混粉准干式放电加工机理及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气中放电加工以气体介质取代传统液体介质进行电火花加工,具有工具电极损耗低、工件表面受到的破坏力小、以氧气为介质时材料去除率高、对环境污染小等优点,备受人们关注。但是,气中放电加工的放电间隙小、气体的比热低,存在加工区域热量传散困难、熔融材料冷却缓慢、加工屑难于从放电间隙排出等固有缺陷,造成短路率高、脉冲利用率低、加工过程不稳定。采取恰当措施,抑制气中放电加工缺点,充分发挥其优势,是推进气体介质中放电加工技术实用化的关键。混粉准干式放电加工技术在气体连续介质中加入微量的固、液相成分,在有效提高加工效率的同时保留气中放电加工技术工具电极损耗率低的优势,是一种极具潜力的高效、绿色电火花加工技术。本文重点研究混粉准干式放电加工机理,确定基础工艺参数,研究加工工艺规律,并进行加工参数优化。
     从微量固、液成分的作用机制入手,开展混粉准干式放电加工机理研究。借助Wagner模型对固液混合相的介电系数进行计算,分析固相、液相和固液混合相的介电性能,证实气体连续相的介电系数小于其内分散相的介电系数。基于非单一介质中电场强度变化对介质放电特性的影响,开展三相流介质的击穿机理研究。选用球面坐标系中高斯定律微分形式的拉普拉斯方程对三相流介质中的电位分布进行分析,结果表明,分散相的加入引发了极间均匀电场畸变;在一定的假设条件下,建立三相流介质中的电场强度表达式,得到放电间隙计算公式,并对三相流引起的放电间隙变化进行分析,分析结果证实,三相流介质能够增大放电间隙,有利于介质击穿和电蚀产物的排出;通过对比试验验证三相流介质的放电间隙增大效果,通过放电电压波形对比分析,证实了介质击穿频率的提高。理论计算得出分散相所在位置场强畸变严重,易于引发“工具电极-分散相-工件电极”串联放电,据此建立了串联放电理论模型。研究工具电极表面的材料附着现象,借助扫描电镜观察工具电极表面微观形貌,利用能谱分析仪分析薄膜状附着区、片状附着区、含球状附着物区和孔隙状附着区的成分组成,证实工具电极表面存在来自工件的附着物成分,提出了混粉准干式放电加工的工具电极损耗机理。研究结果表明,混粉准干式放电加工技术的工具电极损耗是材料去除过程和材料附着过程综合作用的结果。
     将混粉准干式放电加工的工艺参数划分为基础工艺参数和加工工艺参数两大类,并进行了相关研究。
     从放电加工常用粉末材料入手,综合考虑粉末材料的加入对放电加工效果、工作介质稳定性和工件被加工表面综合机械性能的影响,分析粉末材料和粒径对沉降稳定性的影响,并从充分发挥粉末性质对固相成分放电改善作用的角度出发,选用粒径2.5μm的硅粉颗粒作为混粉准干式放电加工用固态相。从放电加工常用电极材料入手,选用紫铜作为混粉准干式放电加工试验研究用工具电极材料。开展加工极性对比试验,结果表明,工具电极接脉冲电源负极时(正极性加工时),能够获得更高的工件材料去除率和更低的工具电极损耗率,因此,混粉准干式放电加工适于采用正极性加工。在传统极性效应理论的基础上开展混粉准干式放电加工技术极性效应理论分析;计算得到等离子放电通道中的电子群和正离子群撞击正负极时的动能差异,建立适于混粉准干式放电加工技术的极性效应理论;实验结果与极性效应理论分析结果一致。
     基于单因素试验设计,开展混粉准干式放电加工工艺研究,获取峰值电流、脉冲宽度、脉冲间隔、固液混合物流量、粉末颗粒的浓度和工具电极转速对工件材料去除率和工件被加工表面粗糙度的影响规律,揭示其规律成因。研究表明,峰值电流主要通过改变工件被加工表面获取的脉冲放电能量密度影响放电加工效果。随着峰值电流的增大,蚀坑变得大而深,工件材料去除率和工件被加工表面粗糙度值(Ra值)均增大。脉宽主要通过改变脉冲能量供给时间影响放电加工效果。随着脉宽的增大,脉冲能量供给时间延长,且等离子通道沿径向扩展,蚀坑变得大而深,工件材料去除率增大,工件被加工表面Ra值增大。脉间对放电加工效果的影响主要表现在两个方面:一是影响极间介质的消电离效果,二是影响脉冲放电占空比。消电离效果间接影响单脉冲放电过程和单脉冲放电能量,进而影响工件材料去除率和工件被加工表面粗糙度。随着脉间增大,工件材料去除率降低,工件被加工表面Ra值降低。流量的变化引起进入放电间隙的固相体积和液相体积的变化,液相和固相体积的变化影响介质击穿过程和消电离效果;随着流量的增长,工件材料去除率增大,工件被加工表面Ra值降低。颗粒浓度的变化能够影响介质击穿过程和极间介质消电离效果;随着浓度的增长,工件材料去除率先增大后减小,工件被加工表面Ra值先减小后增大。工具电极旋转运动的存在对于混粉准干式放电加工效果的改善意义显著,但转速的过分增大使得放电加工稳定性变差,导致工件材料去除率和工件被加工表面Ra值均随转速增大而减小。从稳定放电过程进而改善加工效果的角度考虑,应选取较小的工具电极转速。
     借助正交设计方法进行试验设计,系统研究工件材料去除率、工件被加工表面粗糙度和工具电极损耗率的变化规律。根据望大特性信噪比计算公式将工件材料去除率的正交试验结果转换成相应的信噪比值,根据望小特性信噪比计算公式分别将工具电极损耗率和工件被加工表面粗糙度值的正交试验结果转换成相应的信噪比值;借助信噪比分析方法和理论,分别得到取得最大工件材料去除率、最小工具电极损耗率和最小Ra值的最优加工工艺参数组合。验证实验证实单目标优化结果的可靠性。
     对正交试验结果开展方差分析,找到混粉准干式放电加工各个加工效果评价指标的信噪比的显著影响因子。工件材料去除率信噪比的显著影响因子是峰值电流、脉宽和流量;工具电极损耗率信噪比的显著影响因子是峰值电流;工件被加工表面粗糙度Ra值信噪比的显著影响因子是脉宽和峰值电流。以非线性回归分析的相关理论和方法为指导,借助统计分析软件Minitab16进行非线性回归计算,分别得到工件材料去除率、工具电极损耗率和工件被加工表面粗糙度Ra值的信噪比数学表达式;借助显著性检验证实回归结果的显著性,借助验证实验和回归方程预测结果误差分析证实回归分析数学表达式的预测效果。综合考虑工件材料去除率、工具电极损耗率和工件被加工表面粗糙度,借助粒子群算法开展混粉准干式放电加工多目标优化研究,得到工件材料去除率和工件被加工表面粗糙度Ra值、工件材料去除率和工具电极损耗率、工件被加工表面粗糙度Ra值和工具电极损耗率的帕累托前沿。当以较大的加工效率进行加工时,并不会造成工具电极的过快损耗及其带来的电极频繁更换等一系列问题;当以获取较低的被加工表面粗糙度Ra值为目的进行加工的同时,也能够获得较小的工具电极损耗。
In the traditional electrical discharge machining (EDM) process, the discharge is induced in the liquid medium. However, in the dry EDM process, the liquid medium is replaced by the gas medium. Dry EDM has many advantages. For example, the tool wear rate (TWR) of it is low, its acting force on the machined surface of the workpiece is low, its material removal rate (MRR) with oxygen gas as its dielectric medium is high, and environmental pollution is reduced. So the dry EDM is paid close attention to. Nonetheless, dry EDM has disadvantages, such as small discharge gap and low specific heat of the gas. Its residual heat transfer is difficult, the cooling of the molten materials produced during its discharging is slow, and it is hard for the corrosion particles to be expelled out of the discharging areas. Therefore, its short circuit rate is high, its utilization efficiency of pulse energy is