溶解氧传感器微电极的制作及测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种水质问题的出现,水资源的保护越来越受到人们的关注与重视。溶解氧作为衡量水体自净能力的一个重要指标,一直是人们对于水体检测的重点。传统的溶解氧检测方法有很多,但是由于其检测仪器结构复杂,成本较高,不能实现对水体及时连续监测等问题,给人们水体检测带来了诸多不便。因此,手持式,小型化的溶解氧检测仪器已成为人们研究的重点。本论文提出基于Clark溶解氧检测原理,利用MEMS微加工技术制作出了两个平行的微电极,然后通过对微电极位点的表面修饰,制备出了Clark型溶解氧传感器微电极,并完成了修饰后微电极的相关电化学测试,提高了对溶解氧的响应。本论文主要完成了以下相关工作:
     1微电极的设计与制作:基于微电极在电化学反应中相对于宏观电极的优势,以Clark型溶解氧测定原理为基础,对微电极的图形进行了设计,通过标准MEMS工艺流程以及等离子体处理,制作出了铂金微电极位点上附有铝膜的微电极。
     2微电极的表面修饰:将裸铂微电极位点处进行CV电化学沉积银,并通过盐酸处理,成功制备出银-氯化银薄膜电极,将此作为溶解氧传感器微电极的阳极;对附有铝膜的铂微电极进行阳极氧化处理,选择30V作为最合适的氧化电压,通过监测反应过程中的电流变化来控制阳极氧化的时间,从而制备出铂金微电极位点上纳米孔道,最后在氯铂酸与盐酸的混合溶液中利用电化学沉积法完成对其表面的纳米级修饰,此微电极作为溶解氧传感器微电极的阴极。
     3微电极的测试:首先对纳米级修饰前后的铂微电极进行相关的电化学测试,发现修饰后的铂微电极电化学阻抗明显降低,CV扫描对一些电活性物质及溶解氧的响应电流从40μA增大道130μA,峰位明显正移;然后对纳米级修饰后制作的Clark溶解氧电极进行了相关溶解氧的测试,回路中的电流信号有显著的提高,达到几十微安,其对溶解氧的电催化性能增强。
     表明该溶解氧微电极经过纳米级修饰,其对溶解氧测定的电化学活性和灵敏度都有明显的提高。同时,由于该微电极检测时所得信号是电信号,不需要繁琐的信号转换,因此可以用于制作小型化的溶解氧传感器。
With the appearance of water problem, people pay more attention to theprotection of water resource. Dissolved oxygen, which is an important parameter ofwater self-depuration capability, is always a significant part of water detection. Thereare many traditional DO detection methods which make the detection inconvenientdue to some disadvantages such as complicated detection structures, expensive cost,not be used for continuously in-situ detection and so on. Therefore, it is a trend for usto research small size and handheld DO detection instrument. In this dissertation, onthe basis of Clark principle for DO detection, we take advantage of MEMStechnology to fabricate two parallel microelectrodes. Then we successfully makeClark DO sensor microelectrodes through modifying surface and carry out somerelative electrochemistry tests that indicate the response of DO strengthens. The topicsof this dissertation are discussed as follows:
     1. Design and fabrication of microelectrode. On the basis of microelectrodesuperiority, we designed the microelectrode pattern. Through MEMS and plasmatechnology, we fabricated Pt microelectrode which was deposited by aluminum film.
     2. The modification for the surface of microelectrode. The anticathode of DO sensormicroelectrode is an Ag-AgCl electrode which was prepared by CV electrochemicaldeposition of Ag and treatment of HCl; the aluminum film on the Pt cathode wasprepared under30V by anodization and the curve of current-time. Finally,electrochemical deposition of Pt was carried out through porous alumina templateabove.
     3. The test of microelectrode. According to the microelectrode before and afternano-modification, we carried out some relative electrochemistry test. It is foundout that electrochemical impedance of nano-modified microelectrode reducedobviously and the response current for DO improved dramatically, from40μA to130μA. Then we detected DO using nano-modified Clark DO electrode. The currentsignal was improved evidently relative to un-modified DO electrode.
     It was proved that through nano-modified DO microelectrode, theelectrochemistry activation and sensitivity enhance obviously. In addition, thedetection signal is direct electrical signal that complicated signal conversion is notneeded, and the DO microelectrodes can be used for miniaturized DO sensor.
