 2008, 5: 23-28.
    [38]周乐育,刘雅政,方圆等. Nb对C-Si-Mn-Cr双相钢相变规律、组织和性能的影响[J].钢铁, 2008, 43(7): 76-80.
    [39]赵莉萍,庞在广,麻永林.微量Nb对低碳低合金管线钢相变的影响[J].金属热处理, 2008, 33(9): 95-98.
    [40] Palmiere E J, Garcia C I, DeArdo A J. The Influence of niobium supersaturation in austenite on the static recrystallization behavior of low carbon microalloyed steels [J]. Metallurgical and Materials Transactions A, 1996, 27A (4):951-960.
    [41] Manohar P A, Dunne D P, Chandra T, et al1Grain growth predictions in micro-alloyed steels [J]. ISIJ International, 1996, 36(2): 194–200.
    [42]上田修三著,荆洪阳译.钢结构的焊接:低合金钢的性能及冶金学[M].北京:冶金工业出版社, 2004.
    [43]贾坤宁,高彩茹,杜林秀,王国栋,刘相华.焊接热循环对微钙钢组织性能的影响[J].钢铁研究, 2007, 35(2): 17-21.
    [44]赵琳,张旭东,陈武柱. 800MPa级低合金钢焊接热影响区韧性的研究[J].金属学报, 2005, 41(4): 392-396.
    [45]贾坤宁,赵洪运,高彩茹,王国栋.微钙钢焊后显微组织中的粒状贝氏体对韧性的影响[J].焊接学报, 2007, 28(2): 95-98.
    [46]陈翠欣,李午申,王庆鹏等. X80管线钢焊接粗晶区的组织和性能[J].焊接学报, 2005, 26(6): 77-80.
    [47]方鸿生,刘东雨.贝氏体钢的强韧化途径[J].机械工程材料, 2001, 25 (6): 1-5.
    [48] VLADIMIR MAGULA, ZHONGLIN LI, HITOSHI OKADA. Microstructural investigation on decomposition behavior of M-A constituent and recovery of ductility due to PWHT in simulated HAZ of HSLA STEEL [J]. Trans JWRI, 1991, 20 (1): 69-75.
    [49]高惠临,董玉华,王荣.管线钢焊接临界粗晶区局部脆化现象的研究[J].材料热处理学报,2001 ,22 (2): 60-65.
    [50]高惠临.管线钢的组织,性能和焊接性[M].西安:陕西科学技术出版社, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700