新型微夹钳技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机器人是近年来机器人领域研究的热点之一,根据实际操作的尺寸和用途的不同,可分为微型机器人和微操作机器人。而微装配机器人是微操作机器人中的一个重要分支,是机器人化装配与微操作技术结合的产物,目前在微零件装配、微机电系统(MEMS)、精密光学等领域有着广泛的应用前景。本文以微装配机器人系统的研制为背景,以微夹钳技术在微装配中的应用为主线,着重对微夹钳的机械结构、微夹钳的驱动装置、控制器的设计等进行了相应的研究与讨论,并且对微夹钳进行了分析,建立了相应的数学模型,通过理论推导实现对夹持力的检测。
     在863计划项目的支持下,在我们自行研制的微装配机器人系统基础上,提出了一种新型的基于压电双晶片的微夹钳。该微夹钳采用双悬臂梁结构,由直流电源驱动,能很好地完成微装配任务要求的抓取、释放等操作。
     本文主要的突破点在于在微夹钳的基础上集成了微力感知功能。通过微夹钳根部的应变信号来判断是否夹紧物体以实现自动夹取功能;同时实现微夹持力的检测与控制,从而保证不损伤被夹持微小零件。
     详细讨论了压电悬臂梁的数学模型以及受力模型,分别分析了压电双晶片的微位移-电压、夹持力-应变的关系;并根据应变信号计算出微夹钳的夹持力。实验证明该微夹钳工作可靠,能够满足微装配机器人装配任务的要求。
     论文结尾对全文做了总结,并对微装配机器人技术、微夹钳技术、信息反馈等进行了展望。
Micro robotics is one of the most important technological trends in the recent years, which can be classified into micro-robot and micromanipulator by their size and designed purpose. As one kind of micromanipulators, microassembly robot is the combination of robotic assembly and micromanipulation. And it is demanding in various fields, such as micro-parts assembly, MEMS (Micro Electro Mechanical Systems) and precise optical projects. This dissertation mainly aims to the application of microgripper technology in microassembly system and several topics, such as the structure, driver and controller of the microgripper, have been discussed in detail. We have analyzed and modeled the microgripper, and then give the gripping- force theoretically.
     According to the background of our microassembly robot system which is supported by the National High Technology Research and Development Program of China, we have made a study and present a new structure microgripper by piezoelectric bimorph. The microgripper is based on the dual cantilevers structure and is driven by two piezoelectric bimorphs, and can complete grip and release actions which are demanded by microassembly tasks.
     The main innovative point is that the microgripper is integrated by the micro-force detection. It can judge weather the micro object has been clamped and how much force the object is suffered by the strain signal at the root of microgripper. So we can make sure the micro objects not be destroyed by larger force.
     In addition, we modeled the piezoelectric bimorph and make the micro-force analyses, and got displacement-voltage relationship and force-strain relationship theoretically. Then we can calculate the micro gripping-force by the strain signal. The experiments testify the gripper can work reliably and safely, it can closely satisfy the task of microassembly. The summary of the full text and the view of microassembly robot and microgripper researches have been shown in the end of dissertation.
引文
[1] 王守杰, 宗光华. 微操作机器人与宏微观. 自然辩证法研究, 1998, 24(9): 24~27
    [2] 宗光华. 微型机器和微型机器人的研究与发展. 机器人, 1992, 14(1): 59~64
    [3] 干东英. 微型机器人的现状与发展. 中国机械工程, 1992, 3(1):17~19
    [4] 裴晓亮. 微型机器人的发展动向. 机器人技术与应用, 1997, 9(4): 5~7
    [5] 朱涛, 谈大龙. 微操作机器人系统及其关键技术研究. 组合机床与自动化加工技术, 2001, 11(1): 33~36
    [6] 孙立宁, 孙绍云, 荣伟彬等. 微操作机器人的发展现状. 机器人, 2002, 24(2): 184~187
    [7] 蔡鹤皋. 微操作机器人系统发展现状. 见:中国第五届机器人学术会议论文集. 哈尔滨:哈尔滨工业大学出版社,1997.32~38
    [8] 杨宜民.日本的“微机器技术”国家研究开发计划简介.机器人,1996,18(2):254~256
    [9] Tamio Tanikawa, Tatsuo Arai. Development of a Micro-Manipulation System Having a Two-Fingered Micro-Hand, IEEE Transaction on Robotics and Automation, 1999, 15(1):152~162
    [10] Fumihito Arai, Daisuke Andou, Yukio Nonda. Integrated Microendeffector for Micromanipulation, Transaction On Mechatronics, 1998, 3(1): 17~23
