基于视觉及电弧传感技术的机器人GTAW三维焊缝实时跟踪控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器人焊接自动化是焊接技术发展的一个趋势,目前,国内外大部分实际焊接生产使用的机器人总的来说还是属于第一代或者准二代的“示教-再现”型机器人。这种类型的机器人对于焊接环境的一致性要求异常严格,其焊接路径和相关工艺参数都是需要预先设置的。但是在实际的焊接中常常因为存在变形、变散热、变间隙、变错边、工件加工误差和装配误差等因素造成焊缝位置和尺寸的变化,导致焊缝和示教轨迹有偏差,由于“示教-再现”型机器人对示教轨迹偏差没有适应性,不具备焊缝实时跟踪控制功能,从而最终影响焊缝成形的质量,难以满足企业对焊接制造高质量、高效率的要求,因此限制了它在很多领域的应用。为了克服焊接过程中这些不确定性因素对精密焊接件焊缝质量的影响,迫切需要对焊缝进行实时跟踪来调整机器人的运动轨迹,提高现行焊接机器人的适应性和智能化水平。
     在实际的焊接过程中,大部分的焊接工件为空间三维焊缝。在已有的基于被动视觉的焊缝跟踪研究中,视觉系统大多只能准确地获取图像的二维信息,三维重建的方法可以计算出图像中的高度信息,但其计算的精确性和可靠性难以满足实时焊缝跟踪的要求,仅仅依靠视觉技术很难满足机器人在实际生产中对焊接高度方向上的自动跟踪控制要求。在利用视觉传感技术对焊缝进行实时在线跟踪时必须利用其他方法对焊接高度进行实时跟踪控制。本文根据铝合金脉冲GTAW的焊接特点,利用基于视觉及电弧传感的复合传感技术对焊缝进行左右和高度进行纠偏,实现机器人GTAW过程的三维焊缝实时跟踪控制,这对将传统的“示教-再现”型机器人开发成具有一定自主功能的焊接机器人系统,不断扩大机器人焊接自动化技术在国防、航空、化工及电子等部门的应用范围具有重要的理论意义和工程实用价值。
     利用视觉和电弧传感技术来对机器人GTAW过程三维焊缝进行实时跟踪控制要解决三个主要问题,一个是准确地获取焊缝的三维信息,这是进行实时焊缝跟踪的前提。另外一个问题是必须找到合适的三维信息处理算法,提取出三维焊缝信息的特征值。最后必须设计合理的焊缝跟踪控制器,使其能够满足机器人GTAW过程对焊缝实时跟踪控制要求。
     本文首先研究开发了一套基于视觉及电弧传感技术的机器人三维焊缝跟踪系统,具体包括焊接平台的搭建、视觉及电弧传感器的设计加工、焊接系统的标定、系统控制软件的设计以及焊接工装夹具的设计等。
     要对焊缝进行准确的实时跟踪,首先需要获得描述焊缝焊接过程状态中的准确信息。通过对铝合金GTAW焊接实际电弧光谱的分析,自主研制了一套多功能被动视觉传感器。通过分析减光滤光片、电流基值以及采像时刻等参数对获取焊接图像的影响,在仅依靠焊接过程电弧光照明的情况下,实现了铝合金脉冲GTAW过程实时焊接图像清晰地获取。针对已有焊接图像边缘检测方法的不足,提出了一种改进的Canny边缘检测算法,有效改善了不同焊接图像边缘的提取效果,提高了边缘检测的准确性和自适应性。在分析焊接图像特点的基础上,开发了一套完整的图像处理算法。通过焊接实验验证,其焊接图像处理精度可以控制在±0.169mm以内,其精度能很好地满足了机器人GTAW过程实时图像处理的需求。
     根据铝合金脉冲GTAW的焊接特点,利用电弧传感器对电弧电压信号进行了有效地采集,并对弧压信号特点进行了仔细分析,提出了一种基于小波包的防脉冲干扰滑动均值去噪处理方法,能有效地去除电弧电压信号中含有的大量脉冲干扰和随机非平稳噪声。在此基础上,准确地提取出了弧压信号的特征值,其处理精度能达到0.273mm。建立了电弧电压和弧长的关系模型U=3.108h+21.472,并对模型精度进行了实验验证。实验表明,根据弧压与弧长关系模型计算出的弧长与实际焊接弧长有很好的匹配,其最小误差约为0.218mm,其精度完全能够满足后续的机器人焊接高度实时跟踪控制的要求。
     通过分析“示教-再现”型焊接机器人的纠偏原理和实时焊缝跟踪控制的特点,设计了基于模糊切换的Fuzzy-PID双模复合控制器来对三维焊缝进行跟踪控制。针对不同的焊缝偏差,利用模糊逻辑规则,实现了Fuzzy控制器和PID控制器的无扰切换,最大限度地保证了焊接过程焊缝跟踪的实时性,稳定性和抗干扰性。通过仿真实验表明,基于模糊切换的Fuzzy-PID双模复合控制器具有可靠性好,抗干扰能力强,跟踪能力好的特点,能很好地满足机器人实时焊缝跟踪的要求。
     最后,利用本文开发的三维焊缝跟踪焊接系统对多种不同三维曲线焊缝进行了跟踪控制实验,实验结果表明,其左右最大跟踪偏差可以控制在±0.3mm范围之内,高度跟踪误差可以控制在±0.4mm范围内,基本能够满足机器人实际焊接生产的要求。
Nowadays, robot welding is a trend of welding automation technicaldevelopment; more and more welding robots have been applied in theautomatic manufacturing process at home and abroad. However, most ofthem are primary teaching-playback robots, the welding path and processparameters of which are set in advance, and the requirement of conformanceto the welding operation conditions is very strict. That means if thework-pieces of weld are changed, they must be taught and programmed again.Especially, the seam position is often disturbed by distortion, ways ofspreading heat, variability of gap, stagger edge, etc. which will affect thequality of welding forming. In the practical welding application, this type ofwelding robot cannot meet the enterprises’ requirements on superior qualityand top efficiency because of the lackness of adaptability in teaching trajectory offset and no function of real-time tracking control, which limits itsapplication in many fields. In order to overcome the uncertainty which affectsthe quality of welding, there is an urgent need to track the seam in real timefor “teaching-playback” welding robot, which will make it more flexible andintelligent.
