陕北黄土区陡坡地土壤水分植被承载力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陕北黄土区≥25°陡坡地,植被稀疏,土壤干旱和水土流失极为严重,是黄土高原植被重建和治理水土流失的重点和难点。长期以来,由于降水资源短缺和植被建设缺乏水量平衡的基础,陡坡地植被土壤旱化、生态经济效益低的问题突出存在。合理利用降水资源是陡坡地植被建设可持续发展的关键。为此,研究了陡坡地人工植被的土壤水分生态环境、陡坡地土壤水分和植物生长的关系、陡坡地土壤水分植被承载力和自然降水的高效利用。主要结论如下:
     1.陡坡地多年生人工植被的土壤水分亏缺极为严重,贫水年0~10m土层贮水量仅相当于田间持水量的26.2%~42.0%,丰水年贮水量也仅占田间持水量的27.0%~43.3%;亏缺次序为:柠条>刺槐>苜蓿>侧柏>杨树>油松>荒坡>杏>枣>农地。年际间同一植被土壤水分含量的变化主要发生在200cm以上土层内,变异程度随土壤深度的增加而减弱。同一生长季,各种植被0~120cm土层含水量的变异系数都较大,但植被间差异较小;120cm以下土层,变异系数较小,但植被间差异较大。陡坡地多年生植被均有永久干层存在,但深层土壤干燥化强度因植物种类和生长年限而存在明显的差异。雨季土壤水分的补偿和恢复深度为1.0~1.4m,但不同植被的土壤贮水增量和补偿度有较大差异。同一植被丰水年的雨水补偿深度比干旱年可增加60cm以上,5m土层贮水增量增加3倍以上。在自然降雨条件下,陡坡地多年生人工植被的土壤贮水亏缺状况不能得到改善,土壤干化现象也不可能有所缓解。
     2.陡坡地不同植被的干燥化强度可用土壤干燥化指数表示。公式为:SDI =(SM–WM)/(SSM–WM)×(SD-DT)/(SD)×100%,式中,SDI为土壤干燥化指数,SM为土壤湿度,WM为凋萎湿度,SSM为土壤稳定湿度,DT为干燥化厚度,SD为土层深度。陡坡地植被的土壤干燥化强度可划分为6级: (1)若SDI≥100%,为无干燥化;(2)若50%≤SDI<100%,为轻度干燥化;(3)若30%≤SDI<50% ,为中度干燥化;(4)若10%≤SDI<30%,为严重干燥化;(5)若0≤SDI<10% ,为强烈干燥化;(6)若SDI< 0,为极度干燥化。
     3.杏树林冠截流量次变化在0.30~9.5mm,林冠截留率变化在2.6~67.6%,林冠截流总量占总降雨量的21.10%;柠条林冠截流量次变化在0.21~3.2mm,林冠截留率变化在2.0~28.0%,林冠截流总量占总降雨量的11.73%。降雨次数多、暴雨次数少,林冠截流总量所占比例增大。
     4.陡坡地植被径流量大。苜蓿地地表径流量随降雨量增大呈指数增长,关系式为:Y = 0.002x2+0.1285x-0.2409(R2 = 0.9731),地表径流量平均占降雨量的12.41%;杏林地地表径流量平均占降雨量的11.41%;柠条林地占降雨量的16.27%。植被类型(冠幅、冠层厚度、郁闭度)、坡度、水保工程是陡坡地地表径流最大的三个影响因素。
     5.自然降水条件下,陡坡苜蓿地的最大入渗深度为140cm,陡坡杏树地的最大入渗深度达160cm,而陡坡柠条地的最大入渗深度仅为120cm。
     6.影响苜蓿地土壤水分补给的主要因素为天然降水、地表径流和林冠截留。25°陡坡苜蓿地土壤水分补给量(Y补)与降水量(P)的关系为:Y补=0.8003P+2.8568 (R2=0.987,n=33),33°关系式为:Y补=0.7771P+3.0411 (R2=0.985,n=33)。坡度越大,地表径流量越大,土壤水分补给量越小。杏林地降雨量(P)与根层土壤水分补给量(SWS)的关系为SWS=0.6299P+0.5901,相关系数为0.9829。柠条林地降雨量(P)与根层土壤水分补给量(SWS)的关系为:SWS=0.5708P+28.579,相关系数为0.9658。在降雨量基本一致的条件下,影响冠层截留和地表径流的因素如植被类型(冠幅、冠层厚度、郁闭度)、坡度、水保工程、土壤结构、地表粗糙度、枯枝落叶、耕作管理等都会对土壤水分的补给量产生不同的影响。
     7.陡坡苜蓿地土壤水分补给量(Y补)与地上部生物量(W干重)呈线性关系,南向25°上坡关系式为:Y补= 0.0247 W + 275.52,R2=0.9598;南向33°上坡关系式为:Y补= 0.0249 W + 279.37,R2=0.9767;南向25°下坡关系式为:Y补= 0.0348 W + 235.83,R2=0.9620;北向25°下坡关系式为:Y补= 0.0304 W + 247.31,R2=0.9727。陡坡苜蓿地土壤水分消耗量(Y耗)与地上部生物量(W干重)呈二次函数关系,南向25°上坡关系式为:Y耗= 0.0001 W2 - 0.4635 W + 854.72,R2 =0.9595;南向33°上坡关系式为:Y耗= 0.0001 W2 - 0.3836 W + 659.16,R2=0.9805;南向25°下坡关系式为:Y耗= 0.0001 W2 - 0.4628 W + 805.53,R2=0.9731;北向25°下坡关系式为:Y耗= 0.0001 W2 - 0.5324 W + 991.67,R2=0.9514。生物产量高,土壤水分消耗量大。坡向对土壤水分消耗量的影响较大,南坡日晒强烈,蒸发量大,土壤水分消耗量大。用FAO法估算可得陡坡地土壤水分可承载的苜蓿最大产量为3992.2~4173.7 kg/hm2;而根据水量平衡原理计算可得陡坡苜蓿地可承载的地上部生物量为2600~3500kg/hm2,比FAO法低16.07~33.52%。由于FAO法是应用了许多气象因子作为参数模拟所得,增大了误差,故现实中应以水量平衡原理计算结果为准。
     8.陡坡杏林地土壤水分补给量(Y补)与生物量(W)的关系为W =7.6419Y补+1024.1,R2= 0.9369。土壤水分消耗量与生物量关系为:Y耗=0.00001W2-0.0251W+195.61,R2=0.9282。土壤水分可承载的杏树生物量为2423kg/hm2,即可承载的果实产量为3063kg/hm2。
     9.陡坡柠条林地林冠截留量(I)与密度(D)的定量关系为:I = 0.7359D0.4925,R2 = 0.9642;地表径流(Run)和密度(D)关系为:Run=-0.021D+152.53,R2 = 0.9509;柠条根层土壤水分补给量(Y补)与密度(D)的关系为:Y补=0.0145D+215.4,R2= 0.9582土壤水分消耗量与密度的关系为:Y耗=0.00001D2-0.0089D+200.82。R2=0.9537。陡坡地土壤水分可承载的柠条密度为2852穴/hm2。
     10.采用塑膜微集水促渗技术,可提高杏、枣栽植成活率、产量、品质和经济效益;杏树自然降水利用率达2.92kg/m3,比对照提高53.68%,枣树自然降水利用率达3.45kg/m3,比对照提高53.33%;集中降雨前后根际区以下(2-6m土层)的贮水增量为31.1mm,相当于对照的近40倍,可有效防止土壤干化及其所导致的植株生长不良的发生。该技术成本低、简单易行、使用年限长、效率高,在我国广大的干旱贫困山区具有广阔的应用前景。
≥25°steep slopes of Loess region in northern Shaanxi , vegetation is sparse, soil drought and soil erosion is extremely serious, and it is the focus and difficulty in the reconstruction of vegetation and the control of soil erosion in the Loess Plateau.A long time,the problems of soil dry and low ecological and economic benefits were exist on steep slopes,it dued to shortage of rainfall and the lack basis of water balance in vegetation construction.Rational use of rain resources is the key of sustainable development in vegetation construction on steep slopes.To this reason, soil moisture ecological environment of artificial vegetations in steep slope , relationship between plant growth and soil moisture in steep slope, vegetation carrying capacity of soil water, and the efficient use of natural precipitation on steep slope has studied.The main conclusions are that:
     1.Soil water was extremely deficient under condition of perennial artificial vegetations in steep slope. soil water storage (0~10m) was only equal to 26.2% ~ 42.0% of field capacity in dry years, and in rainy years it was also only equal to 27.0%~43.3% of field capacity. The order of soil water deficit was: Caragana microphylla> locust> alfalfa> Chinese arbor-vitae> poplar> Chinese pine> wild land> apricot> Chinese date> farm land. Annual variations of soil moisture with same vegetation were weakened with soil depth increasing, and happened mainly in 0~200 cm soil layers. In same growth season, all CV (Coefficient of Variation) of soil moisture under different vegetations were bigger and concentrated comparatively in 0 ~ 120 cm soil layers, but difference of CV in different vegetations was small; below 120 cm soil layers, CV were smaller , but difference of CV in different vegetations was bigger. Permanent soil dry layers always happened under condition of perennial vegetations in steep slope , but the difference of soil aridization intensity was obvious among different vegetations and growth years. Soil water compensation and recovery depths in rainy season were 1.0 ~ 1.4 m , but the soil water storage increment and compensation degree in different vegetations were dramatically different. Soil water compensation depth in same vegetation in rainy years was increased over 60 cm than in dry years, while the soil water storage increment in 5 m soil layers was increased over 3 times. Under natural precipitation, the soil water deficit in artificial vegetations in steep slope cannot be reduced, soil aridization also can′t be relieved.
     2. The dry strength of Vegetation on steep slopes can be indicated by soil desiccation index.Formula: SDI =(SM–WM)/(SSM–WM)×(SD-DT)/(SD)×100%,there, SM is soil moisture, WM is wilting moisture, SSM is the stable soil moisture, DT is the drying thickness, SD is the soil depth.The soil drying strength of vegetation on steep slopes can be divided into six levels: (1) SDI≥100%, non-drying; (2) 50%≤SDI <100%, mild desiccation; (3) 30%≤SDI <50%, moderate desiccation; (4)10%≤SDI <30%, serious desiccation; (5)0≤SDI <10%, strong desiccation; (6) SDI <0, extreme desiccation.
     3. Interception of Prunus armeniaca change in 0.30 ~ 9.5mm at each rain, rate of interception change in 2.6~ 67.6%, account for 21.10% of the total rainfall. Interception of Caragana korshinskii change in 0.21 ~ 3.2mm at each time, rate of interception change in 2.0 ~ 28.0%,account for 11.73% of the total rainfall. Rainfall frequency is more,or torrential rain is less, rate of interception account precipitation is bigger.
     4. Runoff is large on steep slopes.Runoff increases exponentially with the increase of rainfall in Alfalfa land, the relationship is: Y=0.002x2+0.1285x-0.2409(R2=0.9731),and runoff accounts for 12.41% of mean precipitation in Alfalfa land; runoff accounts for 11.41% of mean precipitation in Prunus armeniaca land; and runoff accounts for 16.27% of mean precipitation in Caragana korshinskii land.
     5. Under the condition of natural rain, the greatest infiltration depth is 140cm in alfalfa land in steep slope, the greatest infiltration depth is 160cm in apricot land in steep slope, the greatest infiltration depth is only 120cm in Caragana korshinskii land in steep slope.