low, and the machining stability of it is poor. Only by taking appropriate measures to overcome shortcomings of the dry EDM process while taking advantages of it, can we promote the practical application of this process. In the powder mixed near dry electrical discharge machining (PMND-EDM) process, trace amounts of powder particles and liquid phase are added into the gas continuous phase. Its MRR is higher while the TWR is lower. So it is thought to be a potential green processing technology with high machining efficiency. In this paper, the mechanism of PMND-EDM process is researched, its basic processing parameters are determined, its technological characteristics are studied, and its processing parameters are optimized.
     Start from the function of the solid phase and the liquid phase, research is done on the mechanism of the PMND-EDM process. Based on the Wagner model, the dielectric coefficient of the solid-liquid mixed phase is calculated. The dielectric properties of the solid phase, the liquid phase and the solid-liquid mixed phase are analyzed. And it is verified that the dielectric coefficient of the continuous gas phase is lower than its inner dispersed phases. Research is done on the medium breakdown mechanism of the three phase dielectric medium based on the influence of variation of electric field strength on the discharge characteristic of dielectric medium in non-monolithic medium. Analysis is done on the electric potential distribution in the three phase dielectric medium based on the Laplace's equation of differential form of the Gauss's law in the spherical coordinates. Results show that the distortion of the uniform electric field can be induced due to the addition of dispersed phases. The expression for electric field strength is established under a certain assumed conditions. The calculation formula for the discharge gap is obtained. And the change of the discharge gap, which is caused by the three phase dielectric medium, is analyzed. The theoretical analysis results indicate that the discharge gap can be enlarged by the three phase flow, the breakdown of the medium can be improved, and the expelling of the debris formed during discharging can be facilitated. The enlargement of discharge gap for the three phase flow is verified by the comparison test. The discharge voltage is recorded during the comparison test and the comparative analysis is done. It is confirmed that the medium breakdown frequency is increased. The theoretical calculation reveals that serious distortion of the electrical field strength is easier to be found at locations with dispersed phased, and the series electrical discharge among the tool electrode, the dispersed phases and the workpiece electrode can be induced easily in these places. Based on the above, the theory model of series electrical discharge is establised. Research is done on the phenomena of material attachments on the surface of tool electrode. The surface micro-morphology of the used tool electrode is observed by the scanning electron microscope (SEM). The composition of the thin-film attachment region, the lamellate attachment region, the region with spherical attachments and the porosity attachment region are analyzed by the energy dispersive spectrometer (EDS), respectively. It is verified that there are attachments, which are elementary compositions of the workpiece, on the surface of the tool electrode. And the mechanism of tool electrode wear for the PMND-EDM process is proposed. The research results show that the tool electrode wear in the PMND-EDM process is caused by the material removal from the tool electrode and the material attachments on the surface of tool electrode.