     In the practical welding process, most of the welding seams arethree-dimensional, which are difficult for the only vision technology to trackand control in real-time. However, among what have been studied in weldtracking, the passive vision technology can accurately get the2Dseam-tracking information, but the height information should be acquiredonly through3D reconstruction method. It is a pity that most of thealgorithms are too complex to be used in real-time control, which causes thatthe vision technology can hardly meet the requirements of real-time heighttrack and control during actual robotic welding process. Thus, anothertechnology must be used in height tracking while the visual sensortechnology is used in real-time3D seam tracking. The composite sensorsbased on visual sensor and arc sensor can be used in the weld of3D seam,which provides a possibility to realize the function of real-time tracking of3D welding seam during robotic GTAW process, and will develop theteaching-playback robot into an intelligent welding robot. No doubt that theseresearches supply important theoretical significance and practical value forexpanding the applied range of robot welding automation technology in manydifferent fields, such as national defense, aviation, shipbuilding, machinery,automobile, electronics and electrics.
     There are three problems which should be resolved in real-time trackingof3D welding seam during robotic GTAW process based on visual sensor and arc sensor. The first one is accurately retrieving the3D welding seam.The second one is that the right signal processing method must be found,which should be accurate enough to meet the requirements of real-timetracking of3D welding seam during robotic GTAW, and the characteristics of3D welding seam should be extracted. The third one is that the design ofreasonable controller for the seam tracking must meet the requirement ofreal-time welding seam tracking for welding robot GTAW process.
     Firstly,this paper designed a set of tracking and control system forthree-dimension welding seam during welding robot GTAW process based onvision sensor and Arc sensor, including the setup of experimental platform,the design and processing of sensors, the calibration of welding equipment,the design of system control software and welding fixture, etc. Theexperiment platform can make better effect of real-time control onthree-dimension welding seam during welding robot GTAW process.