引文
[1]任凤莲,周平,吴南.水中溶解氧的测定.广州化学,2002,27(1):56-64.
    [2] Fitzgerald M, Papkovsky D B, Smiddy M, Kerry J P, O’Sullivan C K, Buckley DJ, Guilbault G G. Nondestructive Monitoring of Oxygen Profiles in PackagedFoods Using Phase-Fluorimetric Oxygen Sensor. Journal of Food Science.2001,66(1):105–110.
    [3] Whiffin V S, Cooney M J, Cord-Ruwisch R. Online detection of feed demand inhigh cell density cultures of Escherichia coli by measurement of changes indissolved oxygen transients in complex media. Biotechnology andBioengineering.2004,85(4):422–433.
    [4]解敏丽,周成.覆膜电极溶解氧测定仪示值误差的检定及影响因素.化学分析计量,2009,1:69-71.
    [5]张国城.溶解氧测定仪温度补偿原理及其检定方法.中国计量.2010,11:86-88.
    [6]梁秀丽,潘忠泉,王爱萍,等.碘量法测定水中溶解氧.化学分析计量,2008,17(2):54-56.
    [7]刘德福,孙淑媛,任晓玲.碘量法测定溶解氧有关问题的探讨.河北省环境监测中心站,1986(04).
    [8] Irja H, Lauri J, Martin V, et al. Micro-Winkler titration method for dissolvedoxygen concentration measurement. Analytica Chemicals Acta,2009(648):167-173.
    [9] Burkhard H, Juan C A, Manuel M, et al. A multisyringe flowinjectionWinkler-based spectrophotometric analyzer for in-line monitoring ofdissolved oxygen in seawater. Talanta,2010(80):1341-1346.
    [10] Sahoo P, Ananthanarayanan R, Malathi N, et al. Pulsating potentiometric titrationtechnique for assay of dissolved oxygen in water at trace level. AnalyticaChimica Acta,2010(669):17-24.
    [11]沙鸥,马卫兴,碘-罗丹明B-OP体系分光光度法测定水中溶解氧[J].冶金分析,2010,30(3):76-79.
    [12] Kwang E C, Esther H L, Michael S D, et al. Measurement of Dissolved Oxygenin Water Using Glass-Encapsulated Myoglobin. Anal. Chem.1995,67:1505-1509.
    [13]洪江星,陈天文,李伟等.溶胶-凝胶法制备基于荧光碎灭原理的光纤氧传感器在线监测水中溶解氧,福建分析测试,2002,11(2):1541-1544.
    [14]李伟,陈曦.基于荧光猝灭原理的光纤化学传感器在线监测水中溶解氧.北京大学学报,2001,37(2):226-230.
    [15]钱俊峰.极谱型氧传感器及溶解氧测定仪,仪表技术与传感器,1990,5:24-26.
    [16] Bishop P, Yu T. A microelectrode study of redox potential change in biofilms.Water Sci. Technol.1999,39(7):179–185.
    [17] Lee J H, Jang A, Myers R, Bhadri P, Timmons W, Beyette F, Bishop P, PapautskyI. Fabrication of microelectrode arrays for in situ sensing of oxidation reductionpotentials. Sens. Actuators B.2006,115(1):220-226.
    [18] Jang A, Lee J-H, Bhadri P, Kumar S, Beyette F, Timmons W, Papaut-sky I,Bishop P. Miniaturized redox potential probe for in situ environmentalmonitoring. Environ. Sci. Technol.2005,39(16):6191-6197.
    [19] Gross P G, Kartalov E P, Scherer A, Weiner L P. Applications of microfluidics forneuronal studies. J. Neurol. Sci.2007,252(2):135–143.
    [20] Berduque A, Lanyon Y H, Beni V, Herzog G, Watson Y E, Rodgers K, Stam F,Alderman J, Arrigan D W M. Voltammetric characterisation ofsilicon-basedmicroelectrode arrays and their application tomercury-free strippingvoltammetry of copper ions. Talanta,2007,71(3):1022–1030.
    [21] Lee J H, Lim T S, Seo Y, et al. Needle-type dissolved oxygen microelectrodearray sensors for in situ measurements. Sensors and Actuators B,2007,128:179-185.