     The technical parameters of the PMND-EDM process are divided into two categories:basic processing parameters and machining parameter. And relevant researches are done.
     Starting from the general powders in EDM process, comprehensively consider the addition of powder particles on the EDM machining, the dielectric medium stability, and the synthesized mechanical properties of the machined workpiece surface, and do analysis on the influence of powder ingredient and powder size on the dispersion stability. From the perspective of giving full play to the effect of powder properties on the improvement of electrical discharging, silicon powders with grain size of2.5μm are selected as the solid phase of the PMND-EDM process. Starting from the general tool electrode materials in EDM process, copper is selected as the tool electrode material for the PMND-EDM process. Comparative test is done on the influence of polarity of electrodes on the machining. And it is found that the higher MRR and the lower TWR can be obtained when the tool electrode is connected to the cathode of the pulse electrical source, the machining polarity for which is normal. Therefore, normal polarity is more appropriate for the PMND-EDM process. Theoretical analysis is done on the polarity effect of the PMND-EDM process based on the conventional theory of polarity effect. The difference in the kinetic energy for the positive ion swarm and the electron swarm, when they impact the negative electrode and the positive electrode respectively, is got by calculating. The theory of polarity effect for the PMND-EDM process is established. And the experimental results coincide with the theory analysis results based on the theory of polarity effect for the PMND-EDM process.
     Based on the single factor experimental design, research is done on the technological characteristics of the PMND-EDM process. The influences of peak current, pulse on time, pulse off time, flow rate of solid-liquid mixture, concentration of powder particles and rotational speed of tool electrode on the MRR and the surface roughness (SR) are achieved, and the reasons for these influences are revealed. Research results reveal that the effect of peak current on the EDM machining mainly based on its effect on the obtained energy density of the machined workpiece surface. With the increase of peak current, the crater becomes larger and deeper, both the MRR and the SR for the machined workpiece increase. The effect of pulse on time on the EDM machining mainly based on its effect on the supply time of the pulse discharge energy. With the increase of pulse on time, the supply time of pulse discharge energy increases and the plasma channel expands in its radius direction; as a result, the crater becomes larger and deeper, both the MRR and the SR of the machined workpiece increase. The influences of pulse off time on EDM machining are mainly based on two main aspects. One is its influence on the deionization effect of the dielectric medium in the discharge gap. The other is its effect on the duty circle. The deionization effect indirectly influences the discharge course of single pulse and the discharge energy of single pulse, and then influences the MRR and the SR of the machined workpiece. With the increase of pulse off time, both the MRR and the SR decrease. Flow rate of solid-liquid mixture determines the volume of solid phase and liquid phase that are delivered into the discharge gap. The volume of the liquid phase and the solid phase influence the breakdown of the dielectric medium and the deionization effect of the dielectric medium. With the increase of the flow rate, the MRR of the workpiece increases, however, the SR of the machined workpiece decreases. The concentration of powder particles influences the breakdown of the dielectric medium and the deionization effect of the dielectric medium. With the increase of the concentration, the MRR of the machined workpiece increases first and then decreases, however, the SR decreases first and then increased. The existence of rotation for the tool electrode is helpful to improve the machining process of the PMND-EDM technology. However, the excessive increase of the rotational speed for the tool electrode will deteriorate the machining stability, which results in the decrease of the MRR and the SR for the machined workpiece along with the increase of the tool rotational speed. A low tool rotational speed should be selected from the perspective of stabilizing the machining stability and then improving the machining.
     Based on the theory of orthogonal experimental design, systematical research is done on the MRR, the SR and the TWR. The MRR obtained in the orthogonal design experiment is converted to the corresponding value of signal to noise ratio based on the expression for the signal to noise ratio of the higher the better characteristics. The TWR and the SR obtained in the orthogonal design experiment are converted to the corresponding value of signal to noise ratio based on the expression for the signal to noise ratio of the smaller the better characteristics. The optimal combinations of machining parameters for the highest MRR, the lowest TWR and the lowest SR are obtained based on the theory and the method of the analysis on the signal to noise ratio. The results of single objective optimization are verified by the verification experiments.
     The significant impact factors for the signal to noise ratio of each machining evaluation index of the PMND-EDM process is found out by doing analysis of variance (ANOVA) on results of the orthogonal design experiment. The significant impact factors are peak current, pulse on time and flow rate for the signal to noise ratio of MRR, peak current for the signal to noise ratio of TWR, and pulse on time and peak current for the signal to noise ratio of SR. The mathematical expressions for the signal to noise ratio of the MRR, the TWR and the SR are established by the statistical analysis software Minitab16based on the relative theory and method of nonlinear regression analysis. The significance of the regression model is verified by test of statistical significance. The predictive effects of the established models are verified through verification experiment and the error analysis for the predictive results of the regression models. Taking into account the MRR, the TWR and the SR, multi-objective optimization is done on the PMND-EDM process based on the particle swarm optimization (PSO) algorithm. The pareto fronts of the MRR and the SR, the MRR and the TWR, and the SR and the TWR for the PMND-EDM process are obtained respectively. The process could decrease the TWR and overcome the problems accompanied with the large TWR, such as the frequent replacement of the worn tool electrode, when machined with large MRR; meanwhile, lower TWR can be obtained along with lower SR.
引文
[1]Ho KH, Newman ST. State of the art discharge machining(EDM)[J]. International Journal of Machine Tools and Manufacture.2003,43(13): 1287-1300.