     To achieve accurate real-time seam tracking during welding, theaccurate information which is used to describe welding process should beobtained first. Thus, this paper designed a set of system of passive visionsensor for the robot to track the plane welding seam in real-time. The qualityof image acquisition is associated not only with dimmer-filter system, butalso with the value of base current and the time of capturing image. Througha large number of experiments, the parameters of Al alloy pulsed GTAW areascertained, such as the composite dimmer-filter system, the base current,the time of capturing images, etc. By using the passive vision sensor system,we can get some clear images during the robot weld automation process.Aiming at the deficiencies of existing edge detection algorithm, a newimproved Canny algorithm has been proposed to detect the edges of seam and pool, which effectively enhances the precision, accuracy and selfadaptability. By analyzing the features of welding images, a set of completealgorithm of image processing is proposed to extract the characteristicparameters of welding images. Finally, the algorithm of the image processingwas validated through the experiment. The precision can be controlled aboutwithin±0.169mm, which can completely meet the requirement of real-timewelding seam tracking for welding robot GTAW process.
     By analyzing the characteristics of pulsed GTAW for Al alloy, the arcvoltage signals are successfully gathered by the arc sensor, and A newde-noising method of anti-impulse interference moving average based onwavelet packet is studied in this paper. The characteristics of arc voltage areextracted, which can be accurate to0.273mm. The relational model betweenarc voltage and arc length, which is U3.108h21.472, has been worked outand then confirmed by tests in the paper. The experiments have suggestedthat the characteristics of arc voltage, the arc-length calculated by therelational model and the real arc-length can be well matched, for the minimalerror is about0.218mm. Therefore, in accordance with the above points, wecan conclude that the accuracy of the relational model between arc voltageand arc length can completely meet the requirements of real-time trackingand control in height during robot GTAW process
     By analyzing the deviation rectification of welding robot and thecharacteristics of3D welding seam, a compound Fuzzy-PID double modecontroller based on fuzzy rules switching has been designed for the system of3D seam tracking control during robotic GTAW process. By using fuzzylogic rules, it can shift from Fuzzy controller to PID controller according todifferent seam deviations, which ensures the maximum real time, anti-interference performance, and good stability of seam tracking in weldingprocess. It has been proved by the simulation-system test that the compoundFuzzy-PID double mode controller enjoys the advantages of excellentrobustness, strong anti-interference and tracking abilities, which cancompletely meet the requirements of real-time tracking and control duringrobot GTAW process
     Finally, aiming at the complex three-dimension curve seam, someexperiments have been done to verify the precision of3D seam trackingbased on visual sensor and arc sensor technology. The results demonstratethat the precision range of planar seam tracking and arc length tracking canbe controlled within±0.3mm and0.4mm, respectively, which is accurateenough to meet the practical welding requirements of the real-time trackingand controlling during the welding robot GTAW process.