    [22] Lim T S, Lee J H, Papautsky I. Effect of recess dimensions on performance of theneedle-type dissolved oxygen microelectrode sensor. Sensors and ActuatorsB,2009(141):50-57.
    [23] Liu S Y, Liu G, Tian Y C, et al. An Innovative Microelectrode Fabricated UsingPhotolithography for Measuring Dissolved Oxygen Distributions in AerobicGranules, Environ. Sci. Technol,2007,41:5447-5452.
    [24] Liu S Y, Chen Y P, Fang F, et al.Measurement of Dissolved Oxygen and ItsDiffusivity in Aerobic Granules Using a Lithographically-FabricatedMicroelectrode Array. Environ. Sci. Technol,2009,43:1160-1165.
    [25] Chiu Z C, Chen M Y, Lee D J, Wang C H, Lai J Y. Oxygen diffusion in activelayer of aerobic granule with step change in surrounding oxygen levels. WaterRes.2007,41(4):884–892.
    [26] Liu Y, Tay J H. State of the art of biogranulation technology for wastewatertreatment. Biotechnol. Adv.2004,22(7):533-563.
    [27]朱亚明,丁为民.一种在线检测溶解氧的方法.电子测量技术,2009,7(32):122-124.
    [28] Ramon M M, Juan S, Josefa L S, et al. New potentiomentric dissolved oxygensensors in thick film technology. Sensors and Actuators B,2004(101):295-301.
    [29] Serge Z.Potentiometric DO detection in water by ceramic sensor based onsub-micron RuO2sensing electrode. Ionics,2009,15:693-701.
    [30] Song S, Zhang H, Ma X, Shao Z, Baker RT, Yi B. Electrochemical investigationof electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers.Int J Hydrogen Energy.2008,33(19):4955-4961.
    [31] Martinez-Manez R, Soto J, Garcia-Breijo E, Gil L, Ibanez J, Llobet E. An“electronic tongue” design for the qualitative analysis of natural waters. SensActuators B: Chem.2005,104(2):302-307.
    [32] Labrador RH, Soto J, Marninez-Manez R, Coll C, Benito A, Ibanez J,Garcia-Breijo E, Gil L. An electrochemical characterization of thick-filmelectrodes based on RuO2-containing resistive pastes. J Electroanal Chem.2007,611(1-2):175-180.
    [33] Serge Z, Eugene K, Donavan M. Potentiometric sensor using sub-micronCu2O-doped RuO2sensing electrode with improved antifouling resistance.Talanta,2010(82):502-507.
    [34] Baldo M A, Daniel S. Anodic Stripping Voltammetry at Bismuth-Coated andUncoated Carbon Microdisk Electrodes: Application to Trace Metals Analysis inFood Samples. Analytical Letters,2005(37):995-1011.
    [35] Uhlig A., Schnakemberg U., Hintsche R. Highly sensitive heavy metal analysison platinum and gold-ultramicroelectrode arrays. Electroanalysis.1997(9):125-129.
    [36] Wilson M S, Nie W Y. Electrochemical multianalyte immunoassays using anarray-based sensor. Anal. Chem.2006,78(8):2507–2513.
    [37] Errachid A, Ivorra A, Aguilo J, Villa R, Zine N, Bausells J. Newtechnology formulti-sensor silicon needles for biomedical applications. Sens. Actuator, B2001,78(1-3):279–284.
    [38] Hung A, Zhou D, Greenberg R et al. Micromachined electrodes for high densityneural stimulation systems. In The Fifteenth IEEE International Conference onMicro Electro Mechanical System, Las Vegas, NV, USA,2002:56-59.
    [39] Paik S J, Park Y. Roughened polysilicon for low impedance microelectrodes inneural probes. Micromech. Microeng.2003,13:373-379.
    [40]邓培红,匡云飞,张军,黎拒难.碳纳米管修饰碳黑微电极阳极溶出伏安法测定痕量铜.冶金分析.2008,28(8):12-15.
    [41]魏星,侯中宇,徐东,张亚非,蔡炳初.碳纳米管在MEMS微电极中的应用研究.微细加工技术,2007,2:60-64.