     6. The main factors impact to soil moisture supplies in alfalfa land are natural precipitation, interception and surface runoff. In alfalfa land on 25°steep slope the relationship between soil moisture supply(Ys) with precipitation (P) is: Y up = 0.8003P +2.8568 (R2 = 0.987, n = 33), in 33°steep slope the relationship is: Ys = 0.7771 P +3.0411 (R2 = 0.985, n = 33). The slope is greater, the surface runoff is greater too, but soil moisture supply is less. In apricot land the relationship between rainfall (P) with soil water supply (SWS)is: SWS = 0.6299P +0.5901, correlation coefficient is 0.9829. In Caragana korshinskii land the relationship between rainfall (P) with soil water supply (SWS) is: SWS =0.5708P+28.579, correlation coefficient is 0.9658.
     7. In alfalfa land on steep slopes , the relationship between soil moisture supply (Ys) with aboveground biomass (Wd) showes a linear relationship,in 25°slope up to south the relationship is: Ys =0.0247W+275.52, R2 =0.9598; in 33°slope up to south the relationship is: Ys=0.0249 W +279.37, R2 =0.9767; in 25°slope down to south the relationship is: Ys =0.0348 W + 235.83, R2 = 0.9620; in 25°slope down to north the relationship is: Ys= 0.0304 W+247.31, R2=0.9727.In alfalfa land on steep slopes, the relationship between soil water consumption (Yc) with aboveground biomass (Wd) is the secondary function , in 25°slope up to south the relationship is: Yc=0.0001W2-0.4635W+854.72, R2=0.9595; in 33°slope up to south the relationship is: Yc =0.0001W2-0.3836W+659.16, R2=0.9805; in 25°slope down to south the relationship is: Yc=0.0001W2-0.4628W+805.53, R2= 0.9731; in 25°slope down to north the relationship is: Yc= 0.0001W2-0.5324W+ 991.67, R2=0.9514. Soil water consumption is enlarge with high biological production. Impact of aspect on soil water consumption is greater , on southern slope sun is strong, evaporation and soil water consumption is greater.On steep slopes the biggest carrying alfalfa production of soil water is 3992.2 ~ 4173.7 kg/hm2 by FAO method; and it is 2600 ~ 3500kg/hm2 by the principle of water balance,it is lower 16.07 ~ 33.52% than FAO method.because the application of meteorological factors in FAO method , increases the error, so in reality the principle of water balance should be based on whichever calculation results.
     8. The relationship between supply of soil moisture (Ys) with biomass (W)is: Ys=0.1226W-103.59, R2=0.9369. The relationship between consumption of soil moisture (Yc) and biomass(w) is: Yc=0.00001W2-0.0251W +195.61, R2 = 0.9282. Biomass of apricot that Soil moisture can carry is 2423kg/hm2, fruits production that Soil moisture can carry is 3063kg/hm2.
     9. In Caragana korshinskii land in steep slope the relationship between interception(I) with density(D)is:I=0.7359D0.4925, R2 =0.9642; the relationship between surface runoff(Run) with density(D) is: Run =- 0.021D + 152.53, R2=0.9509; the relationship between soil moisture supply(Ys) with density(D)is: Ys= 0.0145D +215.4, R2 =0.9582 ,and the relationship between soil water consumption(Yc) with density(D)is: Yc=0.00001D2-0.0089D +200.82. R2 = 0.9537. On steep slopes density that soil moisture can carry is 2852 clump/hm2.
     10. In loess region in North Shaanxi, the technique of plastic-catchment and promote-infiltration can increase survival rate, yield and quality and economic benefits of apricot and jujube, Rainwater use efficiency of 5 years-old apricot reached 2.92kg/m3, increased by 53.68% compared with CK, Rainwater use efficiency of 5 years-old jujube reached 3.45kg/m3 , increased by 53.33% compared with CK. During concentrated precipitation soil water recruitment below rhizosphere area (2-6m) was 31.1mm, it was almost equal to 40 times of CK. This part water was used by plant in arid season. This technique cost lowly and operated simply. The service life was long, The efficiency was high. It will have broad application prospect in the general drought and impoverished mountainous area of our country.
引文
【1】中国科学院黄土高原综合考察队.黄土高原地区农业气候资源的合理利用[M].北京:中国科学技术出版社,1990.
    【2】张蕾,周洪.西部开发实施的林业政策评价[J].西北林学院学报,2003,18(1):59-62.
    【3】中国科学院黄土高原综合考察队.黄土高原地区土壤侵蚀区域特征及其治理途径[M].中国科学技术出版社1990,1-39.
    【4】蒋定生等编著.黄土高原水土流水与治理模式[M].北京:中国水利水电出版社,1997,106-113.
    【5】吴钦孝,杨文治主编.黄土高原植被建设与持续发展[M].北京:科学出版社,1998,1-15.
    【6】李玉山.土壤水库的功能与作用[J].水土保持通报,1983(5):27-30.
    【7】杨文治,韩士峰.黄土丘陵区人工林草地的土壤水分生态环境[J].中国科学院西北水土保持研究所集刊,1985(2):18-28.
    【8】李玉山,喻宝屏.土壤深层储水对小麦产量效应的研究[J].土壤学报,1980,17(1):43-54.
    【9】李玉山,喻宝屏.土壤深层储水对棉花产量效应的研究[J].土壤学报,1981,18(4):383-389.
    【10】候庆春,韩蕊莲,韩仕峰.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持,1999,5:11-14.
    【11】杨维西.试论我国北方地区人工植被的土壤干化问题[J].林业科学,1996,32(1):78-85.
    【12】王宗明,张柏.西北黄土高原区生态恢复重建与农业可持续发展[J].农业系统科学与综合研究,2003,19 (2):12-15.
    【13】胡良军,邵明安.黄土高原植被恢复的水分生态环境研究[J].应用生态学报,2002,13(8):1045- 1048.
    【14】孙长忠,黄宝龙,陈海滨等.黄土高原人工植被与其水分环境相互作用关系研究[J].北京林业大学学报,1998,20(3):7-14.