引文
1. Paton, B.E.,吴林,航空航天焊接技术的发展与未来[J],航空制造技术,2004,11(3),37-42
    2.张文钺,迎接21世纪我国焊接技术的新发展[J],焊接,2000,7,6-10
    3.陈善本,林尚扬,李成桐,焊接机器人及其应用[M],北京,机械工业出版社,2000
    4.刘翠霞,旋转电弧自保护焊焊缝成形及自动跟踪的研究[M],广州,华南理工大学,2011
    5.陈华斌,运载火箭动力系统五通连接器机器人GTAW质量控制系统[D],上海,上海交通大学,2009
    6.谭一炯,周方明,王江超等,焊接机器人技术现状与发展趋势[J],电焊机,2006,36(3),6-10
    7.许燕玲,林涛,陈善本等,焊接机器人应用现状与研究发展趋势[J],金属加工,2010,8:32-36
    8.孙慰,基于CCD视觉传感的焊缝跟踪技术的研究[M],上海,上海交通大学,2008
    9.盛仲曦,基于视觉传感的焊缝自动跟踪系统研究[M],上海,上海交通大学,2009
    10.马宏波,基于视觉传感的机器人铝合金脉冲TIG焊接过程MLD建模方法研究[D],上海,上海交通大学,2011
    11.刘立涛,双焊枪相贯线自动焊接机机械系统设计[M],保定,河北农业大学,2010
    12.钱锋,专用数控点焊机的研制[M],无锡,江南大学,2008
    13.朱友超,机器人焊装线系统控制技术研究制[M],合肥,合肥工业大学,2008
    14.贾晓辉,圆管外圆周焊接移动式机器人及其控制系统的研究[M],天津,河北工业大学,2003
    15.陈善本,吴林,机器人焊接智能化的相关理论与技术[J],机器人,1997,199(Sup),4-7
    16.黄政艳,焊接机器人的应用现状与技术展望[J],装备制造技术,2007,3,46-49
    17.陈善本,林涛等,智能化焊接机器人技术[M],北京,机械工业出版社,2006
    18.黄石生,高向东等,焊缝跟踪技术的研究与展望[J],电焊机,1995,10
    19.毛鹏军,黄石生,薛家祥等,弧焊机器人焊缝跟踪系统研究现状及发展趋势,电焊机,2001,10,9-12
    20. Gao, J. Wu., C. Liu., X. Xia., Vision-based weld seam tracking in gas metal arc welding[J],Frontiers of Materials Science in China,2007, Vol1(3),268-273
    21. Zhang, W., Chen, Q., Zhang, G., etc., Seam tracking of articulated robot for laser welding basedon visual feedback control[C], Lecture Notes in Control and Information Sciences,2007,362,281-287
    22. Zeng, S., Wang, G., Shi, Y., etc., Arc sensor seam offset identification system based on LabVIEWand support vector regression machine[J], Hanjie Xuebao,2009,30(1),13-16
    23. Chen, S.B., Lou. Y.J., Wu. L., etc., Intelligent methodology for sensing, modeling and control ofpulsed GTAW: Part1-bead-on-plate welding[J], Welding Journal,2000, Vol79(6),151-164
    24. Chen, S.B., Zhang, Y., Qiu, T., etc., Robotic Welding Systems with Vision Sensing andSelf-learning Neuron Control of Arc Weld Dynamic Process[J], Journal of Intelligent andRobotic Systems,2003, Vol36(2),191-208
    25. Chen, S.B., Wu, J., Intelligentized Technology for Arc Welding Dynamic Process, Springer-Verlag Berlin Heidelberg, Germany[C], Lecture Notes in Electrical and Engineering,2008,LNEE29
    26.陈波,GTAW焊接过程数据采集与系统控制器研制[M],上海,上海交通大学,2007
    27. E.Kannatey-Asibu., Milestone developments in Welding and Joining Processes. ASME Journal ofManufacturing Science and Engineering[J],1997, vol119(11),801-810
    28. M.Ushio., W.Mao., Sensors for Arc Welding: Advantages and Limitations[J], Transactions ofJWRI,1994, Vol23(2),135-141
    29. Agapakis J.E, Bolstad J., Vision Sensing and Processing System for Monitoring and Control ofWelding and Other High Luminosity Processes[J], International Robots&Vision AutomationConference,1991,23-29
    30.张裕明,TIG焊熔透正面视觉自适应控制的研究[D],哈尔滨,哈尔滨工业大学,1990
    31.张裕明,吴林,TIG焊熔透正面检测量的确定[J],焊接学报,1991,12(1),39-45
    32. http://www.servorobot.com.cn
    33. http://www.meta-mvs.com
    34. Xu, P., Xu, G., Tang, X., etc., A visual seam tracking system for robotic arc welding[J],International Journal of Advanced Manufacturing Technology,2008,37(1-2),70-75
    35. Yu, J. Y., Na, S. J., A study on vision sensors for seam tracking of height-varying weldment. Part2: Applications[J], Mechatronics,1998,8(1),21-36
