X80和30CrMo焊接接头组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深水钻井隔水管是深海油气钻探的重要装备单元。深水钻井隔水管是由X80主管和30CrMo法兰焊接而成,焊接工艺和接头性能关系着隔水管制造技术和产品国产化的可行性。文中从焊接接头组织和性能入手,深入研究了焊接工艺对显微组织、接头硬度和冲击韧性的影响规律。
     采用维氏硬度计测试接头不同区域的宏观硬度,试验结果表明30CrMo热影响区存在局部硬化和局部软化,X80热影响区出现软化,焊缝区的硬度适中。30CrMo热影响区局部硬化是由于在该区形成了马氏体和上贝氏体组织,这两种组织的塑性变形抗力高,因此该区域出现硬化。30CrMo热影响区局部软化的原因是形成了粗大粒状铁素体、粗大碳化物和低碳奥氏体分解产物,导致这个区域的硬度与30CrMo母材相比较低。X80热影响区软化是由于受热作用,晶粒回复、再结晶长大形成多边形铁素体,同时质点粗化也引起焊接热影响区软化。
     经过500℃×1.5h焊后热处理,接头硬度发生变化。30CrMo局部硬化区和局部软化区硬度都有所降低,硬度降低是由于组织发生转变和焊接残余应力消除。经过热处理,30CrMo局部硬化区组织转变为回火索氏体和条状铁素体、块状铁素体。在热处理过程中,30CrMo局部软化区铁素体内分布的碳化物聚集和长大,不在弥散分布,碳化物的强化作用有所降低,所以经热处理后该区硬度进一步下降。
     冲击试验表明,X80侧熔合线+1mm处由于晶粒粗化和形成粒状贝氏体组织而发生脆化,热处理对此处的冲击韧性影响不明显。试验同时表明30CrMo侧熔合线+1mm处和熔合线+2mm处都发生脆化,原因是30CrMo侧熔合线+1mm处形成上贝氏体和硬脆马氏体,30CrMo侧熔合线+2mm处形成了粒状贝氏体和马氏体。经热处理后,这两区域的韧性都有所改善,冲击断口为韧窝状的,原因是30CrMo侧熔合线+1mm处组织转变为块状铁素体、回火索氏体和弥散分布的碳化物,30CrMo侧熔合线+2mm处形成了块状铁素体、粒状铁素体和粒状回火索氏体,而且碳化物弥散分布,这些组织的韧性较好,所以这两区域的冲击韧性有所改善。
Deep water drilling riser is important Equipment unit in deep sea drilling and exploiting oil and gas. Welding of X80 and 30CrMo is used in manufacturing of deep water drilling riser. Welding procedure and welding joint properties is important to the localization of riser manufacturing technology and riser product.
     Microstructures and properties of welded joint are studied in this paper, the laws of effecting of welding procedure and microstructure on hardness and impact toughness of welding joint are intensively studied. Microstructures of different zones in welding joint are observed and analysed, The results show that the microstructures of welding joint are discontinuous, So the mechanical properties of welding joint is also discontinuous. Macrohardness of different zones in welding joint are tested by Vickers, The results show that local hardening and local softening exist in HAZ(heat affected zone) of 30CrMo. The results also show that local softening exists in HAZ of X80 and the hardness of weld metal is moderate. The reason of local hardening of 30CrMoHAZ is forming of martensite and upper bainite in this zone. Plastic deformation resistance of these microstructures is high, so the local hardening is tseted in this zone. Local softening of 30CrMoHAZ is caused by forming of coarse granular ferrite, coarse carbides and low carbon austenite decomposition products, Leading to hardness of this zone is lower than hardness of 30CrMo base matel. Softening of X80HAZ is originated from acicular ferrite, coarse polygonal ferrite and small quantities of carbide distributing among ferrite.