    【15】傅伯杰,王军,王克明.黄土丘陵区土地利用对土壤水分的影响[J].中国科学基金,1999(4):225- 227.
    【16】中国科学院黄土高原综合科学考察队.黄土高原地区土壤资源及其合理利用[M].北京:中国科学技术出版社, 1991.
    【17】吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社,1998, 54.
    【18】庄季屏.四十年来的中国土壤水分研究[J].土壤学报,1989,(3):241-248.
    【19】王斌端,王百田.黄土高原径流林业[M].北京:中国林业出版社,1996.
    【20】孙立达,朱金兆等.水土保持林体系综合效益研究与分析[M].北京:中国科学技术出版社,1995
    【21】韩仕峰等.黄土高原综合治理评价[M].北京:科学出版社,1992
    【22】王克勤,王斌端.集水造林防止人工林植被土壤干化的初步研究[J].林业科学,1998,34(4):14-21.
    【23】王百田等.集水技术与林木生长的土壤水环境研究[J].水土保持通报,1997(6):7-14.
    【24】余新晓,张建军,朱金兆等.黄土地区防护林生态系统土壤水分条件的分析与评价[J].林业科学,1996,32(4):289-296.
    【25】张学龙,车克钧等.祁连山寺大隆林区土壤水分动态研究[J].西北林学院学报,1998,13(1):1-9.
    【26】韩仕峰,李玉山,张孝中等.黄土高原地区土壤水分区域动态特征[J].中国科学院西北水土保持研究所集刊,1989,(10):161-167.
    【27】韩仕峰,杨新民,张效忠.黄土高原西部地区土壤水分亏损及其提高途径[[J].水土保持通报,1988,8(2): 57-59.
    【28】韩仕峰,李玉山,石玉洁等.黄土高原土壤水分资源特征[J].水土保持通报,1990,10(1):36-43.
    【29】贾志清,宋桂萍,李清河等.宁南山区典型流域土壤水分动态变化规律研究[J].北京林业大学学报,1997,19(3):15-20.
    【30】余优森,林日暖,邓振镛等.人工草地土壤水分周年变化规律的研究[J].土壤学报,1992,29(2):175-182.
    【31】李世荣,张卫强,贺康宁.黄土半干旱区不同密度刺槐林地的土壤水分动态[J].中国水土保持科学,2003,1(2):28-32.
    【32】李洪建,王孟本,陈良富等.刺槐林水分生态研究[J].植物生态学报,1996,20(2):151-158.
    【33】李洪建,王孟本,柴宝峰等.黄土高原土壤水分变化的时空特征分析[J].应用生态学报,2003,14(4):515-519.
    【34】卢宗凡,张兴昌.黄土高原人工草地土壤水分动态及水土保持效益研究[J].干旱区资源与环境,1995,9(1):40-49.
    【35】孙中峰.黄土残塬沟壑区林地土壤水分时空特性分析[J].黑龙江水专学报,2003,30(3):6-9.
    【36】陈海滨,孙长忠,安峰等.黄土高原沟壑区林地土壤水分特征的研究[J].西北林学院学报,2003,18(4):13-16.
    【37】原焕英,许喜明.黄土高原半干旱丘陵沟壑区人工林土壤水分动态研究[J].西北林学院学报,2004,19(2): 5-8.
    【38】郝文芳,韩蕊莲,单长卷等.黄土高原不同立地条件下人工刺槐林土壤水分变化规律研究[J].西北植物学报,2003,23(6);964-968.
    【39】王孟本,李洪建.晋西北黄土区人工林土壤水分动态的定量研究[J].生态学报,1995,15(2):178-184.
    【40】刘康,陈一鹗.黄土高原沟壑区刺槐林水分动态与生产力的研究[J].水土保持通报,1990,10(6):66-70.
    【41】马玉玺,杨文治,杨新民.陕北黄土丘陵沟壑区刺槐林水分生产条件及生产力研究[J].水土保持通报,1990,10(9):66-70.
    【42】魏天兴,余新晓,朱金兆.黄土区防护林主要造林树种水分供需关系研究应用[J].生态学报,2001,12(2):185-189.
    【43】李洪建,王孟本,柴宝峰.刺槐林地土壤水分的周年变化特征[J].水土保持学报,1999,5(6):6-10.
    【44】李洪建,王孟本,柴宝峰.黄土高原北部河北杨林的土壤水分特征[J].山地学报,2002,20(5): 606- 610.
    【45】李传荣,刘金文等.径流林下土壤水分和土壤结构动态的变化的研究[J].水土保持研究,2001,8(3):131-134.
    【46】张学权.林地土壤水分研究概述[J].西昌农业高等专科学校学报,2003,17(1):81-84
    【47】Luxmoore-RJ. Water budge to fane astemd acidulous fonststand[J]. Soil-Science- Society-of- America-Journal.1983,47:3,785-791.
    【48】Gusev-Ye-M,Nasonova-ON. Modelling annual dynamics of soil water storage for agro- and forest-steppezones on a local scale. Agricultural-and-Forest-Meteorology,1997,85:3-4,171-191.
    【49】李洪建,王孟本,柴宝峰.晋西北人工林土壤水分特点与降水关系研究[J].土壤侵蚀与水土保持学报,1998,4 (4):60-651.
    【50】Yang Qiu , Bojie Fu ,Jun Wang & Li ding Chen. Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau , China.Journal of Arid Environments12001 ,49 :723-750.
    【51】杨文治,余存祖.黄土高原区域治理与评价[M].北京:科学出版社,1992, 292-296.
    【52】杨海军,孙立达,余新晓.晋西黄土区水土保持林水量平衡的研究[[J].北京林业大学学报,1993,15 (3):42-50.
    【53】余新晓,张建军,朱金兆等.黄土地区防护林生态系统土壤水分条件的分析与评价[J].林业科学,1996,32(4):289-296.
    【54】史绣华,张称意.沙柳林沙地水分动态研究[J].内蒙古林学院学报,1997,(1):16-21.