    36. Yu, J. Y., Na, S. J., A study on vision sensors for seam tracking of height-varying weldment. Part1: Mathematical model[J], Mechatronics,1997,7(7),599-612
    37. Luo, H., Chen, X., Laser visual sensing for seam tracking in robotic arc welding of titaniumalloys[J], International Journal of Advanced Manufacturing Technology,2005,26(9-10),1012-1017
    38. Agapakis, J. E., Wittels, N., Masubuchi, K., Automated visual weld inspection for robotic weldingfabrication[C], Proceedings of the International Conference on Automation and Robotisation inWelding and Allied Processes,1985,151-160
    39.李原,徐德,李涛, etc.,一种基于激光结构光的焊缝跟踪视觉传感器[J],传感技术学报,2005,18(3),488-492
    40. Gonzalez-Galvan, E.J., Loredo-Flores, A., Pazos-Flores, F., etc., An Optimal Path-TrackingAlgorithm for Unstructured Environments based on Uncalibrated Vision[C], Proceedings-IEEEInternational Conference on Robotics and Automation,2005,2547-2552
    41. Kovacevic, R., Zhang, Y. M., Real-time image processing for monitoring of free weld poolsurface[J], Journal of Manufacturing Science and Engineering,1997,119(2),161-169
    42. Song, H. S., Zhang, Y. M., Measurement and Analysis of Three-Dimensional Specular GasTungsten Arc Weld Pool Surface[J], Welding Journal,2008,87(4),85-95
    43. Saeed, G., Zhang, Y. M., Mathematical formulation and simulation of specular reflection basedmeasurement system for gas tungsten arc weld pool surface[J], Measurement Science andTechnology,2003,14(9),1671-1682
    44. Saeed, G., Zhang, Y. M., Weld pool surface depth measurement using a calibrated camera andstructured light[J], Measurement Science and Technology,2007,18(8),2570-2578
    45.樊重建,变间隙铝合金脉冲GTAW熔池视觉特征获取及其智能控制研究[D],上海,上海交通大学,2008
    46.吕凤琳,脉冲GTAW熔池动态过程无模型自适应控制方法研究[D],上海,上海交通大学,2008
    47.康丽,汤楠,穆向阳,焊缝跟踪系统及焊接过程智能控制技术的研究[J],山西科技,2008,(3),153-155
    48.王文怡,基于粗糙集理论铝合金脉冲GTAW过程知识建模的智能控制方法研究[M],上海,上海交通大学,2009
    49.胡婷,机器视觉在铝合金TIG焊中的应用基础研究[M],北京,北京工业大学,2009
    50.周律,基于视觉伺服的弧焊机器人焊接路径获取方法研究[D],上海,上海交通大学,2007
    51. Brzakovic D. and Khani D.T., Weld Pool Edge Detection for Automated Control of Welding [J],IEEE Transactions on Robotics and Automation,1991,7(3),397-403
    52.王建军,铝合金脉冲TIG焊熔池动态特征的视觉信息获取与自适应控制[D],上海,上海交通大学,2003
    53.娄亚军,基于熔池图像传感的脉冲GTAW动态过程智能控制[D],哈尔滨,哈尔滨工业大学,1998
    54. ae, K. Y., Lee, T. H., Ahn, K. C., An optical sensing system for seam tracking and weld poolcontrol in gas metal arc welding of steel pipe[J], Journal of Materials Processing Tech,2002,120(1-3),458-465
    55.王军波,孙振国,陈强,基于CCD传感器的球罐焊接机器人焊缝跟踪[J],焊接学报,2001,22(2),31-34
    56.孔萌,机器人焊接过程多信息实时获取及其控制方法研究[D],上海,上海交通大学,2009
    57.沈鸿源,铝合金弧焊机器人视觉实时焊缝跟踪与成形控制方法研究[D],上海,上海交通大学,2008
    58.王克鸿,基于视觉的熔池过程特征提取方法及智能控制研究[D],南京,南京理工大学,2007
    59. Du, Q. Y., Chen, S. B., Tao, L., Inspection of weld shape based on the shape from shading[J], TheInternational Journal of Advanced Manufacturing Technology,2006,27(7),667-671
    60.龚海,摆动TIG焊焊缝跟踪传感器及其系统的研究[M],湘潭,湘潭大学,2007
    61. G. E. Cook, Robotic arc welding Research in sensory feedback control[J], IEEE Trans Ind.Electron. IE-1983,30(3),252-268
    62. Nixon J H, Underwater repair technology, Britain, Cam bridge England,2000,41-43
    63.安藤弘平等著,施雨湘译,焊接电弧现象[M],北京,机械工业出版社,1985
    64. Christner, BK, LoVell, R, Campbell, M, Developing a GTAW penetration control system for theTitanIV programe[J], Melding&Metal Fabrication,1998,(4),33-38
    65.刘会杰,牟滨亭,刘立君,周玉生等,交流TIG焊弧长控制系统的研究[J],焊接,1995(4),7-10