     Through 500℃×1.5h postweld heat treatment, the hardness of welding joint is changed. The hardness of local hardening zone and local softening zone in 30CrMoHAZ is reduced, which is caused by microstructure transformation and Welding residual stress releaseing. Through postweld heat treatment, microstructure of 30CrMo local hardening zone transform into tempered sorbite, ferrite band and granular ferrite. During postweld heat treatment, carbide precipitation, aggregation and growth occurred in ferrite of 30CrMo local softening zone. Strength rule of carbide is decreased, so the hardness of this zone is reducing after post weld heat treatment.
     Impact test show that embrittlement occurrs at X80 fusion-line+1mm because of forming of granular bainite, impact toughness of this zone is not improved through postweld heat treatment. Impact test show simultaneously that embrittlement occurred at 30CrMo fusion-line+1mm and 30CrMo fusion-line+2mm. After heat treatment, the toughness of these two zones are improved, impact fracture is dimple. Embrittlement is caused by brittle microstructure, there are upper bainite and hard and brittle martensite in the zone of 30CrMo fusion-line+1mm, and granular bainite martensite in the zone of 30CrMo fusion-line+2mm. Through heat treatment, the microstructures of the zone of 30CrMo fusion-line+1mm transform into granular ferrite, tempered sorbite and dispersed carbide. The microstructures of the zone of 30CrMo fusion-line+2mm transform into granular ferrite, granular bainite and granular tempered sorbite. These microstructure have good toughness, so the toughness of the two zones are improved.
引文
[1]汪淼森.中国石油行业发展前瞻[J].河南化工, 2010, 27(04): 3~6.
    [2]暢元江,陈国明,鞠少栋.国外深水钻井隔水管系统产品技术现状与进展[J].石油机械, 2008, 36(09): 205~209.
    [3]王进全,王定亚.国外海洋钻井隔水管与国产化研究建议[J].石油机械, 2009, 37(9): 147~150.
    [4] Yong Bai, Qiang Bai. Subsea pipelines and risers[M]. Elsevier Science Ltd, 2005: 401~406.
    [5] Paul Stanton. Overview of deepwater drilling and production risers. February 14, 2006.
    [6] Mccrae H . Marine riser systems and subsea blowout preventors. University of Texas Press, 2003.
    [7] Guesnon J, Gaillard C, Richard F. Ultra deep water drilling riser design and relative technology[J]. Oil&Gas Science and Technology, 2002, 57(1): 39~57.
    [8]王建军,林凯,宫少涛,等.海洋深水钻井隔水管材料性能标准研究[J].钻井工程, 2010, 34(4): 1~4.
    [9]薛小怀,杨淑芳,吴鲁海. X80管线钢的研究进展[J].上海金属, 2004, 26(2): 45~49.
    [10]隋永利.国产X80管线钢焊接技术研究[D].天津,天津大学, 2008.
    [11]洪永昌,高甲生,尹贵全,等.微合金钢焊接粗晶区晶粒长大的热模拟研究[J].宝钢技术, 1996, (1): 53~58.
    [12]陈翠欣,李午申,王庆鹏,等. X80管线钢焊接粗晶区韧化因素的研究[J].材料工程, 2005, 5: 22~26.
    [13]陈翠欣,李午申,王庆鹏,等. X80管线钢焊接粗晶区的组织和性能[J].焊接学报, 2005, 26 (6): 77~80.
    [14]薛小怀,周昀,钱百年,等. X80管线钢焊接粗晶区组织与韧性的研究[J].上海交通大学学报, 2003, 37(12): 1854~1857.
    [15] Bonneviea E, Ferrierea G, Ikhlefa A. Morphological aspects of martensite-austenite constituents in intercritical and coarse grain heat affected zones of structural steels. Material Science and Engineering, 2004, (385): 352~358.
    [16]高惠临,董玉华,冯耀荣.油气管线钢的焊接局部脆化及其预防[J].机械工程学报,2001, 37(3): 14~19.