    【55】吴学栋,黄俊,乔小林.陇中半干旱丘陵沙打旺土壤水分动态特征及净初级生产力研究[J].水土保持通报,1990,(6):120-123.
    【56】张兴昌,卢宗风.城地水平沟耕作的土壤水分动态及增产机理研究[J].水土保持学报,1997,(3):58-66.
    【57】曾杰,郭景唐,于占成.太岳山油松人工林土壤水分动态特征的研究[J].北京林业大学学报,1996,18(2):31-36.
    【58】翟保国,王晓军,孔克勤.太岳灵空山油松人工林下土壤水分状况[J].山西林业科技,1996,(4):15-20.
    【59】陈丽华,余新晓.晋西黄土地区水土保持林地土壤入渗性能研究[J].北京林业大学,1995,(1):25-30.
    【60】孙长忠.黄土高原人工植被与其水分环境相互作用关系研究[J].北京林业大学学报,1998.(3):7-11.
    【61】卢宗凡,张兴昌.黄土高原人工草地土壤水分动态及水土保持效益研究[J].干旱区资源与环境,1995,9(1):40-49.
    【62】张学利,杨树军.干旱、半干旱地区林业用地土壤水分研究进展[J].辽宁农业科学,2001,(3):28-30.
    【63】李世荣,张卫强,贺康宁.黄土半干旱区不同密度刺槐林地的土壤水分动态[J].中国水土保持科学,2003,1(2):28-32.
    【64】孙中峰.黄土残塬沟壑区林地土壤水分时空特性分析[J].黑龙江水专学报,2003,30(3):6-9.
    【65】原焕英,许喜明.黄土高原半干旱丘陵沟壑区人工林土壤水分动态研究[J].西北林学院学报,2004,19(2): 5-8
    【66】刘康,陈一鹗.黄土高原沟壑区刺槐林水分动态与生产力的研究[J].水土保持通报,1990,10(6):66-70.
    【67】李开元,韩仕峰,曹雄飞等.陕北黄土丘陵沟壑区旱地土壤水分动态〔J〕.水土保持通报,1990,10(6):21-25.
    【68】Yang Qiu , Bojie Fu ,Jun Wang & Li ding Chen. Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau , China.Journal of Arid Environments12001 ,49 :723-750.
    【69】杨新民.黄土高原灌木林地水分环境特性研究[J].干旱区研究,2001,18(1):8-131.
    【70】J.S.Singh1,D.G.Milchunas,W.K.Lauenroth. Soil water dynamics and vegetation patterns in a semiarid grassland1 Plant Ecology ,1998,134:77-891.
    【71】韩仕峰.黄土高原地区土壤水分的区域动态特征[J].西北水土保持研究所集刊,1989,10:42-56.
    【72】李玉山.黄土高原地区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报, 1983 ,3(2):91-100.
    【73】刘增文,王佑民.人工油松林蒸腾耗水及林地水分动态特征的研究[J].水土保持通报,1990 ,10(6):78-84.
    【74】王孟本,柴宝峰,李洪建等.黄土区人工林的土壤持水力与有效水状况[J].林业科学,1999,35(2):7-14.
    【75】孙中锋,张学培,刘卉芳等.晋西黄土区坡面林地土壤持水性能研究[J].干旱区研究,2004,21(4):343-347.
    【76】张光灿,刘霞,贺康宁.黄土半干旱区刺槐和侧柏林地土壤水分有效性及生产力分级研究[J].应用生态学报,2003,14(6):858-862.
    【77】余新晓.土壤动力水文学及其应用[M].北京:中国林业出版社,1996.
    【78】邵明安,杨文治.李玉山黄土区土壤水分有效性研究[J].水利学报,1987(8):38-4.
    【79】刘奉觉,郑世锴.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997,33(2):115-125.
    【80】陈杰,齐亚东.对应用氚水法测定林木蒸腾量的评价[J].东北林业大学学报,1990,18(3):105-112.
    【81】杨新民,杨文治.灌木林地的水分平衡研究[J].水土保持研究,1998 ,5(1):109-118.
    【82】魏天兴,朱金兆,张学培等.山西西南部黄土区刺槐和油松林地耗水规律的研究[J].北京林业大学学报,1998 ,20(4):36-40.
    【83】孙立达,朱金兆.黄土高原防护林体系效益研究与评价[J].北京:中国科学技术出版社,1995.
    【84】孙长忠、黄宝龙、刘淑明等.黄土高原荒坡与林地土壤水分变化规律研究[J].应用生态学报2000 ,11(4):523-526.
    【85】杨海军,孙立达,余新晓.晋西黄土区水土保持林水量平衡的研究[J].北京林业大学学报,1993,15 (3):42-50.
    【86】陈一鹦,刘康.渭北旱源紫花苜蓿的蒸腾强度与水量平衡研究[J].水土保持通报,1990, 10(6):108-112.
    【87】王孟本.黄土区土壤水分循环水平研究[J].水土保持学报,1995,(4):106-108.
    【88】杨文治,韩士峰.黄土丘陵区人工林草地的土壤水分生态环境[J].中国科学院西北水土保持研究所集刊,1985(2):18-28.
    【89】梁一民,李代琼,从心海.吴旗沙打旺草地土壤水分及生产力特征的研究[J].水土保持通报,1990,10(6):113-118.
    【90】杨文治,邵明安编著.黄土高原土壤水分研究[M].北京:科学出版社,2000,30-114.
    【91】李玉山.黄土高原森林植被对陆地水循环影响的研究[J].自然资源学报,2001,16(5):427-432.
    【92】孙长忠,黄保龙,陈海滨等.黄土高原人工植被与其水分环境相互作用关系研究[J].北京林业大学学报,1998,20(3):7-14
    【93】黄明斌.黄土区渭北旱原苹果基地对区域水循环的影响[J].地理学报,2001,56(1):7-12
    【94】中国科学院黄土高原综合考察队.黄土高原地区植被资源及其合理利用[M].北京:中国科学技术出版社,1991;8.