    66. Meng Kong, Shanchun Wei, Tao Lin, etc., Three-dimensional space type welding seam trackingmethod with the composite sensors technology[J], Industry robot,2011(5),500-508
    67. Chen Bo, Study on the Processing Metheod of Multi-sensor Information Fusion in Pulsed GTAW[D], Shaihai Jiao Tong University,2011
    68.梁亚军,薛龙,吕涛,etc.,高压环境下全位置脉冲T l G焊弧长跟踪系统研究[J],电焊机,2009(4),62-64
    69. Arata Yoshiaki, Investigation on welding arc sound-effect of welding method and weldingcondition of welding arc sound, Transactions of JWIR,1979
    70. Arata Yoshiaki, Investigation on welding arc sound-evaluation by hearing acuity and somecharacteristics of sound, Transactions of JWIR,1979
    71. Kaskinen P. and Mueller G., Acoustic arc length control[J], Advances in Welding Science andTechnology,1986,763-765
    72. Mansoor A.M. and Huissoon J.P., Acoustic identification of the GMAW process, in9th intl. Conf.on computer in welding,1999, Detroit,312-323
    73. Cayo E.H., Welding quality measurement based on acoustic sensing, ABCM symposium eries inmechatronics,2008,3,571-579
    74.樊丁,马跃洲,裴浩东,etc.,焊接电弧声与飞溅的相关性研究[J],甘肃工业大学学报,1997,23(3),1-5
    75.王继锋,基于焊接声音信号特征的熔透状态识别方法研究,[D],上海,上海交通大学,2009
    76.马跃洲,金虎,梁卫东,etc.,短路过渡的GMAW电弧声信号特征及产生机理[J],甘肃工业大学学报,2003,29(1),11-14
    77.马跃洲,陈剑虹,梁卫东, GMAW电弧声的参数化模型及应用[J],机械工程学报,2005,41(11),109-114
    78.马跃洲,瞿敏,陈剑虹,用电弧声信号监测GMAW焊丝干伸长的SVM模型[J],焊接学报,2006,27(5),21-26
    79.马跃洲,瞿敏,陈剑虹,基于电弧声信号的CO2焊接状态模式识别[J],兰州理工大学学报,2006,32(4),29-33
    80.石玗,黄健康,樊丁,etc.,电弧声信号与铝合金MIG焊缝塌陷的相关性[J],机械工程学报,2007,43(10),32-35
    81. Chen W. and B.A.Chin., Monitoring joint penetration using infrared sensing techniques[J],Welding Journal,1990,69(4),181
    82.陈定华,吴林,微计算机测试焊接温度场的研究[J],哈尔滨工业大学学报,1981,(12),1-11
    83.樊志伟,张朴,刘文中,基于CCD数字图像处理的焊接温度场实时检测系统研究[J],计算机测量与控制,2005,13(3),201-204
    84. J.F.Kotnik, The control and analysis of full-penetration plused-GAT welds using weld pooloscillation sensing, Massters Thesis,1986
    85. R.J. Renwick, Real-time control of GAT weld size by controlling pool oscillation frequency,CWR technical report,1983
    86.杨春利,薄钢板TIG焊电弧传感熔池谐振法熔透实时控制[D],哈尔滨,哈尔滨工业大学,1990
    87.柳钢,李俊岳,李桓,etc.,焊接电弧光谱的分布特征[J],机械工程学报,2000,36(5),58-61
    88.柳钢,封云,李俊岳,etc.,MIG焊熔滴过渡的电弧光谱信号[J],焊接学报,2004,25(1),40-46
    89.刘凤尧,杨春利,林三宝,etc.,活性化TIG电弧光谱分布的特征[J],金属学报,2003,39(8),75-878
    90.马宏伟,张广明,王彤,etc.,钎焊缺陷的超声无损检测[J],西安交通大学学报,1998,32(7),80-84
    91.陈怀东,曹宗杰,张柯柯,etc.,基于遗传算法的超声检测图像分割识别方法[J],西安交通大学学报,2003,37(1),22-25
    92. Tarn J. and Huissoon J., Developing psycho-acoustic experiments in gas metal arc welding. inIEEE International Conference on Mechatronics and Automation, ICMA2005, Niagara Falls,ON,1112-1117
    93.陈善本,陈波,马宏波等,多传感器信息融合技术在焊接中的应用及展望,电焊机,2009,,25-28
    94.何德孚,李克海,焊接熔池的振荡和焊缝成形的自适应控制[J],焊管,2000,23(4),22-28
    95. Weglowski M. Determination of GTA and GMA welding arc temperature[J], WeldingInternational,2005,19(3),186-192
    96. Farmer A J D, Haddad G N, Kovitya P. Temperature distributions in free-burning arc. IV. Resultsin argon at elevated pressures [J].Journal of Physics D: Applied Physics,1988,21,432-436
    97. Chen S. B., Zhang Y., Lin T., Qiu T., and Wu L. Welding robotic systems with visual sensing andreal-time control of dynamic weld pool during pulsed GTAW[J]. International Journal ofRobotics and Automation,2004,19(1),28-35
    98.陈强,潘际銮,大岛健司,焊接过程的模糊控制[J],机械工程学报,1995,31(4),86-91
    99.张华,翟因虎,陈茂华,履带式爬行机器人运动轨迹跟踪模糊控制系统[J],上海交通大学学报,2002,36(增刊),19-21.