    [42] Jacobs C B, Vickrey T L, Venton B Jill. Functional groups modulate thesensitivity and electron transfer kinetics of neurochemicals at carbon nanotubemodified microelectrodes. Analyst,2011,136:3557-3565.
    [43] Parkhutik V P, Shemhulsky V I, Trauth D. Theoretical modeling of porous oxidegrowth on aluminium. Phys D: Appl Phys.1992,25:1258-1263.
    [44]江小雪,赵乃勤.多孔氧化铝膜的制备与形成机理的研究概况.功能材料.2005,4(36):487-489.
    [45]陶敏龙,郭光华,孙李媛,王世良.高度有序多孔氧化铝模板的制备工艺与生长机制的研究.中国材料科技与设备.2006,(2):40-42.
    [46] Shoso S. Fabrication of nanomaterials using porous alumina templates. Nanopart.Res,2003,5:17-30.
    [47]江小雪,赵乃勤.多孔氧化铝膜的制备与形成机理的研究概况.功能材料.2005,4(36):487-489.
    [48]李淑英,宋琛.多孔阳极氧化铝膜的最佳制备工艺研究.表面技术,2006,35(3):33-35.
    [49] Vorobyova A I, Outkina E A, Khodin A A. Self-Organized Growth Mechanismfor Porous Aluminum Anodic Oxide. Russ. Microelectron,2007,36(6):384-391.
    [50] Li X M, Wang D S, Tang L B, Dong K, Wu Y J. Controllable synthesis of Agnanorods using a porous anodic aluminum oxide template. Appl. Surf. Sci,2009,255(17):7529-7531.
    [51] Nagaura T, Takeuchi F, Yamauchi Y et al. Fabrication of ordered Ni nanoconesusing a porous anodic alumina template. Electrochem. Commun.2008,10(5):681-685.
    [52] Yi J B, Pan H, Lin J Y, Ding J, Feng Y P, Thongmee S, Liu T, Gong H, Wang L.Ferromagnetism in ZnO Nanowires Derived from Electro-deposition on AAOTemplate and Subsequent Oxidation. Advanced materials.2008,20(6):1170-1174.
    [53] Chen B S, Xu Q L, Zhao X L, Zhu X G, Kong M G, Meng G W. BranchedSilicon Nanotubes and Metal Nanowires via AAO-Template-Assistant Approach.Advanced functional materials.2010,20(21):3791-3796.
    [54] Wang Q, Shimizu T, Shingubara S. Control of crystalline orientation anddiameter of Si nanowires based on VLS method and electrodeposition of catalystusing AAO template. Electron Devices,2011International Meeting for Future.2011:60-61.
    [55] Thongmee S, Pang H L, Yi J B, Ding J, Lin J Y, Van L H. The structure andmagnetic properties of metal and alloy nanowires via AAO template.International Journal of Nanoscience.2009,8(1-2):75-80.
    [56] Ta alt n N, ztürk S, K l n N, Yüzer H, ztürk Z Z. Fabrication of Pd–Fenanowires with a high aspect ratio by AAO template-assisted electrodeposition.Journal of Alloys and Compounds.2010,509(9):3894-3898.
    [57] Qin L, Jone G A, Shen T H, Grundy P J, Li W X X, Abrams K J. The growth ofordered ZnAl2O4nanostructures using AAO as a reactive template. MaterialsLetters.2010,64(24):2685-2687.
    [58] Chang W I, Wu J T, Lin K H, Yang S Y, Lee K L, Wei P K. Fabrication of goldsub-wavelength pore array using gas-assisted hot embossing with anodicaluminum oxide (AAO) template. Microelectronic Engineering.2011,88(6):909-913.
    [59]杨昊炜,张璋,段晓楠,俞宏坤,金庆原.硅基超薄多孔氧化铝膜的制备.物理化学学报,2008,24(2):313-316.
    [60] Hidetaka A, Mamoru M, Megumi Y, Sachiko O. Transfer of nanoporous patternof anodic porous alumina into Si substrate. Appl. Phys. Lett,2003,83(21):4408-4410.
    [61] Kokonou M, Giannakopoulos K P, Nassiopoulou A G. Few nanometer thickanodic porous alumina films on silicon with high density of vertical pores. Thin.Solid. Films,2007,515:3602-3606.