    【95】杨文治.黄土高原土壤水资源与植树造林.自然资源学报[J].2001, 16(5):433-438.
    【96】杨新民,杨文治.干旱地区林地土壤水分平衡的探讨[J].水土保持通报,1988, 8(3): 32-38.
    【97】聂道平.油松人工林水分平衡与蒸散特点的研究[[J].林业科学研究,1989,2(6): 606-609.
    【98】马玉玺,杨文治,韩仕峰等.黄土高原刺槐生长动态研究[[J].水土保持学报,1990,4(2):26-32.
    【99】杨文治,余存祖.黄土高原区域治理与评价[M].北京:科学出版社,1992, 292-296.
    【100】杨海军,孙立达,余新晓.晋西黄土区水土保持林水量平衡的研究[[J].北京林业大学学报,1993,15(3):42-50.
    【101】杨维西.试论我国北方地区人工植被的土壤干化问题[J].林业科学,1996,32 (1): 78-85.
    【102】郭小平,朱金照,余新晓等.论黄土高原地区低效刺槐林改造问题[J].水土保持研究,1998,5(4):77-82.
    【103】孙长忠,黄宝龙.黄土高原“林分自创性”有效水分供给体系的研究[Jl.生态学报,1999,19(5):615-621.
    【104】王力.博士学位论文:陕北黄土高原土壤水分亏缺状况与林木生长关系.
    【105】Cramer P.J. Water Relations of Plants and Soils. Academic Press, New York London Paris, San Diego and so on.1995,215-340.
    【106】Philip,J.R. Plant water relations: Some physical aspects. Am.Rev. Plant physical. 1966,17:245-268.
    【107】Franks , S.W. , K.J.Beven , P.F.Quinn , I.R.Wright , On the sensitivity of soil-vegetation-atmosphere transfer(SVAT) schemes: Equifinality and the problem of robust.
    【108】王正非,朱廷翟,朱劲伟,崔启武.森林气象学[M].北京:林业出版社,1985,185-189.
    【109】马雪华.森林水文学[M].北京:林业出版社,1993.
    【110】曾杰,郭景唐.太岳山油松人工林生态系统降雨的第一次分配[J].北京林业大学学报,1997,19(3):21-27.
    【111】刘世荣,孙鹏森,王金锡等.长江上游树林植被水文功能研究[J].自然资源学报,2001,16(5):451-456.
    【112】孙长忠.黄土高原荒坡径流生产潜力研究[J].2000,36(5):12-32.
    【113】郭忠升,施立民,刘向东等.柠条灌木林小气候研究初报[J].中国科学院水利部西北水土保持研究所集刊,1991,14:84-95.
    【114】刘贤赵,康绍忠.林冠截留模型述评[J].西北林学院学报,1998,13(1):26-30.
    【115】王彦辉,于澎涛,徐德应等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报,1998,20(6):25-30.
    【116】刘宝元,唐克丽,查轩等.坡耕地不同地面覆盖的水土流失实验研究[J].水土保持学报,1990,4(1):25-29.
    【117】余新晓,陈利华.黄土区防护林生态系统水量平衡研究[J].生态学报,1996,16(3):238-245.
    【118】吴钦孝,汪有科.黄土高原油松林地产流产沙及其过程研究[J].生态学报,1998,18(2):151-217.
    【119】孙长忠,沈国舫.我国人工林生产力问题的研究(I)—影响我国人工林生产力的自然因素评价[J].林业科学,2001,37(3):72-77.
    【120】蒋定生,黄国俊.黄土高原土壤入渗速率的研究[J].土壤学报,1986,23(4):299-305.
    【121】Moore I.D. Effect of surface sealing on infiltration.Trans.ASAE.1981,24(6):1546-1552.
    【122】周国逸,潘淮涛.林地土壤的降雨入渗规律[J].水土保持学报,1990,4(2):79-84.
    【123】余新晓.森林植被减弱降雨侵蚀能量的数理分析[J].水土保持学报,1988,2(2):24-30.
    【124】雷瑞德.华山松林冠对降雨动能的影响[J].水土保持学报,1988,2(2):31-39.
    【125】孙立达,朱金兆.水土保持林体系综合效益的研究与评价[M].北京:中国科学技术出版社,1995.
    【126】六盘山自然保护区科学考察编辑委员会.六盘山自然保护区科学考察[M].宁夏人民出版社,1989,295-304.
    【127】石生新,蒋定生.几种水土保持措施对强化降雨入渗和减沙的影响试验研究[J].水土保持研究,1994,1(1):82-88.
    【128】黄明斌.黄土区渭北旱原苹果基地对区域水循环的影响[J].地理学报,2001,56(1):7-12.
    【129】陈烘松.黄土区坡地土壤水分运动与转化实验研究,杨凌:中科院水土保持研究所博士学位论文,2003.
    【130】魏天兴.晋西南黄土区刺槐油松林地耗水规律的研究[J].北京林业大学学报,1998,20(4): 36-40.
    【131】Gregory P. J., L. P. Simmonds, and Pibeam C. J. Soil Type, Climatic Regime, and the Response of Water Use Efficiency to Crop Management. Agronomy Journal, 2000, 92:814-820.
    【132】Wallace J.s.,Jackson.N.A,Ong C.K. Modeling soil evaporation in Agro-forestry system in Kenya. Agricultural and Forest Meteorology,1999,94:189-201.
    【133】高吉喜.可持续发展理论-生态承载力理论、方法与应用[M].北京:中国环境科学出版社,2001.8-9.
    【134】王宁,刘平,黄锡欢.生态承载力研究进展[J].中国农学通报,2004,20(6):278-281.
    【135】朱一中等.关于水资源承载力理论与方法的研究[J].地理科学进展,2002,21(2):180-188.
