Zr基非晶合金超塑性微成形工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶合金在常温下、微尺度时保持有极高的力学强度等性能,且在其过冷液态区具有优异的超塑性成形能力,因而被广泛认为是制备高强度微纳结构最具潜力的材料之一。本学位论文以Zr65Cu17.5Ni10Al7.5大块非晶合金为研究对象,针对其超塑性热压微成形工艺进行了研究,内容包括:
     (1)采用X射线衍射分析仪、差示扫描量热仪、力学性能试验机、热重分析仪等,系统研究了Zr65Cu17.5Ni10Al7.5大块非晶合金常温下的压缩断裂强度,过冷液态区温度范围以及在此温度范围内的等温氧化行为、等温晶化行为以及单轴压缩超塑性性能,为Zr基非晶合金的超塑性成形工艺的实施提供指导。
     (2)采用飞秒激光技术加工制备了微型齿轮金属模具,并应用于非晶合金的超塑性成形,成功制备了非晶态的微型零件。
     (3)在国内首次研究了基于硅模具的非晶合金复杂三维微型零件成形方法。采用体硅工艺批量制备出微型硅模具,应用于非晶合金的超塑性微成形,成功制备出非晶合金微零件。同时,采用DEFORM-3D有限元软件模拟分析了非晶合金在硅模具中的填充过程,对成形载荷和压头速度等参数进行了预测和优化,成功制备出模数为0.01mm、齿数为20的非晶合金微型直齿圆柱齿轮。
     (4)开展了利用硅模具进行一模多件制备非晶合金微型零件的工艺研究,包括微型硅模具的结构设计、侧壁参数优化、成形坯料尺寸形状选取等。实验研究了采用多层硅模具制备复杂三维非晶合金微型零件的工艺方案,制备出复杂的非晶合金微型多层齿轮。
     (5)自行设计了3K-1型微行星齿轮减速机构,对微型齿轮减速机构中的微零件成形方案进行了理论分析和实验研究,制备出了非晶态的微型行星齿轮减速机构各微型零件。
     非晶合金具有优异的性能,受到了人们的重视,基于其超塑性成形制备高性能的微型零件具有广泛的应用前景。当前,非晶合金的微成形技术研究正处于起步阶段,而基于其超塑性来成形制备复杂三维微纳结构/零件的研究有待于进一步加强。
Bulk metallic glass was considered as one of the most potential materials because of the excellent super-plastic forming ability in the supercooled liquid region and mechanical properties in micron-size. In this paper, the superplastic hot embossing micro-forming technology of the bulk metallic glass was studied, which the composition elements ratio was Zr65Cu17.5Ni10Al7.5. Content as described below:
     The thermal stability of the samples, associating with the glass transition and crystallization, were examined by differential scanning calorimetric (DSC) to determine the temperature of supercooled liquid region, and the time-temperature-transformatiom (TTT) curve of the samples was obtained. Then, the compression strength at room temperature and the superplastic uniaxial compression performance at the supercooled liquid region have been tested by the Zwick Roell testing machine. The isothermal oxidation behavior has been researched by thermo-gravimetric analyzer (TGA). The studies provided the experimental basis for the papmeters option of the superplastic hot embossing micro-forming technology.
     The metal mold prepared by the femto-second laser processing technology was used to the superplastic hot embossing micro-forming technology of bulk metallic glass, and the armphous micro-part was prepared. Superplastic micro-forming of bulk metallic glass with silicon mold using hot embossing technology was studied, which was the firstly in china. The silicon mold prepared by the bulk silicon processing technology was used to forming the armphous micro-parts. The finite element simulation software DEFORM-3D was used to analysis the filling process in the silicon mold. The forming load was predicted, and the punch velocity was optimized. Finally, a good dimensional accuracy for a micro-spur gear with 0.1 module,20 teeth and a spline structure in the core was obtained by superplastic hot embossing forming technology.
     The process parameters of forming more than one at one time were studied, including the structural design of micro silicon mold, the thickness of silicon mold sidewall and the size and shape of blank. The forming process programs of complex multi-dimensional microstructure were designed using the multi-dimensional silicon mold. The complex amorphous multi-gear microstructure was prepared.
     3K-1 type micro planetary gear reducer was designed. The forming process programs of the micro-parts used in the micro planetary gear reducer were analyzed and testing studied. The armphous micro-parts were prepared.