    100. L. A Zadeh., Fuzzy sets[J], Information and Control,1965,8,338-353
    101. E H Mamdani. Applications of Fuzzy algorithm for Control of Simple Dynamic Plant, proc, IEE,1974,121,1585-1588
    102.张广军,视觉传感的变间隙填丝脉冲GTAW对接焊缝成形智能控制,[D],哈尔滨,哈尔滨工业大学,2002
    103. Akira Hirai, Sensing and control of weld pool by fuzzy-neural network in robotic weldingsystem, in The27th Annual Conference of the IEEE Industrial Electronics Society,2001,238-242
    104.赵冬斌,基于三维视觉传感的填丝脉冲GTAW熔池形状动态智能控制[D],2000
    105.廖家平,基于光电传感器的智能焊缝跟踪系统的研究[M],南昌,南昌航空大学,2010
    106.董学信,刘卫哲,智能控制方法在焊接过程中的应用[J],黑龙江科技信息,2011,29,19
    107.降雨志,基于CCD焊缝自动跟踪系统的研究[M],沈阳,沈阳工业大学,2005
    108. K.Andersen and G.E.Cook. Gas Tungsten Arc Welding Process Control Using Artificial NeuralNetworks. Proceedings of the3rd International Conference on Trends in Welding Research,Gatlinburg, Tennessee, USA,1-5, June,1992,135-142
    109. T.G.Lim and H.S.Cho. Estimation of Weld Pool Sizes in GMA Welding Process Using NeuralNetworks[J]. Journal of Systems and Control Engineering.1993, Vol207(1),15-26
    110. Y.Suga and M.Naruse. Application of Neural Network to Visual Sensing of Weld Line andAutomatic Tracking in Robot Welding[J], Welding in the World,1994,34,275-284
    111. K.Y. Bae and S.J.Na. A Study of Vision-Based Measurement of Weld Joint Shape Incorporatingthe Neural Network[J], Journal of Engineering Manufacture,1994, Vol.208(6),61-69
    112.黄石生,李迪,焊接过程的神经网络建模及控制的研究[J],机械工程学报,1994,30(3),24-29
    113.李迪,用人工神经元网络技术对焊接质量的智能控制[D],广州,华南理工大学,1993
    114. R.Kovacevic and Y.M.Zhang. Neurofuzzy Model-Based Weld Fusion State Estimation[J]. IEEETransactions on Control Systems Technology,1997, Vol.5(4),30-42
    115. Y.Kaneko. T.Iisaka and K.Oshima. Neuro-Fuzzy Control of the Weld Pool in Pulsed MIGWelding. Quarterly[J], Journal of the Japan Welding Society,1994, Vol12(3),374-378
    116. S.B.Chen, L.Wu and Q.L.Wang, Self-Learning Fuzzy Neural Networks for Control of UncertainSystems with Time Delays. IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics,1997, Vol.27(1),142-148
    117. S.B.Chen, L.Wu, Q.L.Wang., etc., Self-Learning Fuzzy Neural Networks and Computer Visionfor Control of Pulsed GTAW[J], Welding Journal,1997, Vol.76(5),201-209
    118.赵伟,李午申,赵春明,焊接产品质量分析及诊断的混合型专家系统的一种开发方法[J],信息与控制,2002,Vol29(3),266-271
    119.朱援祥,钟剑,张彦华,基于知识库的焊接裂纹诊断专家系统[J],焊接学报,2001, Vol22(3)59-62