    【136】Guevara JC, et al. Productivity, management and development problems in the arid rangeland central Mendoza plains[J]. Journal of Arid Environments, 1997,35: 575-600.
    【137】封志明.区域土地资源承载能力研究模式雏议[J].自然资源学报,1990,5(3):120-123.
    【138】陈百明.中国土地资源生产能力及人口承载量研究项目方法论概述[J].自然资源学报,1991, 6(3):145-149.
    【139】许有朋.干旱区水资源承载能力综合评价研究[J].自然资源学报,1993, 8(3):7-12.
    【140】汤奇成,张捷斌.西北干旱地区水资源与生态环境保护[J].地理科学进展, 2001,20(3): 227-233.
    【141】徐强.区域矿产资源承载力能力分析几个问题的探讨[J].自然资源学报,1996, 11(2):6-9.
    【142】德成.森林资源环境人口承载力初探[J].林业经济, 1993, 12(4):21-25.
    【143】郭秀锐,毛显强,冉圣宏.国内环境承载力研究进展[J].中国人口·资源与环境,2000,10(3): 28-30.
    【144】彭再德.区域环境承载力研究方法初探[J].中国环境科学,1996,6(1):6-10.
    【145】叶文虎.环境承载力理论及其科学意义[J].环境科学研究,1992,5(增刊):71-76.
    【146】崔凤军.城市水环境承载力的实例研究[J].山东矿业学院学报,1995,14(2):141-144.
    【147】高吉喜.可持续发展理论-生态承载力理论、方法与应用[M].北京:中国环境科学出版社,2001.8-9.
    【148】王家骥,姚小红,李京荣等.黑河流域生态承载力估测[J].环境科学研究,2000,13(2):44-48.
    【149】李晓文,肖笃宁,胡远满.辽河三角洲滨海湿地景观规划各预案对指示物种生态承载力的影响[J].生态学报,2001,21(5):709-715.
    【150】Smaal A C, Prins T C, Dankers N, Ball B. Minimum requirements for modeling bivalve carrying capacity[J].Aquatic Ecology,1998,31:423-428.
    【151】Andarew, Hudak T. Rangeland Mismanagement in South Africa:Failure to Apply Ecological Knowledge[J].Human Ecology,1999,27(1):55-78.
    【152】杨贤智等.环境管理学[M].北京:高等教育出版社,1990,150-153.
    【153】王中根,夏军.区域生态环境承载力的量化方法研究[J].长江职工大学学报,1999,16(4):9-12.
    【154】黄青,任志远.论生态承载力与生态安全[J].干旱区资源与环境,2004,18(2):11-17.
    【155】Odum E P.Fundamentals of Ecology[M].Philadelphia:W B Saunders,1953.
    【156】David Price. Carrying Capacity Reconsidered[J]. Population and Environment,1999,21(1):5-26.
    【157】Price D. Carrying capacity reconsidered. Pop Environ : A J Interdis Studies,1999,21(1):5-26.
    【158】.Philip,J.R.Plant water relations: Some physical aspects. Am.Rev. Plant physiol.1966,17:245-268
    【159】Franks,S.W.,K.J.Beven,P.F.Quinn,I.R.Wright,On the sensitivity of soil-vegetation-atmosphere transfer(SVAT) schemes: Equifinality and the problem of robust.
    【160】Blake J , Somers G, Ruark G. Estimating fo liar biomass in conifer plantations from allometric relationships And self 2thinning behavior. Forest Science, 1991, 37 (1) : 296-307.
    【161】A ssmann E. D ie Bedeutung des“erweiterten Eichho rn’schen Gesetses”für die konstruk tion von Ertragstafeln. Fo rstw. Centralblatt, 1955, 74: 321-330.
    【162】.Bradley R T, Ch ristie J , and Johnson D R. Forest manag em ent tables. Book let 16. Fo restry Comm ission,London,1966. 218.
    【163】A ssmann E. T he p rincip les of f orest y ield stud ies. Oxfo rd: Pergamon P ress, 1970. 506.
    【164】L embcke G, Knapp E, and D ittmar O. DDR2Kiefern2Ertragstafeln. Inst. f. Fo rstw iss. Eberswalde, 1975. 82.
    【165】Curtis R O. Yield tables2past and p resent. J. Forest, 1972, 70: 28-32.
    【166】Sterba H, Monserud R. The maximum density concept applied to uneven2aged mixied2species. Forest Science,1993, 39 (3) : 432-452.
    【167】M anion P D, Griffin D H. L arge landscape scale analysis of tree death in the A dirondack park,N ew yo rk. Forest Science,2001, 47 (4) : 542-549.
    【168】郭忠升,邵明安.半干旱区人工林草地土壤旱化与土壤水分植被承载力[J].生态学报,2003,23(8):1640-1647.
    【169】郭忠升,邵明安.雨水资源、土壤水资源与土壤水分植被承载力[J].自然资源学报,2003 ,18(5):522-528.
    【170】郭忠升,邵明安.土壤水分植被承载力数学模型的初步研究[J].水利学报,2004,10,95-99.
    【171】Philip,J.R.Plant water relations: Some physical aspects. Am.Rev. Plant physiol.1966,17: 245-268.
    【172】张大勇,赵松玲.森林自疏过程中密度变化规律研究[J].林业科学,1996,21(4):369-374.
    【173】刘德立.一个描述多种产量—密度关系的经验模型[J].生态学报,1990,10(3):195-202.
    【174】薛立,狄原秋男.纯林自然稀疏研究综述[J].生态学报,2001,21(5):834-838.
    【175】林开敏,余新妥,何智英等.不同密度杉木林林分生物量结构与土壤肥力的差异研究[J].林业科学,1996,32(5):385-391.
    【176】盛炜彤.杉木林的密度管理与长期生产力研究[J].林业科学,2001,37(5):2-9.
    【177】王克勤,王斌瑞.黄土高原刺槐林间伐改造研究[J].应用生态学报,2002,13(1):5-10.