     The study of bulk metallic glass was attentioned due to the excellent performance. The manufacture of the high performance micro-parts has broad application prospects basing on the superplastic forming techonology. The research on the micro-forming of bulk metallic glass was still in the initial stage. The preparetion of the complex three-dimensional micro-structure/parts basing on the superplastic micro-forming technology needs further study.
引文
[1]Burgessa T, Ferryb M. Nanoindentation of metallic glasses. Materials Today,2009, 12:24~32.
    [2]Ashby M F, Greer A L. Metallic glasses as structural materials. Scripta Materialia, 2006,54:321~326.
    [3]Inoue A. High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates. Materials Transactions, JIM,1995,36:866~875.
    [4]Gilbert C J, Ritchie R O, Johnson W L. Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Applied Physics Letters, 1997,71:476~481.
    [5]Inoue A. Bulk amorphous and nanocrystalline alloys with high functional properties. Materials Science and Engineering A,2001,304-306:1~10.
    [6]Conner R D, Dandliker R B, Scruggs V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites. International Journal of Impact Engineering,2000,24:435~444.
    [7]汪卫华,俞育德.新材料引发国防新竞争:浅谈贫铀弹的替代材料-超强块体金属玻璃.科学时报,2001年2月22日.
    [8]郭贻诚,王震西.非晶态物理学.科学出版社,1984:548.
    [9]陈贻瑞,王健.基础材料与新材料.天津大学出版社,1994:297.
    [10]Luborsky F E. Amorphous Metallic Alloys (Butterworths Monographs in Materials). Butterworth-Heinemann,1983:496.
    [11]Turnbull D. Kinetics of solidification of supercooled liquid mercury droplets. The Journal of Chemical Physics,1953,20:411~424.
    [12]Klements W, Willens R H, Duwez P. Non-Crystalline Structure in Solidified Gold-Silicon Alloys. Nature,1960,187:869~870.
    [13]Chen H S. The Glass Transition Temperature in Glassy Alloys:Effects of Atomic Sizes and the Heats of Mixing. Acta Materialia,1974,22(1):897~900.
    [14]Kui H W, Greer A L, Turnbull D. Formation of bulk metallic glass by fluxing. Applied Phsics Letters,1984,45:615~616.
    [15]Inoue A, Kato A, Zhang T, et al. Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method. Material Transactions, JIM,1991,32(7):609~616.
    [16]Inoue A, Zhang T, Masumoto T. Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Metallic Mold Casting Method. Materials Transactions, JIM,1990,31(5):425~428.
    [17]Inoue A, Zhang T, Masumoto T. Preparation of Bulky Amorphous Zr-Al-Co-Ni-Cu Alloys by Copper Mold Casting and Their Thermal Mechanical-Properties. Materials Transactions JIM,1995,36(3):391~398.
    [18]Inoue A, Gook J S. Fe-Based Ferromagnetic Glassy Alloys with Wide Supercooled Liquid Region. Materials Transactions, JIM,1995,36(9):1180~1183.
    [19]Inoue A, Nishiyama N, Takayuki M. Preparation of Bulk Glassy Pd40Ni10Cu30P20 Alloy of 40 mm in Diameter by Water Quenching. Materials Transactions JIM, 1996,37(2):181-184.
    [20]Zhang T, Inoue A. Preparation of Ti-Cu-Ni-Si-B amorphous alloys with a large supercooled liquid region. Materials Transactions JIM,1999,40(4):301~306.
    [21]Akatsuka R, Zhang T, Koshiba H, et al. Preparation of new Ni-based amorphousalloys with a large supercooled liquid region. Materials Transactions JIM,1999,40(3):258~261.
    [22]Peker A, Johnson WL. A Highly Process able Metallic Glass:Zr41.2Ti13Cu12.5Ni10.8 Be22.5. Applied Phsics Letters,1993,63(17):2342~2344.
    [23]Johnson W L. Bulk Glass-Forming Metallic Alloys:Science and Technology. MRS Bulletin,1999,10:42~56.
    [24]Inoue A, Shen B L, Koshiba H, et al. Acta Materialia,2004,52:1631~1637.
    [25]Zhao Z F, Zhang Z, Wen P, et al. Applied Phsics Letters,2003,82:4699.
    [26]Flores K M, Dauskardt R H. Scripta Materialia,1999,41:937~943.