    [17] Emin Bayraktar, Dominique Kaplan. Mechanical and metallurgical investigation of martensite-austenite constituents in simulated welding conditions. Materials Processing Technology, 2004: 87~92.
    [18]荆洪阳,霍立兴,张玉凤,等.马氏体-奥氏体组元形态对高强钢焊接热影响区韧性的影响[J].机械工程学报, 1995, 31(6): 102~106.
    [19] Matsuda F. Effect of weld thermal cycles on the HAZ toughness of SQV-2A pressure vessel steel[J]. Trends in welding Research, Gatlinburg Tennessee, 1995, 541.
    [20] Sungtak Lee, Byung Chun Kim, Dongil Kwon. Fracture toughness analysis of heat affected zones in high strength low alloyed steel welds[J]. matell Trans, 1993, 24A: 2803.
    [21]张敏,姚成武,聂斌英. X80管线钢埋弧焊接头性能分析[J].焊接学报, 2005, 26(9): 19~22.
    [22]陈延清,杜则裕,许良红. X80管线钢焊接热影响区组织和性能分析[J].焊接学报, 2010, 31(5): 101~104.
    [23] Dittrich S. Newest experiences on shielded metal arc welding of grade X-80 pipes[C]. OTC Conference. Houston, 1991.
    [24]孟凡刚,陈玉华,王勇, X80钢管道及现场环焊缝焊接技术发展现状[J].石油化工设备, 2008, 37(3): 44~48.
    [25]牛靖,董俊明,何源,等. 30CrMnSiNi2A钢冷裂纹敏感性研究[J].材料开发与应用, 2006, 21(4): 1~3.
    [26]陈自强,潘川,潘希德,等. 30CrMo&40CrNi钢焊接冷裂纹敏感性研究[J].机械强度, 1998, 20(4): 261~264.
    [27]邹增大,李亚江,尹士科. HQ130钢焊接CGHAZ韧性及TEM分析[J].焊接学报, 1998, 19(3): 141~146.
    [28]李亚江,邹增大,陈祝年. HQ130+QJ63高强钢焊接接头的组织与性能[J].钢铁研究学报, 1997, 9(4): 46~51.
    [29]李亚江,邹增大,陈祝年,等.焊接热循环对HQ130钢热影响区组织及性能的影响[J].金属学报, 1996, 32(5): 532~537.
    [30]雷华东,徐宾,殷俊.调质状态下30CrMnSiA钢的激光焊接[J].四川大学学报(工程科学版). 2001, 33(5): 81~85.
    [31]史耀武.材料焊接工程(下) [M].北京,化学工业出版社, 2005: 318~319.
    [32]衣海龙,杜林秀,王国栋,等. X80管线钢的组织与性能研究[J].东北大学学报(自然科学版), 2008, 29(2): 213~216.
    [33]辛希贤.管线钢的焊接[M].西安,陕西科学技术出版社, 1997: 12~13.
    [34]赵明纯,肖福仁,单以银,等.超低碳针状铁素体管线钢的显微组织及强韧性行为[J].金属学报, 2002, 38(3): 283~287.
    [35]王伟,单以银,杨柯.超低碳微合金管线钢中针状铁素体的组成对强度的影响[J].金属学报, 2007, 43(6): 578~582.
    [36]赵明纯,单易银,肖福仁,等.管线钢中针状铁素体的形成及其强韧性的分析[J].材料科学与工艺, 2001, 9(4): 356~358.
    [37]廖波,肖福仁.针状铁素体管线钢组织及强韧化机理研究[J].材料热处理学报, 2009, 30(2): 57~62.
    [38] XIAO F, LIAO B, REN D, et al. Acicular ferritic microstructure of a low-carbon Mn-Mo-Nb microalloyed pipeline steel[J]. Materials Characterization, 2005, 54(5): 304~314.
    [39]杜则裕. X80管线钢的焊接性[J].电焊机, 2009, 39(5): 15~17.