    120.赵熹华王宸煜张若冰等,点焊工艺设计智能混合系统研究[J],焊接,2000,(3),11-13
    121.杜全营,填丝脉冲GTAW熔池三维特征实时提取与智能控制,[D],上海,上海交通大学,2006
    122. Du Quanying, Chen Shanben, and Lin Tao, Inspection on shape of weld based on shape fromshading[J], The international Journal of Advanced Manufacturing Technology,2006,27,667-671
    123.孔萌,石繁槐,林涛等,焊接机器人多功能双目视觉传感器及其标定方法,发明专利CN200710037890.3
    124. http://www.vision.caltech.edu/bouguetj/calib_doc/
    125. Zhang Z.Y., A flexible new technique for camera calibration[J], IEEE Trans. On Pattern Analysisand Machine Intelligence,2000,22(11),1330-1334
    126.何德孚主编,焊接与连接工程学导论[M],上海,上海交通大学出版社,1998
    127.吴璟,焊接熔池视觉特征信息获取与处理系统的设计[M],上海,上海交通大学,2008
    128.吴迪,不锈钢薄板TIG焊熔池图像处理及视觉特征计算[M],上海,上海交通大学,2010
    129.何斌,马天予,王运坚,etc.,Visual C++数字图像处理[M],北京,人民邮电出版社,2002,P:281-282
    130.王蕾,面向彩色图像中的文本定位与提取研究[M],哈尔滨,哈尔滨工业大学,2006
    131. Canny J., A computational approach to edge detection[J], IEEE Transactions on Pattern Analysisand Machine Intelligence,1986,8(6),679-698.
    132.贾云得,机器视觉[M],北京,科学出版社,2000,97-100
    133. PERONA P, MALIK J. Scale-space and edge detection using anisotropic difusion[J].IEEETransactions on Pattern Analysis and Machine Intelligence,1990,12(7),629-639
    134.苏恒阳,袁先珍,一种改进的Canny的图像边缘检测算法[J],计算机仿真,2010,(10),242-245
    135.李蓉芳,微零件基本特征的测量技术研究[D],天津,天津大学,2009
    136.郑建明,张顺军,肖继明等,深孔加工过程油压监测信号消噪技术研究[J],2008,(24),162-165
    137.许燕玲,钟继勇,陈华斌等,基于小波的电弧电压信号去噪处理研究[J],第十六次全国焊接学术会议论文摘要集,2011,10
    138. Shao Hua,Wang Hai li,WengShi xiu.SJ-FMS toolcondition monitoring system based on cuttingpower[J], Machine Design and Research,1997,(3),44-46.
    139.张顺军, BTA深孔钻削排屑与刀具状态监测技术研究[M],西安,西安理工大学,2007
    140.李昌武, Fuzzy-PID复合控制器及其在温控系统中的应用[M],长沙,湖南师范大学,2008
    141.付刚,基于知识的智能PID控制器研究[M],哈尔滨,哈尔滨理工大学,2007
    142.李祖欣,张榆锋,施心陵等,一种基于模糊规则切换的双模控制器[J],2002,(20),31-34
    143. Cheng Zheng-xing., Wavelet Analysis Arithmetic&Application[M], Xian, Xi’an Jiao TongUniversity Press,2004
    144. Hongxing Li, Philip Chen., Relation between fuzzy controller and PID controller [R],Proceeding of1999IEEE/RSJ International conference on intelligent and robot and systems,1999
    145.韩瑞珍,陈国定,杨马英,基于PID控制的新型模糊控制方法[J],工业控制计算机,2001,14(9),18-23146黄祯祥,邓怀雄,模糊切换方式下的复合控制[J],机电工程技术,2005,34(2),43-44
    147.荣盘祥,付刚,一种基于模糊规则切换的Fuzzy-PID双模控制器[J],哈尔滨理工大学学报(自然科学版),2006,11(6),8-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700