    [27]Takuya T, Kenji A, Rudi S R, et al. Electromagnetic vibration process for producing bulk metallic glasses. Nature materials,2005,4:289~292.
    [28]Zhang Y, Wang W H, Greer A L. Making metallic glasses plastic by control of residual stress. Nature materials,2006,5(11):857~860.
    [29]Lu Z P, Beia H, Wu Y, et al. Oxygen effects on plastic deformation of a Zr-based bulk metallic glass. Applied Physics Letters,2008,92,011915-1~011915-3.
    [30]Langer J S. Shear-transformation-zone theory of plastic deformation near the glass transition. Physical Review,2008, E77:021502-1~021502-14.
    [31]Kato H, Inoue A, Chen H S. Softening and heating behaveors during the nonlinear viscous flow in a Zr-based bulk metallic glass. Journal of Non-Crystalline Solids, 2007,353:3764~3768.
    [32]Shin H S, Jeong Y J, Ahn J H. Strain rate dependence of deformation behavior in Zr-based bulk metallic glasses in the supercooled liquid region. Journal of Alloys and Compounds,2007,434-435:40~43.
    [33]Chan K C, Liu L, Wang J F. Superplastic deformation of Zr55Cu30Al10Ni5 bulk metallic glass in the supercooled liquid region. Journal of Non-Crystalline Solids, 2007,353:3758~3763.
    [34]Liu L, Chen Q, Chan K C, et al. The effect of high temperature plastic deformation on the thermal stability and microstructure of Zr55Cu30Ni5Al10 bulk metallic glass. Materials Science and Engineering A,2007,449-451:949~953.
    [35]Schroers J. On the formability of bulk metallic glass in its supercooled liquid state, Acta Materialia,2008,56(3):471~478.
    [36]Guo H, Yan P F, Wang Y B, et al. Tensile ductility and necking of metallic glass. Nature materials,2007,6:735~739.
    [37]Liu Y H, Wang G, Wang R J et al. Super Plastic Bulk Metallic Glasses at Room Temperature. Science,2007,315(9):1385~1388.
    [38]张晓立,王金相,孙宇新等。块体非晶合金的应用与研究进展。科学技术与工程,2007,7(24):6383-6390.
    [39]惠希东,陈国良。块体非晶合金。北京:化学工业出版社,2007.
    [40]Engle U, Eckstein R. Micro-forming from basic research to its realization. Journal of Materials Processing Technology,2002,125-126:35~44.
    [41]王振龙,等.基于分层制造原理的微细电火花加工技术研究.机械工程学报,2002,38(2):22-26.
    [42]Hiroshi I, et al. Coining process as a means of controlling surface microgeometry. Journal of Materials Processing Technology,1998,80-81:101~107.
    [43]Otto T, et al. Fabrication of Micro Optical Components by High Precision Embossing. Micro-machining and Microfabrication Symposium, Santa Clara (CA), USA,18-20.2000,4179:96~106.
    [44]Geiger M, Vollertsen F, Kals R. Fundamentals on the Manufacturing of Sheet Metal Microparts. Annals of the CIRP,1996,45(1):277~282.
    [45]魏航,孙友松.金属微成形技术及其研究进展.锻压装备与制造技术,2005,5:10-13
    [46]Saotome Y, Yasuda K, Kaga H. Microdeep drawability of very thin sheet steels. Journal of Materials Processing Technology.2001,113:641~647.
    [47]Hu Z, Vollerteen F. Friction test for deep drawing with respect to size-effects. Proceedings of the 1st ICNFT.2004:153~158.
    [48]郭斌,周健,马东莉.金属箔板的微圆筒形件拉深工艺试验研究.第一届微米纳米成形技术研讨会.哈尔滨工业大学材料科学与工程学院,150001.
    [49]Kurimoto S, Hirota K, Nakano Y, et al. Improvement of ultra-fine piercing by means of vacuum system. Advanced Technology of Plasticity,2002,1:391~396.
    [50]Kals R T A. Fundamentals on the Miniaturization in Sheet Metal Working Processes. Reihe Fertigungstechnik Erlangen,1999,87:54~60.
    [51]Jimma T, Sekine F. On High Speed Precision Blanking of IC Lead-Frames Using a Progressive Die. Journal of Materials Processing Technology,1990,22:291~305.