    [40]亓效钢,陈茂爱,陈俊华.微合金钢第二相粒子对HAZ区奥氏体晶粒影响[J].材料科学与工艺, 2005, 13(4): 368~371.
    [41]陈翠欣,李午申. X80管线钢的焊接性研究[J].电焊机, 2009, 39(5): 35~40.
    [42]邹增大,李亚江,尹士科.低合金调质高强度钢焊接及工程应用[M].北京,化学工业出版社, 1999: 65~68.
    [43]韩顺昌.针状铁素体的物理冶金学(续)[J].材料科学与应用, 1995, 10(6): 2~8.
    [44]杜则裕,张德勤,田志凌.低碳低合金钢焊缝金属的显微组织及其影响因素[J].钢铁, 1999, 34增刊: 67~71.
    [45]张国栋,李志远,余圣甫,等.药芯焊丝焊缝中先共析铁素体的数量预测[J].电焊机, 1991, 31(11): 17~20.
    [46]卜勇,胡本芙,尹法章,等.低碳钢中以氧化物为核心针状铁素体的形成[J].北京科技大学学报. 2006, 28(4): 357~360.
    [47] S. G. Hong, H. J. Jun, K.B.Kang, et al. Evolution of precipitates in the Nb-Ti-Vmicroalloyed HSLA steels during reheating[J]. Scripta Materialia, 2003, 48: 1201~1206.
    [48]黄安国,余圣甫,谢明立,等.低合金钢焊缝的针状铁素体微观组织[J].焊接学报, 2008, 29(3): 45~48.
    [49]薛小怀. X80管线钢埋弧焊丝工艺及焊接性研究[D].沈阳,中国科学院金属研究所, 2001.
    [50]孟凡刚,陈玉华,王勇.管线钢焊接局部脆化区的M-A组元[J].焊接技术, 2007, 36(1): 13~15.
    [51]康煜平.金属固态相变及应用[M].北京,化学工业出版社, 2007: 128~129.
    [52]张占领,柳永宁,于光,等.超高碳钢中枣核状马氏体形态及亚结构[J].金属学报, 2009, 45(3): 280~284.
    [53]徐洲,赵连城.金属固态相变原理[M].北京,科学出版社, 2004: 103~104.
    [54] T. Mohandas, G. Madhusudan Reddy, B. Satish Kumar. Heat-affected zone softening in high-strengh low-alloy steels[J]. Journal of Materials Processing Technology, 1999(88): 284~294.
    [55] K.S.Bang, W. Y. Kim. Estimation and predition of HAZ softening in thermomechanically controlled-rolled and accelerated-cooled steel[J]. Welding Journal, 2002(8): 174~179.
    [56]吕统全. X80管线钢焊接热敏感性研究[D].东营,中国石油大学(华东), 2007.
    [57] A. Lambert Perlade, A. F. Gourgues, A. Pineau. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel[J]. Acta Materialia, 2004, 52: 2337~2348.
    [58] F. G. Caballero, M. K. Miller, S. S. Babu, et al. Atomic scale observations of bainite transformation in a high carbon high silicon steel[J]. Acta Materialia, 2007, 55(1): 389~390.
    [59] Jae-ll Jang, Jang-Bog Ju, Baik-Woo Lee, et al. Micromechanism of local brittle zone phenomenon in weld heat-affected zones of advanced 9% Ni steel[J]. Journal of Materials Science Letters, 2001: 2149~2152.
    [60]田德允,张瑞成,翁志刚,等.微合金高强钢焊接热影响区中粒状贝氏体微观结构的实验研究[J].金属学报, 2000, 36(2): 181~186.
    [61]贾坤宁,赵洪运,高彩茹.微钙钢焊后显微组织中的粒状贝氏体对韧性的影响[J].焊接学报, 2007, 28(2): 95~98.
    [62]张宝伟,魏金山,张田宏. 10Ni5CrMoV钢二次焊接热循环局部脆化研究[J].材料开发与应用, 2004, 19 (3): 25~29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700