    【178】Pienaar L.V.,B.D.Shiver, The effect of planting density on the dominant height in unthinned slash Pine plantation,For.Sci.1984,30(4):1059-1066.
    【179】Monteith J.L. Fundamental equations for growth in uniform stands of vegetation. Agricultural and Forest Meteorology,2000,104:5-11.
    【180】Zeide B. Analysis of the 3/2 power law of self-thinning. For.Sci.1987,33(2):517-537.
    【181】Zutter B.R., G.R.Glover., and R.J.Mitchell. Influence of plant density and soil organic matter on the first-year growth of Loblolly Pine and Sweetgum, For.Sci.1998,44(3):397-404.
    【182】Donald C.M. Competition among pasture plants I. Intra-specific competition among annual pasture plants,Aust. J. Agric.Res.1951(2):355-376.
    【183】江洪.云杉天然林生产力与生态环境条件的初步研究[J].植物学报,1986,28(5):538-548.
    【184】Holliday R. plant population and crop yield, Natrue,1990,186:22-24.
    【185】苑增武,张庆宏,张延新.不同密度樟子松人工林土壤水分变化规律[J].吉林林业科技,2000,29(1):1-4.
    【186】刘增文,余清珠,王进鑫.刺槐林更新改造对林地水分环境的影响[J].1995,10(增):53-57.
    【187】陈丽华,余新晓.晋西黄土地区合理造林密度的确定[J].林业科技通讯,1995,1:22-23.
    【188】孙长忠,黄保龙,陈海滨等.黄土高原人工植被与其水分环境相互作用关系研究[J].北京林业大学学报,1998,20(3):7-14.
    【189】王彦辉,于澎涛,徐德应等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报,1998,20(6):25-30.
    【190】王克勤,王斌瑞.黄土高原刺槐林间伐改造研究[J].应用生态学报,2002,13(1):1-15.
    【191】王克勤,王百田高海平.集水造林不同密度林分生长研究[J].林业科学,2002,38(2):54-60.
    【192】杨新民,杨文治,马玉玺.纸坊沟流域人工刺槐林生长状况与土壤水分条件研究[J].水土保持研究,1994,1(3):31-36.
    【193】李凯荣;王佑民.黄土塬区剌槐林地水分条件与生产力研究[J].水土保持通报,1990,6.
    【194】魏天兴,朱金兆.黄土区人工林地水分供耗特点与林分生产力研究[J].土壤侵蚀与水土保持学报,1999,5(4):45-51.
    【195】关秀琦,吴钦孝,刘向东等.半干旱地区灌木树种造林密度的试验[J].水土保持通报,1988,4.
    【196】刘占德,刘增文.沙棘柠条的生物量及立地因子分析[J].西北农业学报,1994,3(2):92-96.
    【197】周泽生,王晗生,李立等.灌木林的生长和生产力[J].水土保持研究1998,5(1):103-108.
    【198】阮成江,李代琼.黄土丘陵区沙棘地上部生物量估测模型[J].陕西林业科技,1999,2:5-9.
    【199】梁一民,李代琼,从心海.吴旗沙打旺草地土壤水分及生产力特征的研究[J].水土保持通报,1990,6004,10,95-99.
    【200】袁瀛,惠养瑜,吴永麟等.黄土丘陵区刺槐生长的影响因子研究[J].水土保持研究,1996,3(3):146-153.
    【201】徐学选.黄土高原土壤水资源及其植被承载力研究[D].西北农林科技大学,2001.
    【202】孙中峰.晋西黄土区坡面林地土壤水分承载力研究[D].北京林业大学,2004.
    【203】田有亮,何炎红,郭连生.乌兰布和沙漠东北部土壤水分植被承载力[J].林业科学,2008,44(9):40-46.
    【204】郭忠升.黄土丘陵半干旱区土壤水分植被承载力研究[D].西北农林科技大学,2004.
    【205】马焕成,吴延熊,陈德强,等.2001 1元谋干热河谷人工林水分平衡分析及稳定性预测[J].浙江林学院学报,18(1):41-45.
    【206】陈国良,徐学选.黄土高原地区的雨水利用技术与发展:窑窖节水农业是缺水山区高效农业的出路[J].水土保持通报,1995,15(5):6-9.
    【207】党红忠,赵雨森.集水、保水和供水技术在干旱、半干旱地区造林中的应用[J].东北林业大学学报,2003,31(3):8-10.
    【208】贺康宁,田阳,史长青等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境[J].林业科学,2003,39(1):10-16.
    【209】邝立刚.黄河中游旱坡地枣园集水保水的效果[J].东北林业大学学报,2001,29(4):95-100.
    【210】李小雁,龚家栋.半干旱区雨水集流研究进展及其现状[J].中国沙漠,2002,22(1):88-92.
    【211】鲁子瑜,关秀琦,程积民等.黄土丘陵区集流整地造林技术研究[J].水土保持通报,1993,13(2):9-17.
    【212】宋吉红,王百田,林富荣.黄土高原旱地果园土壤蓄水保墒技术定量研究[J].水土保持学报,2000,14(4):95-98.
    【213】王克勤,王斌端.集水造林林分水分生产力研究[J].林业科学,2000,36(1):1-9.
    【214】杨维西.试论我国北方地区人工植被的土壤干化问题[J].林业科学,1996,32(1): 78-84.
    【215】余清珠,王进鑫,高文秀等.集流抗旱造林技术优化模式研究[J].水土保持通报,1993,13(4): 15-19.
    【216】张府娥,王斌端,王百田.集流造林技术在山地果园建设中的应用[J].北京林业大学学报,1999,21(5):95-99.
    【217】张永涛,杨吉华.集水措施下油松植树带微域环境的水量平衡分析[J].水土保持学报,2003,17(3):137-139.
    【218】李军,陈兵,李小芳等.黄土高原不同干旱类型区苜蓿草地深层土壤干燥化效应[J].生态学报,2007,27(1):75-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700