    [52]Cheung C F, Lee W B, Chin W M. An Investigation of Tool Wear in the Dambar Cutting of Intergrated Circuit Packages. Wear,2000,237:274~282.
    [53]Lee W B, Cheung C F, Chan L K, et al. An Investugation of Process Parameters in the Dambar Cutting of Intergrated Circuit Packages. Journal of Materials Processing Technology.1997,66:63~72.
    [54]Raule L V, Goijaerts A M, Govaert L E, et al. Size Effects in the Processing of Thin Metal Sheets. Journal of Materials Processing Technology.2000,115:44~48.
    [55]Engel U, Eckstein R. Micro forming-From Basic Research to Its Realization. Journal of Materials Processing Technology,2002,125-126:35~44.
    [56]Geiger M, Kleiner M, Eckstein R. Microforming. Annals of the CIRP 2001,50(2): 445~462.
    [57]Geiger M, Engel U. Microforming-a Challenge to the Plasticity Research Community-addressed to the 40th Anniversary of the JSTP. Journal of JSTP,2002, 494(43):171~172.
    [58]Geiger M, Eckstein R. Microforming. Proc. of 7th ICTP,2002:327~338.
    [59]Engle U, Eckstein R. Micro-forming from basic research to its realization. Journal of Materials Processing Technology,2002,125-126:35~44.
    [60]王振龙,等.基于分层制造原理的微细电火花加工技术研究.机械工程学报,2002,38(2):22-26.
    [61]Hiroshi I, et al. Coining process as a means of controlling surface microgeometry. Journal of Materials Processing Technology,1998,80-81:101~107.
    [62]Otto T, et al. Fabrication of Micro Optical Components by High Precision Embossing. Micro-machining and Microfabrication Symposium, Santa Clara (CA), USA,18-20.09.2000,4179:96~106.
    [63]Geiger M, Vollertsen F, Kals R. Fundamentals on the Manufacturing of Sheet Metal Microparts. Annals of the CIRP, 1996,45(1):277~282.
    [64]魏航,孙友松.金属微成形技术及其研究进展.锻压装备与制造技术,2005,5:10-13
    [65]Saotome Y, Yasuda K, Kaga H. Microdeep drawability of very thin sheet steels. Journal of Materials Processing Technology.2001,113:641~647.
    [66]Hu Z, Vollerteen F. Friction test for deep drawing with respect to size-effects. Proceedings of the 1st ICNFT.2004:153~158.
    [67]郭斌,周健,马东莉.金属箔板的微圆筒形件拉深工艺试验研究.第一届微米纳米成形技术研讨会.哈尔滨工业大学材料科学与工程学院,150001.
    [68]Kals R T A. Fundamentals on the Miniaturization in Sheet Metal Working Processes. Reihe Fertigungstechnik Erlangen,1999,87:54~60.
    [69]Jimma T, Sekine F. On High Speed Precision Blanking of IC Lead-Frames Using a Progressive Die. Journal of Materials Processing Technology,1990,22:291~305.
    [70]Cheung C F, Lee W B, Chin W M. An Investigation of Tool Wear in the Dambar Cutting of Intergrated Circuit Packages. Wear,2000,237:274~282.
    [71]Lee W B, Cheung C F, Chan L K, et al. An Investugation of Process Parameters in the Dambar Cutting of Intergrated Circuit Packages. Journal of Materials Processing Technology,1997,66:63~72.
    [72]Raule L V, Goijaerts A M, Govaert L E, et al. Size Effects in the Processing of Thin Metal Sheets. Journal of Materials Processing Technology,2000,115:44~48.
    [73]Engel U, Eckstein R. Micro forming-From Basic Research to Its Realization. Journal of Materials Processing Technology,2002,125-126:35~44.
    [74]Geiger M, Eckstein R. Microforming. Advanced Technology of Plasticity,2002,1: 327~338.
    [75]Saotome Y, Iwazaki H. Superplastic Backward Microextrusion of Microparts for Micro-Electro-Mechanical Systems. Journal of Materials Processing Technology, 2000,115:44~48.
    [76]Gao J, Krishnan N, Wang Z, et al. Microforming:Experimental Investigation of the Extrusion Process for Micropins and its Numerical Simulation Using RKEM. Journal of Manufacturing Science and Engineering,2004,126:642~645.