    [2]Arthur A, Dickens PM, Cobb RC. Using rapid prototyping to produce electrical discharge machining electrodes[J]. Rapid Prototyping Journal. 1996,2(1):4-12.
    [3]陈勇华.微机电系统的研究与展望[J].电子机械工程.2011,27(3):1-7.
    [4]郭云龙,王小鹏.制作微模具的微机械加工技术应用与研究[J].现代制造工程.2011,(11):1-7,16.
    [5]Singh S, Bhardwaj A. Review to EDM by using water and powder-mixed dielectric fluid[J]. Journal of Minerals & Materials Characterization & Engineering.2011,10(2):199-230.
    [6]Peng ZL, Wang ZL, Dong YH, Chen H. Development of a reversible machining method for fabrication of micro structures by using micro-EDM[J]. Journal of Materials Processing Technology.2010,210(1): 129-136.
    [7]林滨,张彦斌,陈善功.基于非负矩阵分解算法的工程陶瓷磨削表面损伤检测[J].光学精密工程.2011,20(11):2459-2464.
    [8]杨俊飞,田欣利,吴志远,佘安英.结构陶瓷材料加工技术的新进展[J].兵工学报.2008,29(10):1249-1255.
    [9]Konig W, Dauw DF, Levy G, Panten U. EDM-future steps towards the machining of ceramics[J]. CIRP Annals-Manufacturing Technology.1988, 37(2):623-631.
    [10]Liu YH, Li XP, Ji RJ, Yu LL, Zhang HF, Li QY. Effect of technological parameter on the process performance for electric discharge milling of insulating Al2O3 ceramic[J]. Journal of Materials Processing Technology. 2008,208(1-3):245-250.
    [11]Paul L, Hiremath SS. Response surface modelling of micro holes in electrochemical discharge machining process[J]. Procedia Engineering, 2013,64:1395-1404.
    [12]李小朋,刘永红,纪仁杰,于丽丽.非导电工程陶瓷电火花单脉冲放电加工实验研究[J].制造技术与机床.2007,12:78-81.
    [13]Ji RJ, Liu YH, Zheng C, Wang F, Zhang YZ. Design of the tool for end electrical discharge milling and mechanical grinding compound machining of engineering ceramics[J]. Advanced Materials Research.2013,664: 806-810.
    [14]Guu YH, Hocheng H, Tai NH, Liu SY. Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites[J]. Journal of Materials Science.2001,36(8):2037-2043.
    [15]Wei CJ, Zhao L, Hu DJ, Ni J. Electrical discharge machining of ceramic matrix composites with ceramic fiber reinforcements [J]. International Journal of Advanced Manufacturing Technology.2013,64(1-4):187-194.
    [16]Ramulu M, Spaulding M, Laxminarayana P. Cutting characteristics of titanium graphite composite by wire electrical discharge machining[J]. Advanced Materials Research.2012,630:114-120.
    [17]Shandilya P, Jain PK, Jain NK. Study on wire electric discharge machining based on response surface methodology and genetic algorithm[J]. Advanced material research.2013,622-623:1280-1284.
    [18]Kasman S, Feray Guleryuz L, Ozan S, Ipek R. Characterization of machined surface by EDM for Al/B4Cp composite material[J]. Acta Physica Polonica A.2013,123(2):224-226.
    [19]Tamura T, Kobayashi Y. Measurement of impulsive forces and crater formation in impulse discharge[J]. Journal of Materials Processing Technology.2004,149(1-3):212-216.
    [20]Erden A. Effect of materials on the mechanism of electric discharge machining(E.D.M.)[J]. Journal of Engineering Materials and Technology. 1983,105(2):132-138.
    [21]Singh H, Shukla DK. Optimizing electric discharge machining parameters for tungsten-carbide utilizing thermo-mathematical modeling[J]. International Journal of Thermal Sciences.2012,59:161-175.
    [22]Nagahanumaiah, Ramkumar J, Glumac N, Kapoor SG, DeVor RE. Characterization of plasma in micro-EDM discharge using optical spectroscopy[J]. Journal of Manufacturing Processes.2009,11(2):82-87.
    [23]Murray J, Zdebski D, Clare AT. Workpiece debris deposition on tool electrodes and secondary discharge phenomena in micro-EDM[J]. Journal of Materials Processing Technology.2012,212(7):1537-1547.
    [24]亓利伟,楼乐明,李明辉.放电通道的波动性与电火花加工机理[J].上海交通大学学报.2001,35(7):989-997.
    [25]Ekmekci B, Ersoz Y. How suspended particles affect surface morphology in powder mixed electrical discharge machining (PMEDM)[J]. Metallurgical and Materials Transactions B.2012,43B(5): 1138-1148.
    [26]Patel KM, Pandey PM, Rao PV. Optimisation of process parameters for multi-performance characteristics in EDM of Al2O3 ceramic composite[J]. International Journal of Advanced Manufacturing Technology.2010, 47(9-12):1138-1148.
    [27]Joshi SN, Pande SS. Thermo-physical modeling of die-sinking EDM process[J]. Journal of Manufacturing Processes.2010,12(1):45-56.
    [28]Pradhan MK. Process simulation, modeling and estimation of temperature and residual stresses electrical discharge machining of AISI D2 steel[J]. ISCI,2012:1-9.
    [29]Iwai M, Zhou ZR, Ueda T, Ninomiya S, Suzuki K. Performance of ultrasonic electro-Discharge machining on electrically conductive PCD[J]. Advanced Materials Research.2012,628:101-106.