    [62] Hidetaka A, Akihiko O, Sachiko O. Fabrication of self-ordered nanohole arrayson Si by localized anodization and subsequent chemical etching. Appl. Surf. Sci,2005,252:1668-1673.
    [63] Hidetaka A, Kunimitsu S, Sachiko O. Electrochemical etching of silicon throughanodic porous alumina. Electrochem. Commun,2005,7(9):953-956.
    [64] Tasalt n N, ztürk S, K l n N, ztürk Z Z. Temperature dependence of ananoporous Pd film hydrogen sensor based on an AAO template on Si. AppliedPhysics A.2009,97(4):745-750.
    [65] Tasalt n N, ztürk S, K l n N, Yüzer H, ztürk Z Z. Simple fabrication ofhexagonally well-ordered AAO template on silicon substrate in two dimensions.Applied Physics A.2009,95(3):781-787.
    [66] Kim M J, Choi J H, Park J B, Kim S K, Yoo J-B, Park C-Y. Growthcharacteristics of carbon nanotubes via aluminum nanopore template on Sisubstrate using PECVD.Thin Solid Films.2003,435(1-2):312-317.
    [67] Yen J H, Leu I C, Wu M T, Lin C C, Hon M H. Density Control for CarbonNanotube Arrays Synthesized by ICP-CVD Using AAO/Si as a Nanotemplate.Electrochem. Solid-State Lett.2004,7(8): H29-H31.
    [68] Shimizu T, Nagayanagi M, Ishida T, Sakata O, Oku T, Sakaue H, Takahagi T,Shingubara S. Epitaxial Growth of Cu Nanodot Arrays Using an AAO Templateon a Si Substrate. Electrochem. Solid-State Lett.2006,9(4): J13-J16.
    [69] Lee Y H, Leu I C, Wu M T, Yen J H, Fung K Z. Fabrication of Cu/Cu2Ocomposite nanowire arrays on Si via AAO template-mediated electrodeposition.Journal of Alloys and Compounds.2007,427(1-2):213-218.
    [70] Dusan L, Joe G S, James G M et al. Fabrication of gold nanorod arrays bytemplating from porous alumina. Nanotechnology,2005,16:2275-2281.
    [71] Zhao S Y, Roberge H, Yelon A, Veres T. New Application of AAO Template: AMold for Nanoring and Nanocone Arrays. Am. Chem. Soc.2006,128(38):12352-12353.
    [72]孙冬梅,薛宽宏,蔡称心等.纳米阵列铂电极的样模法制备与应用.分析化学,2000,28(10):1308-1312.
    [73] Vlad A, Matefi-Tempfli M, Faniel S, et al. Controlled growth of single nanowireswithin a supported alumina template. Nanotechnology.2006,79:1039.
    [74] Shingubara S. Fabrication of Nanomaterials Using Porous Alumina Templates.Journal of Nanoparticle Research.2003,5:17-30.
    [75] Park J-S, Jeong J K, Mo Y-G, Kim H-D. Improvements in the devicecharacteristics of amorphous indium gallium zinc oxide thin-film transistors byAr plasma treatment. Appl. Phys. Lett.2007,90:262106.1-262106.3.
    [76] Morent R, Geyter N De, Verschuren J, Clerck K De, Kiekens P, Leys C.Non-thermal plasma treatment of textiles. Surf. Coat. Tech,2008,202:3427-3449.
    [77] Furneaux RC, Rigby WR and Davidson AP. The formation of controlled-porositymembranes from anodically oxidized aluminium. Nature.1989,337:147-149.
    [78] Wu MT, Leu IC, Hon MH. Effect of polishing pretreatment on the fabrication ofordered nanopore arrays on aluminum foils by anodization. J. Appl. Phys.1998,84:6023.
    [79] Wang N, Zhang W D, Xu J P, Ma B, Zhang Z Z, Jin Q Y, Bunte E, Hupkes J,Bochem H. P. Fabrication of Anodic Aluminum Oxide Templates with SmallInterpore Distances. Chin. Phys. Lett.2010,27(6):066801.1-066801.4.
    [80]江小雪,赵乃勤,贾威,李家俊.两步阳极氧化法制备多孔阳极氧化铝膜.功能材料.2005,5(36):720-722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700