    [77]Kim W J, Sa Y K. Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears. Scripta Materialia,2006, 54(7):1391~1395.
    [78]Tameter R, Ruprecht G, Bauseelt J. Microcasting of Metal Alloys. Microsystem Tehnologies,2002,10:261~264.
    [79]王国田.微尺度构件微铸造成形工艺及组织性能.硕士学位论文,哈尔滨工业大学,2006,6.
    [80]于同敏,宫德海.微型模具制造技术研究与发展.中国机械工程,2005,16(2):179-183.
    [81]狄世春,于滨,赵万生,等.微细电火花线切割加工技术的研究现状及发展趋势.2004,2(40):12-15.
    [82]伊福延,张菊芳.LIGA技术在先进模具制造中的应用.模具工程,2006,7(64):72-75.
    [83]贾宝贤,王振龙,赵万生.适用于微机械制造的常规加工方法.新技术新工艺,2003,8:19-22.
    [84]王波,梁迎春,孙雅洲,等.带三维结构的惯性MEMS器件的微细铣削加工.传感器技术学报,2006,19(5):1473-1476.
    [85]王振龙,赵万生,李文卓.电火花加工技术的发展趋势与工艺进展.制造技术与机床,2007,7:8-11.
    [86]贾宝贤,胡富强,王振龙,等.线电极电火花磨削技术在微细加工中的应用.电加工与模具,2006,B05:22-25.
    [87]Yu Z Y, Rajurkar K P, Tandon A. Study of 3D micro-ultrasonic machining. Journal of Micromechanics and Microengineering,2005,15:124~129.
    [88]李文卓.微细电火花加工系统及相关技术的研究.博士学位论文,哈尔滨工业大学.2002.
    [89]唐勇军,胡富强,王振龙,等.微细电火花加工技术的最新进展.电加工与模具.2005,增刊:36-39.
    [90]Yoshihiro H. LIGA process-micromachining Technique Using Synchrotron Radiation Lithography and Some Industrial Applications. Nuclear Instruments and Methods in Physics Research,2003,208(2):21-26.
    [91]Chantal G, Khan M. SU-8 resist for low-cost X-ray patterning of high-resolution, high-aspect-ratio MEMS. Microelectronics Journal,2002,33(1-2):101~105.
    [92]张永华,丁桂甫,彭军,等.LIGA相关技术及应用.传感器技术,2003,22(3):60-64.
    [93]Rizvi N H, Apte P. Developments in laser micro-machining techniques. Journal of materials processing,2002,127:206~210.
    [94]Masuzawa T, Olde-benneker. A new method for three-dimensional excimer laser micromachining. Hole area modulation(HAM), CIRP,2000,49(1):139~142.
    [95]马炳和.微机械的准分子激光直写加工与三维微测量技术研究.硕士学位论文,西安:西北工业大学,1998.
    [96]Kawata S, Sun H B, Tanka T, et al. Finer features for functional micro devices. Nature,2001,412:697~698.
    [97]P. Rai-Choudhury. Handbook of Micro-lithography, Micro-machining, and Micro-fabrication (Volume 2), SPIE Press and IEE,1997.
    [98]Gregory T A, Kovacs. Micro-machined Transducers Sourcebook [M]. McGraw-Hill,1998.
    [99]黄庆安.硅微机械加工技术[M].北京:科技出版社,1996.
    [100]张兴等.微电子学概论[M].北京:北京大学出版社,2000.
    [101]申昱,于沪平,阮雪榆.微成形中材料非均匀流动研究.锻压技术,2005,5:1-4.
    [102]Kwang S L, Young W C. Extrusion formability and deformation behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass in an undercooled liquid state after rapid heating. Materials Science and Engineering A,2005,399:238~243.
    [103]John A W, Christian T, Rune D J, et al. Forming of bulk metallic glass microcomponents. Journal of Material Processing Technology,2008,??:
    [104]Kim W J, Lee J B, Jeong H G. Superplastic gas pressure forming of Zr65Al10Ni10Cu15 metallic glass sheets fabricated by squeeze mold casting. Materials Science and Engineering A,2006,428:205~210.
    [105]Bardt J, Mauntler N, Bourne G et al. Micromolding three-dimensional amorphous metal structures. Journal of Materials Research,2007,22(2):339~343.
    [106]Schroers J, Nguyen T, Keeffe S O. Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication. Materials Science and Engineering A,2007,449-451:898~902.