    [30]Ji RJ, Liu YH, Zhang YZ, Cai BP, Li XP, Zheng C. Effect of machining parameters on surface integrity of silicon carbide ceramic using end electric discharge milling and mechanical grinding hybrid machining[J]. Journal of Mechanical Science and Technology.2013,27(1):177-183.
    [31]Woo YM, Yeo SH, Tan PC. Critical wall thickness in electrical discharge machining[J]. International Journal of Advanced Manufacturing Technology.2013,64(5-8):821-828.
    [32]Wong YS, Lim LC, Rahuman I, Tee WM. Near-mirror-finish phenomenon in EDM using powder-mixed dielectric[J]. Journal of Materials Processing Technology.1998,79(1-3):30-40.
    [33]Kung KY, Horng JT, Chiang KT. Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide[J]. International Journal of Advanced Manufacturing Technology,2009,40(1-2):95-104.
    [34]Malhotra N, Rani S, Sheikh K. Optimization of control parameters for surface roughness in side flushing form of die sink EDM[J]. Journal of Engineering Research and Studies.2011,2(4):228-233.
    [35]Rajmohan T, Prabhu R, Subba Rao G, Palanikumar K. Optimization of machining parameters in electrical discharge machining (EDM) of 304 stainless steel[J]. Procedia Engineering.2012,38:1030-1036.
    [36]Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G. Thermal modeling of the material removal rate and surface roughness for die-sinking EDM[J]. International Journal of Advanced Manufaturing Technology,2009,40(3-4):316-323.
    [37]Ojha K, Garg RK, Singh KK. An investigation into the effect of nickel micro powder suspended dielectric and varying triangular shape electrodes on EDM performance measures of EN-19 steel[J]. International Journal of Mechatronics and Manufacturing Systems.2012,5(1):66-92.
    [38]Joshi SN, Pande SS. Development of an intelligent process model for EDM[J]. International Journal of Advanced Manufacturing Technology. 2009,45(3-4):300-317.
    [39]Padhee S, Nayak N, Panda SK, Dhal PR, Mahapatra SS. Multi-objective parameteric optimization of powder mixed electro-discharge machining using response surface methodology and non-dominated sorting genetic algorithm[J]. Sadhana,2012,37(2):223-240.
    [40]Kumar K, Agarwal S. Multi-objective parametric optimization on machining with wire electric discharge machining [J]. International Journal of Advanced Manufacturing Technology.2012,62(5-8):617-633.
    [41]Assarzadeh S, Ghoreishi M. A dual response surface-desirability approach to process modeling and optimization of Al2O3 powder-mixed electrical discharge machining (PMEDM) parameters[J]. International Journal of Advanced Manufacturing Technology.2013,64(9-12):1459-1477.
    [42]Narumiya H, Mohri N, Saito N. EDM by powder suspended working fluid[C]. Proceedings of Ninth International Symposium of Electro Machining(ISEM IX), Nagoya, Japan,1989:5-8.
    [43]王婉,王斌修.混粉电火花镜面加工技术概述[J].模具制造,2004,(2):59-61.
    [44]Pecas P, Henriques E. Effect of the powder concentration and dielectric flow in the surface morphology in electrical discharge machining with powder-mixed dielectric (PMD-EDM)[J]. International Journal of Advanced Manufacturing Technology.2008,37(11-12):1120-1132.
    [45]Tan PC, Yeo SH. Simulation of surface integrity for nanopowder-mixed dielectric in Micro electrical discharge machining [J]. Metallurgical and Materials Transactions B.2013,44(3):711-721.
    [46]Bhattacharya A, Batish A, Kumar N. Surface characterization and material migration during surface modification of die steels with silicon, graphite and tungsten powder in EDM process[J]. Journal of Mechanical Science and Technology.2013,27(1):133-140.
    [47]吕战竹,赵福令,杨义勇.混粉电火花加工介质击穿及放电通道位形研究[J].大连理工大学学报.2008,48(3):373-377.
    [48]Pecas P, Henriques E. Influence of silicon powder-mixed dielectric on conventional electrical discharge machining [J]. International Journal of Machine Tools and Manufacture.2003,43(14):1465-1471.
    [49]Wu KL, Yan BH, Huang FY, Chen SC. Improvement of surface finish on SKD steel using electro-discharge machining with aluminum and surfactant added dielectric [J]. International Journal of Machine Tools and Manufacture.2005,45(10):1195-1201.
    [50]Tsai YY, Chang CK. Effects of polymer particles suspending in dielectric fluid on surface roughness of EDM[J]. Advanced Materials Research.2010, 97-101:4146-4149.
    [51]Erden A, Bilgin S. Role of impurities in electric discharge machining[C]. Proceedings of the Twenty-First Machine Tool Design and Research Conference.1980:345-350.
    [52]Chow HM, Yang LD, Lin CT, Chen YF. The use of SiC powder in water as dielectric for micro-slit EDM machining[J]. Journal of Materials Processing Technology.2008,195(1-3):160-170.
    [53]Zhao WS, Meng QG, Wang ZL. The application of research on powder mixed EDM in rough machining[J]. Journal of Material Processing Technology.2002,129(1-3):30-33.
    [54]Jabbaripour B, Sadeghi MH, Shabgard MR, Faraji H. Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of y-TiAl intermetallic[J]. Journal of Manufacturing Processes.2013,15(1): 56-68.