    [11] Wolfgang Zesch, Markus Brunner, Ariel Weber. Vacuum tool for handling microobjects with a nanorobot. In: Proceedings of the 1997 IEEE, International Conference on Robotics and Automation. Albuquerque, New Mexico: 1997. 1761~1766
    [12] R. Andrew Russell. A robotic system for performing sub-millimeter grasping and manipulation tasks. Robotics and Automation Systems, 1994(13): 209~218
    [13] 毕树生,宗光华. 微操作机器人系统的研究开发. 中国机械工程, 1999, 10(9): 1024~1027
    [14] 毕树生,宗光华,赵玮等. 生物工程中的微操作机器人系统. 高技术通讯, 1998, 12(11): 53~57
    [15] 卢桂章,张建勋,赵新. 面向生物工程实验的微操作机器人. 南开大学学报(自然科学), 1999, 32(3): 42~46
    [16] 郑巍,徐毓娴,李庆祥. 用于微器件装配的微操作系统. 机器人, 1991, 21(1): 12~15
    [17] 赵锡芳,刘劲松. 精密装配机器人型号样机的研制. 高技术通讯, 1996, 10(9): 14~16
    [18] 尤波,蔡鹤皋. 基于宏微操作技术的装配机器人及其控制系统. 电机与控制学报, 1998, 2(2): 119~122
    [19] 李路明,王立鼎,任延同等. 可用于克隆技术的微操作系统构成原理的研究, 光学精密工程. 1998, 6(1): 42~46
    [20] 张培玉,武国英,郝一龙等. 微夹钳研究的进展与展望. 光学精密工程, 2000,8(3): 292~296
    [21] 于东英. 微电子机械系统研究的新动向. 机械设计与研究, 1997, 14(1): 46~47
    [22] 孙萍, 孙麟治. 微小机械的研究. 上海大学学报, 1998, 14(6):344~348
    [23] 大周编译. 微型装配用的硅夹钳. 光机电信息, 1997, 14(9): 31~33
    [24] Paul E. Kladitis and Victor M. Bright. Prototype microrobots for micropositing and micro-unmanned vehicles. sensor and actuator, 80(20): 132~137
    [25] 李路明,任延同,王立鼎等. 微夹钳技术发展现状及应用研究, 光学精密工程, 1997, 5(4): 8~13
    [26] Chang-Jin Kim, Albert P. Pisano, Richard S. Muller et al. Polysilicon Microgripper. In: Tech. Dig. IEEE Solid-State Sensor and Actuator Workshop. Hilton Head, SC, 1990, 48~51
    [27] Li luming, Wang liding. Micro manipulator system in MEMS. In: Proc. Of the IEEE Inter. Conf. on Industrial technology. 1996, 665~668
    [28] 李路明,王立鼎. SMA 微夹钳的研究. 光学精密工程, 1997, 5(2): 37~42
    [29] 杨杰, 吴月华. 形状记忆合金及其应用. 北京: 中国科学技术大学出版社,1993
    [30] 李明东,马培荪,马建旭等. 形状记忆合金驱动器驱动方式研究. 机械设计与研究, 1999, 18(3): 27~29
    [31] 陈大任. 压电陶瓷微位移驱动器概述. 电子元件与材料, 1994,13(1):2~7
    [32] 赵韩,吕召全,沈健. 压电式微位移机构的现状与趋势. 现代机械,2001,9(4):33~36
    [33] 王晓惠,袁哲俊. 两种压电陶瓷微位移器的特性分析与实验对比. 压电与声光,1994,16(1):40~43
    [34] 刘德忠. 双指微动操作器开发与研究:[博士学位论文]。保存地点:北京工业大学图书馆,2002.
    [35] Diann E B, Blechschmidt J. Design and static modeling of a semicircular polymeric piezoelectric microactuator. Journal of Microelectromechanical Systems, 1992, 1(3): 106~115.
    [36] C.K.M.Fung, J.Elhajj,W.J.Li, N.Xi. A 2-D PVDF sensing system for micromanipulation and micro-assembly. In: Proceeding of the 2002 IEEE International conference on Robotics and Automation, Washington, DC, 2002. 1489~1494
    [37] S.Fahlbusch, A.Shirinov, S.Fatikow. AFM-based micro force sensor and haptic interface for a nanohandling robot. In: Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robotics and Systems, Switzerland, 2002. 1772~1777
    [38] S.Fahlbusch, S.Fatikow. Force sensing in microrobotic systems-an overview. IEEE International Conference on Electronics, Circuits and Systems, 1998, 3: 259~262
    [39] 席文明, 吴洪涛, 朱剑英. 微装配技术的发展现状. 机械科学与技术, 2002, 21(6): 861~865
    [40] B.J.Nelson, Y.Zhou, B.Vikramaditya. Sensor based microassembly of hybrid MEMS devices. IEEE Control systems, 1998, 18(6): 35~45
    [41] 孙康,张福学. 压电学(上). 北京:国防工业出版社,1984.177~213
    [42] 孙训方,方孝淑,关来泰. 材料力学(上). 北京:高等教育出版社,1994.256~279
    [43] Smits J G, Choi W S. The constituent equations of piezoelectric bimorphs. In: Proceedings of the 1990 IEEE Ultrasonics Symposium. Piscataway, NJ, USA: IEEE, 1990. 1275~1278.
    [44] 蔡建华,黄心汉,吕遐东. 一种集成微力检测的压电式微夹钳. 机器人,2006,28(1): 59~64
    [45] 康华光. 电子技术基础模拟部分(第四版). 北京:高等教育出版社,1999.332~333

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700