    [107]Kumar G, Tang H X, Schroers J. Nanomoulding with amorphous metals. Nature letters,2009,457:868~872.
    [108]张志豪,刘新华,谢建新.Zr基非晶合金精密直齿轮超塑性成形试验研究.机械工程学报,2005,41(3):151-154.
    [109]郭晓琳,王春举,周健等.Zr基块体非晶合金的微塑性成形性能.中国有色金属学报,2006,16(7):1190-1195.
    [110]Pan C T, Wu T T, Chen M F, et al. Hot embossing of micro-lens array on bulk metallic glass, Sensors and Actuators A,2008,141:422~431.
    [111]崔丽华,王宝雨,胡正寰.数值模拟技术在塑性成形中的应用与发展.机械制造,2005(494):17-18.
    [112]Henann D, Anand L. A constitutive theory for the mechanical response of amorphous metals at high temperatures spanning the glass transition temperature: Application to microscale thermoplastic forming. Acta Materialia,2008,6(13): 3290~3305.
    [113]Zhang Z H, Xie J X. A numerical simulation of super-plastic die forging process for Zr-based bulk metallic glass spur gear. Materials Science and Engineering A, 2006,433:323~328.
    [114]李传民,王向丽,闫华军,等.DEFORM-3D 5.03金属成形有限元分析实例指导教程[M].第1版,北京:机械工业出版社,2007.9-10.
    [113]Cormack C M, Monaghan J. A finite element analysis of cold-forging dies using two-and three-dimensional models. Journal of Materials Processing Technology, 2001,118:286~292.
    [116]Cormack C M, Monaghan J.2D and 3D finite element analysis of a three stage forging sequence. Journal of Materials Processing Technology,2002,127:48~56.
    [117]Yoon J H, Lee H S, Yi Y M. Finite element simulation on superplastic blow forming of diffusion bonded 4 sheets. Journal of Materials Processing Technology, 2008,201:68~72.
    [118]Kang C G, Jung Y J, Kwon H C. Finite element simulation of die design for hot extrusion process of Al/Cu clad composite and its experimental investigation. Journal of Materials Processing Technology,2002,124:49~56.
    [119]Epler M E, Misiolek W Z. Novel billet design for co-extrusion of ferrous material tubes. Materials Science and Engineering A,2006,429:43~49.
    [120]Kim S Y, Kubota S, Yamanaka M. Application of CAE in cold forging and heat treatment processes for manufacturing of precision helical gear part. Journal of Materials Processing Technology,2008,201:25~31.
    [121]Shan D B, Xu W C, Si C H, et al. Research on local loading method for an aluminium-alloy hatch with cross ribs and thin webs. Journal of Materials Processing Technology,2007,187-188:480~485.
    [122]Shi K. Shan D B, Xu W C, et al. Near net shape forming process of a titanium alloy impeller. Journal of Materials Processing Technology,2007,187-188:582~585.
    [123]Zhang Z J, Dai G Z, Wu S N, et al. Simulation of 42CrMo steel billet upsetting and its defects analyses during forming process based on the software DEFORM-3D. Materials Science and Engineering A,2009,499:49~52.
    [124]Jun H J, Lee K S, Chang Y W. Boss formability of a Zr-based bulk metallic glass. Intermetallics,2009,17(6):463~470.
    [125]Guo X L, Chan K C, Liu L, et al. Stress-induced structural change during superplastic deformation of bulk Zr-based metallic glass. Materials Science and Engineering A,2009,499:534~539.
    [126]Chang Y C, Wu T T, Chen M F, et al. Finite elements simulation of micro-imprinting in Mg-Cu-Y amorphous alloy. Materials Science and Engineering A,2009,499:153~156.
    [127]Dittmar R, Wurschum W, Ulfert W, et al. Structure and glass transition of amorphous Zr65Cu17.5Ni10Al7.5 studied by positron lifetime. Solid State Communications,1998,105(4):221~224.
    [128]Sharam S K, Strunskus T, Ladebusch H, et al. Surface oxidation of amorphous Zr65Cu17.5Ni10Al7.5 and Zr46.75Ti8.25Cu7.5Ni10Be27.5. Materials Science Engineering A, 2001,304-306:747~752.