    [55]Kumar S, Singh R. Investigating surface properties of OHNS die steel after electrical discharge machining with manganese powder mixed in the dielectric[J]. International Journal of Advanced Manufacturing Technology. 2010,50(5-8):625-633.
    [56]Jeswani ML. Electrical discharge machining in distilled water[J]. Wear. 1981,72(1):81-88.
    [57]Jilani ST, Pandey PC. Experimental investigations into the performance of water as dielectric in EDM[J]. International Journal of Machine Tool Design and Research.1984,24(1):31-43.
    [58]Ekmekci B, Elkoca O, Erden A. A comparative study on the surface integrity of plastic mold steel due to electric discharge machining[J]. Metallurgical and Materials Transactions B.2005,36(1):117-124.
    [59]Syed KH, Palaniyandi K. Performance of electrical discharge machining using aluminium powder suspended distilled water[J]. Turkish Journal of Engineering and Environmental Sciences.2012,36(3):195-207.
    [60]Besliu I, Schulze HP, Coteata M, Amarandei D. Study on the dry electrical discharge machining [J]. International Journal of Material Forming.2010, 3(1 Supplement):1107-1110.
    [61]Kunieda M, Yoshida M, Taniguchi N. Electrical discharge machining in gas[J]. CIRP Annals-Manufacturing Technology.1997,46(1):143-146.
    [62]Kunleda M, Miyoshi Y, Takaya T, Nakajima N, ZhanBo Y, Yoshida M. High speed 3D milling by dry EDM[J]. CIRP Annals-Manufacturing Technology.2003,52(1):147-150.
    [63]Kunieda M, Takaya T, Nakano S. Improvement of dry EDM characteristics using piezoelectric actuator[J]. CIRP Annals-Manufacturing Technology. 2004,53(1):183-186.
    [64]Yoshida M, Kunieda M, Kaneko Y. Improvement of material removal rate of dry EDM using piezoelectric actuator coupled with servo-feed mechanism[C]. Proceeding of the 14th CAPE.1998:283-288.
    [65]Zhang QH, Zhang JH, Ren SF, Deng JX, Ai X. Study on technology of ultrasonic vibration aided electrical discharge machining in gas[J]. Journal of Materials Processing Technology.2004,149(1-3):640-644.
    [66]Zhang QH, Du R, Zhang JH, Zhang QB. An investigation of ultrasonic-assisted electrical discharge machining in gas[J]. International Journal of Machine Tools and Manufacture.2006,46(12-13):1582-1588.
    [67]Zhang QH, Zhang JH, Deng JX, Niu ZW. Ultrasonic vibration electrical discharge machining in gas[J]. Journal of Materials Processing Technology. 2002,129(1-3):135-138.
    [68]Xu MG, Zhang JH, Li Y, Zhang QH, Ren SF. Material removal mechanisms of cemented carbides machined by ultrasonic vibration assisted EDM in gas medium[J]. Journal of Materials Processing Technology.2009,209(4): 1742-1746.
    [69]Joshi S, Govindan P, Malshe A, Rajurkar K. Experimental characterization of dry EDM performed in a pulsating magnetic field[J]. CIRP Annals-Manufacturing Technology.2011,60(1):239-242.
    [70]Kao CC, Tao J, Lee S, Shih AJ. Dry wire electrical discharge machining of thin workpiece[J]. Transactions of NAMRI/SME.2006,34:253-260.
    [71]Kao CC, Tao J, Shih AJ. Near dry electrical discharge machining[J]. International Journal of Machine Tools and Manufacture.2007,47(15): 2273-2281.
    [72]Tao J, Shih AJ, Ni J. Near-dry EDM milling of mirror-like surface finish[J]. International Journal of Electrical Machining.2008, (13):29-33.
    [73]Tanimura T, Isuzugawa K, Fujita I, Iwarnoto A, Kamitani T. Development of EDM in the mist[C]. Proceedings of Ninth International Symposium of Electro Machining(ISEM IX), Nagoya, Japan,1989:313-316.
    [74]Tao J, Shih AJ, Ni J. Experimental study of the dry and near-dry electrical discharge milling processes[J]. Journal of Manufacturing Science and Engineering.2008,130(1):0110021-0110029.
    [75]Fujiki M, Kim GY, Ni J, Shih AJ. Gap control for near-dry EDM milling with lead angle[J]. International Journal of Machine Tools and Manufacture. 2011,51(1):77-83.
    [76]Fujiki M, Ni J, Shih AJ. Investigation of the effects of electrode orientation and fluid flow rate in near-dry EDM milling [J]. International Journal of Machine Tools and Manufacture.2009,49(10):749-758.
    [77]Fujiki M, Ni J, Shih AJ. Tool path planning for near-dry EDM milling with lead angle on curved surfaces[J]. Journal of Manufacturing Science and Engineering.2011,133(5):0510051-0510059.
    [78]顾琳,赵万生,张志华,康小明.喷雾电火花铣削加工及其机理的分析[J].电加工与模具.2006,(2):1-4.
    [79]李利,顾琳,夏永高,赵万生.内喷雾式电火花铣削加工的实验研究[J].上海交通大学学报.2007,41(10):1569-1572.
    [80]薛荣,顾琳,杨凯,张发旺.喷雾电火花铣削加工的能量分配与材料蚀除模型[J].机械工程学报.2012,48(21):175-182.
    [81]Jia Y, Kim BS, Hu DJ, Ni J. Experimental investigations into near-dry milling EDM of stellite alloys[J]. International Journal of Machining and Machinability of Materials.2010,7(1-2):96-111.