    [129]Djakonova N P, Sviridova T A, Zakharova E A, et al. On the synthesis of Zr-based bulk amorphous alloys from glass-forming compounds and elemental powders. Journal of alloys and compounds,2004,367:191~198.
    [130]Dhawan A, Roychowdhury S, De P K, Sharma S K. Potentiodynamic polarization studies on bulk amorphous alloys and Zr46.75Ti8.25Cu7.5Ni10Be27.5 and Zr65Cu17.5Ni10Al7.5. Journal of Non-Crystalline Solids,2005,351:951~955.
    [131]Liu L, Qiu C L, Chen Q, et al. Corrosion behavior of Zr-based bulk metallic glasses in different artificial body fluids. Journal of Alloys and Compounds,2006,425: 268~273.
    [132]He L, Wu Z G, Jiang F, et al. Enhanced thermal stability of Zr65Cu17.5Ni10Al7.5 metallic glass at temperature range near glass transition by oxygen impurity. Journal of Alloys and Compounds,2008,456:181~186.
    [133]Han Z H, He L, Zhong M B, et al. Dual specimen-size dependences of plastic deformation behavior of a traditional Zr-based bulk metallic glass in compression. Materials Science Engineering A,2009,513-514:344~351.
    [134]Mark T. The case for bulk metallic glass. Materials Today,2004,7:36~43.
    [135]Han Z H, He L, Zhong M B, et al. Dual specimen-size dependences of plastic deformation behavior of a traditional Zr-based bulk metallic glass in compression. Materials Science Engineering A,2009,513-514:344~351.
    [136]Chan K C, Liu L, Wang J F. Journal of Non-Crystalline Solids,2007,353: 3758~3763.
    [137]Kawamura Y, Shibata T, Inoue A, et al. Superplastic deformation of Zr65Al10Ni10Cu15metallic glass. Scripta Materialia,1997,37(4):431~436.
    [138]Schroers J, Nguyen T, Keeffe S O, et al. Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication. Materials Science and Engineering A,2007,449-451:898~902.
    [139]Schroers J, Pham Q, Desai A. Thermoplastic Forming of Bulk Metallic Glass-A Technology for MEMS and Microstructure Fabrication. Journal of Microelectromechanical Systems,2007,16(2):240~247.
    [140]Zhang Z H, Xie J X. A numerical simulation of super-plastic die forging process for Zr-based bulk metallic glass spur gear. Materials Science and Engineering A, 2006,433(1-2):323~328.
    [141]Qiu J J, Wang A M, Zhang H F, et al. Pressure effect on ocrystallization of Zr55Cu30Al10Ni5 bulk metallic glass. Journal of materials Science and Technology, 2002,18(2):184~186.
    [142]Ashby M F, Spaepen F. The structure of grain boundaries described as a packing of polyhedra. Acta Materialia,1977,25:1647~1663.
    [143]Argon A S. Plastic deformation in metallic glasses. Acta Materialia,1979,27(1): 47~58.
    [144]Pang S J, Zhang T, Kimura H, et al. Corrosion behavior of Zr-(Nb-)Al-Ni-Cu glassy alloys, Materials Transactions, JIM,2000,41(11):1490~1494.
    [145]饶振纲.微型行星齿轮传动的设计研究.传动技术(上海),2003,6(2):18-24.
    [146]饶振纲.行星传动机构设计(第三版)[M].北京:国防工业出版社,2003.
    [147]Kohei H. Micro-planetary Gear Drivers. Nippon Kikai Gakkai Robotikusu, Mekatoronikusu Koenkai Koen Ronbunshu (in Japanese),1994-B:965~968.
    [148]陈文元,丁涛,李世峰,等.用于φ<2mm电磁性微马达的微3K-2型齿轮减速器的研究.微细加工技术,1997(4):49-54.
    [149]张卫平,陈文元,范志荣,等.模数≤0.06 mm的微行星齿轮减速器的CAD/ CAM技术.机械设计,2000(12):14-17.
    [150]张卫平,陈文元,陈迪等.基于LIGA技术的3K-2型微行星齿轮减速器的设计和制造.中国机械工程,2003,14(5):374-376.
    [151]孙炜.塑料3K-2型微行星齿轮减速器设计方法与注塑成型技术的研究,硕士研究生论文,大连理工大学,2009.
    [152]Nishiyama T. On joint Meeting of Materials Science of Metallic Glasses, Osaka Uniersity,2005,22~23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700