    [82]Jia Y, Kim BS, Hu DJ, Ni J. Parametric study on near-dry wire electrodischarge machining of polycrystalline diamond-coated tungsten carbide material[J]. Journal of Engineering Manufacture.2010,224(2): 185-193.
    [83]Boopathi S, Sivakumar K. Experimental investigation and parameter optimization of near-dry wire-cut electrical discharge machining using multi-objective evolutionary algorithm[J]. International Journal of Advanced Manufacturing Technology.2013,67(9-12):2639-2655.
    [84]王振龙,赵万生,狄士春,迟关心.微细电火花加工技术的研究进展[J].中国机械工程,2002,13(10):903-907.
    [85]李刚,赵万生.微细电火花加工及其关键技术[J].机械工程师.2004,(2):3-6.
    [86]Kadirvel A, Hariharan P, Gowri S. A review on various research trends in micro-EDM[J]. International Journal of Mechatronics and Manufacturing Systems.2012,5(5-6):361-384.
    [87]Li JZ, Yin GQ, Wang C, Guo XJ, Yu ZY. Prediction of aspect ratio of a micro hole drilled by EDM[J]. Journal of Mechanical Science and Technology.2013,27(1):185-190.
    [88]Yu ZY, Rajurkar KP, Shen H. High aspect ratio and complex shaped blind micro holes by micro EDM[J]. CIRP Annals-Manufacturing Technology. 2002,51(1):359-362.
    [89]Lim HS, Wong YS, Rahman M, Edwin Lee MK. A study on the machining of high-aspect ratio micro-structures using micro-EDM[J]. Journal of Materials Processing Technology.2003,140(1-3):318-325.
    [90]Ghoshal B, Bhattacharyya B. Influence of vibration on micro-tool fabrication by electrochemical machining[J]. International Journal of Machine Tools and Manufacture.2013,64:49-59.
    [91]Yu ZY, Masuzawa T, Fujino M. Micro-EDM for three-dimensional cavities (development of uniform wear method) [J]. CIRP Annals-Manufacturing Technology.1998,47(1):169-172.
    [92]Yan MT, Huang KY, Lo CY. A study on electrode wear sensing and compensation in micro-EDM using machine vision system[J]. International Journal of Advanced Manufacturing Technology.2009,42(11-12): 1065-1073.
    [93]Li JZ, Xiao L, Wang H, Yu HL, Yu ZY. Tool wear compensation in 3D micro EDM based on the scanned area[J]. Precision Engineering.2013, 37(3):753-757.
    [94]Ji RJ, Liu YH, Zheng C, Wang F, Zhang YZ, Shen Y, Cai BP. Computational fluid dynamics analysis of working fluid flow and machining debris movement in end electrical discharge milling and mechanical grinding compound machining[J]. Advanced Materials Research.2013,621:191-195.
    [95]Masuzawa T, Okajima K, Taguchi T, Fujino M. EDM-lathe for micro machining [J]. CIRP Annals-Manufacturing Technology.2002, 51(1):355-358.
    [96]Liu JW, Yue TM, Guo ZN. Grinding-aided electrochemical discharge machining of particulate reinforced metal matrix composites[J]. International Journal of Advanced Manufacturing Technology.2013, 68(9-12):2349-2357.
    [97]Ding SL, Mo JPT, Brandt M, Webb R. Electric discharge grinding of polycrystalline diamond materials[J]. Applied Mechanics and Materials. 2013,271-272:333-337.
    [98]Shervani-Tabar MT, Mobadersany N. Numerical study of the dielectric liquid around an electrical discharge generated vapor bubble in ultrasonic assisted EDM[J]. Ultrasonics.2013,53(5):943-955.
    [99]Srivastava V, Pandey PM. Effect of process parameters on the performance of EDM process with ultrasonic assisted cryogenically cooled electrode[J]. Journal of Manufacturing Processes.2012,14(3):393-402.
    [100]吴俊杰,谷安,吕传伟,甘金波.混粉电解电火花复合加工工艺研究[J].电加工与模具.2012,(5):64-66.
    [101]Fukui M, Kinoshita N. Developing a'mole'electric discharge digging machining[J]. CIRP Annals-Manufacturing Technology.1989,38(1): 203-206.
    [102]Ishida T, Takeuchi Y. L-shaped curved hole creation by means of electrical discharge machining and an electrode curved motion generator[J]. International Journal of Advanced Manufacturing Technology.2002, 19(4):260-265.
    [103]Ishida T, Takeuchi Y. Creation of U-shaped and skewed holes by means of electrical discharge machining using an improved electrode curved motion generator[J]. International Journal of Automation Technology.2008,2(6): 439-446.
    [104]贾宝贤,刘永红,杨毅.仿蚯蚓机器人蠕动装置的研究[J].机器人.2000,22(5):415-419.
    [105]刘永红,杨毅,贾宝贤.曲线孔电火花加工SMA机器人的研究[J].中国机械工程.2001,12(8):946-948.
    [106]徐盛林.日本电火花加工技术的发展现状[J].电加工与模具.2001,(3):13-16.
    [107]徐盛林,杨俊杰,李三岗.薄壁橡胶制品的模具型腔和型芯的电火花套料加工的实验探讨[J].机床与液压.2008,36(12):16-18,21.
    [108]徐盛林,杨俊杰,余五新,李京平,傅志翔.弯曲孔电加工工艺的实验研究[J].制造技术与机床.2005,(6):71-74.
    [109]徐盛林,胡磊,杨俊杰,余五新.基于线框电极的电火花直孔套料加工研究[J].现代制造工程.2005,(4):79-81.
    [110]曾祥丹,林宋.橡胶模具的电火花套料加工技术研究[J].现代商贸工业.2010,(18):275-276.
    [111]曾祥丹.橡胶制品模具的电火花套料加工技术的研究[D].北方工业大学工程硕士学位论文,2011.
    [112]Lertphokanont V, Sato T, Ota M, Yamaguchi K, Egashira K. Micro-structuring on cylindrical inner surface using whirling electrical discharge texturing[J]. Advanced Materials Research.2012,565:430-435.
    [113]Wang ZT, Yang MJ. Laser-guided discharge texturing for cold mill roller[J]. Journal of Materials Processing Technology.2011,211(11): 1678-1683.
    [114]Cogun C, Ozerkan B, Karacay T. An experimental investigation on the effect of powder mixed dielectric on machining performance in electric discharge machining[J]. Journal of Engineering Manufacture.2006, 220(7):1035-1050.
    [115]Kumar S, Batra U. Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric [J]. Journal of Manufacturing Processes.2012,14(1):35-40.
    [116]Janmanee P, Muttamara A. Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension[J]. Applied Surface Science.2012,258(19):7255-7265.
    [117]Khan AA, Ndaliman MB, Ali MY, Mansor MHB, Idrus NAB. Surface modification by EDM using Co-Cr sintered powder metallurgy electrode[J]. Advanced Materials Research.2012,576:56-59.
    [118]Das A, Misra JP. Experimental investigation on surface modification of aluminum by electric discharge coating process using TiC/Cu green compact tool-electrode[J]. Machining Science and Technology.2012, 16(4):601-623.
    [119]魏宸官.电流变技术——机理·材料·工程应用[M].北京:北京理工大学出版社,2000:71-72.
    [120]吕战竹.混粉电火花加工机理及应用研究[D].大连理工大学博士学位论文,2005:27.
    [121]李明辉.电火花加工基础理论[M].北京:国防工业出版社,1989.
    [122]Dunlap WC, Watters RL. Direct measurement of the dielectric constants of silicon and germanium[J]. Physical Review.1953,92(6):1396-1397.
    [123]Patel MR, Barrufet MA, Eubank PT, Dibitonto DD. Theoretical models of the electrical discharge machining process. Ⅱ. The anode erosion model[J]. Journal of Applied Physics.1989,66(9):4104-4111.
    [124]Tzeng YF, Lee CY. Effects of powder characteristies on electrodischarge machining efficienecy[J]. The International Journal of Advanced Manufacturing Technology.2001,17(8):586-592.
    [125]孟庆国,赵万生,李文卓.粉末特性对混粉电火花镜面加工的影响[J].电加工与模具.2000,(4):13-16.
    [126]胡林,张朝平,梅光前,周代宗,任强,胡宗超.磁流变液聚结稳定性和沉降稳定性的研究[J].机械科学与技术.1998,17(11):136-138.
    [127]滕自尊.转炉除尘废水处理的设计[J].上海冶金设计.1992,(1):26-31.
    [128]高上品.电火花成形加工工作液的物理化学性质[J].电加工与模具.2002,(5):38-40.
    [129]Li L, Wong YS, Fuh JYH, Lu L. EDM performance of TiC/copper-based sintered electrodes[J]. Materials and Design.2001,22(8):669-678.
    [130]McGeough JA. Advanced Methods of Machining[M]. London:Chapman and Hall,1998.
    [131]Abbas NM, Yusoff N, Mahmod Wahab R. Electrical discharge machining (EDM):practices in Malaysian industries and possible change towards green manufacturing[J]. Procedia Engineering.2012,41:1684-1688.
    [132]Singh S, Maheshwari S, Pandey PC. Some investigations into the electric discharge machining of hardened tool steel using different electrode materials[J]. Journal of Materials Processing Technology.2004, 149(1-3):272-277.
    [133]美国金属学会主编.金属手册——性能与选择:有色合金及纯金属[M].第九版,第二卷.北京:机械工业出版社,1994.
    [134]周鹤良.电气工程师手册[M].北京:中国电力出版社,2008.
    [135]大连理工大学无机化学教研室.无机化学[M].第四版.北京:高等教育出版社,2000.
    [136]孙杏凡.等离子体及其应用[M].北京:高等教育出版社,1983:16.
    [137]茆诗松,周纪芗,陈颖.试验设计[M].北京:中国统计出版社.2004:241.
    [138]雷德明,严新平.多目标智能优化算法及其应用[M].北京:科学出版社,2009.
    [139]Kennedy J, Eberhart R. Particle swarm optimization[C]. IEEE International Conference on Neural Networks, Piscataway, USA,1995: 1942-1948.
    [140]张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展.2004,41(7):1286-1291.
    [141]刘衍民,牛奔,赵庆祯.多目标优化问题的粒子群算法仿真研究[J].计算机应用研究.2011,28(2):458-460.
    [142]武飞周,薛源.智能算法综述[J].工程地质计算机应用.2005,(2):9-15.
    [143]Olsson AE. Particle swarm optimization:Theory, Techniques & Applications[M]. New York:Nova Science Publishers, Inc.,2011.
    [144]王晓笛,肖伟.解决多目标优化问题的几种进化算法的比较研究[J].电脑知识与技术.2011,7(7):1614-1616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700