微铣削机床改进设计及其数控系统的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪,随着科学技术的飞跃发展,微小零件在许多未来科技的发展领域中发挥着非常重要的作用,特别在航空航天、生物医疗、电子通信、精密仪器、家用电器和汽车自动化等领域存在巨大需求。微铣削技术是实现微小零件制备的一种重要加工工艺。该技术柔性较大,在高效率、高精度、低成本方面具有优势,特别适合于具有复杂的三维结构、曲面的微小零件和微小模具的加工,工件材料多样。微铣削加工技术以其在微切削加工技术中具备的种种优势地位,拥有非常广阔的应用前景。
     由于微零件结构的复杂性,有着曲面表面的微零件加工对微加工机床的多轴联动加工功能提出了新的要求。为满足产品结构复杂化的需求,促进微铣削加工机理的实验研究。本文结合实验室微铣削项目,在课题组研究成果的基础上,设计了具有车铣复合加工功能的四轴联动微铣削机床,并开发了相应的数控系统,主要包括以下内容:
     (1)在分析了四轴微铣削加工技术的特点和要求的基础上,应用直接图论的方法对机床的构型进行了优化选择,对实验室原有的三轴微铣削加工机床进行了改进,设计了适于四轴微铣削加工的机床,实现了机床的四轴联动加工。
     (2)利用ADAMS软件对四轴微铣削机床动态特性中激振测试进行理论分析,在ADAMS软件中建立四轴微铣削机床的柔性体模型和振动模型,形成了具有刚柔耦合的振动系统。该系统在受到一定激振力时产生位移响应,获得该机床激振测试特性,为该机床进一步的结构改进提供参考。
     (3)根据四轴微铣削加工实验的要求,在分析了原有三轴微铣削机床数控软件操作局限性的基础上,利用VB重新开发了机床的数控软件,设计出便于操作的人机交互界面。软件采用模块化设计思想,包含了通讯、参数设置、状态显示、手动加工和自动加工等模块,能实现显微镜图像实时显示和系统状态显示,并拥有单步和连续执行四轴数控加工程序的功能。
     (4)对原机床没有实现的G代码和M代码进行编译,将其转换为6K控制器语言并传送给控制器,使四轴微铣削机床的数控系统数控加工功能更加完善和充分。
With the rapid development of science technology at the twenty first century, miniaturized components played greatly important role in many future technical development areas, increasingly demand for especially in aerospace, biomedicines, electron communication, precision instrument, home appliances and automobile and so on. Micro-milling is one of the most important machining techniques. This technique which is greatly suit for the process of the complicated miniaturized components and miniaturized mould, which has three dimension configuration and curved face. And the technique has better flexible and has advantage in high efficiency, high-precision and low cost. The material of the work piece is diversity. Micro-milling has very widely applicable foreground because of the dominance status in micro-milling machining technique.
     As the reason of miniaturized components owns complicated, the process which machining the curve face needs new requirement for multi-axes linkage process function. In order to satisfy the needs for the complication of the production configuration, improve the experimental study of the micro-milling mechanism, the text combines with the lab micro-milling item, at the foundation of the research fruit with discussion group, we have designed the 4-axis linkage micro-milling machine tool which has the compound function of cutting and milling, and also developed corresponding numerical control, all the content are as follows:
     (1) At the foundation of four-ax micro-milling machining technical characteristics and requirements which are all analyzed, applied direct graph theory to structure style of machine and then select the most optimization, improve on the 3-axis micro-milling machine tool which located in laboratory, design a new machine tool which is suitable for 4-axis micro-milling, make the 4-axis linkage process true.
     (2) Analysis the shock excitation theory of the dynamics identity in 4-axis micro-milling machine tool, construct flexible model and vibration model of the 4-axis micro-milling machine tool in ADAMS software, form an vibration system which has rigid and flexible coupling feature. The system produces displacement response and acquires test characteristic of the machine tool shock excitation, when the system come under shock excitation force, all these supply reference for the future improve configuration with the machine tool.
     (3) According to the experimental requirement of the 4-axis micro-milling process, after the foundation of analyzed numerical control software of the 3-axis micro-milling machine tool which is inhered, make use of VB to renewably exploder the numerical software of the machine tool, design the man-machine interactive system which is easy to manipulated. The software take modularization design idea, which contains communication and parameter setting, state appearance, manual and automatic machining module. The software can implement real time vision and system state display of the microscope image, and also own the 4-axis numerical control process function which is executed by single step and continuous steps.
     (4) Translate and edit the G and M code which is unrealized for the former machine tool, transfer them to 6K which is as controller language and then transmit it to controller, make the numerical control system function of 4-axis micro-milling more perfect and sufficiency.
引文
1.袁哲俊,王先逵.精密与超精密加工技术[M],北京:机械工业出版社,1999.10.
    2.贾宝闲,王振龙,赵万生.微细切削加工和微机械制造[J],机械制造,2003,41(468):7-9.
    3. M. J. Madou. Fundamentals of Micro fabrication [M], CRC Press,1997.
    4. L. Alting, F. Kimura, H. N. Hansen, and G. Bissacco. Micro engineering [J], Annals of CIRP,52(2):STC-O,2003.
    5. T. Masuzawa. State of the art of micromachining [J], Annals of CIRP,49(2):473-488, 2000.
    6. Y. Takeuchi, Y. Sakaida, K. Sawada, and T. Sata. Development of a 5-axis control ultraprecision milling machine for micromachining based on non-friction servomechanisms [J], Annals of CIRP,49(1):295-298,2000.
    7. Mikrotool Pte LTD, website:http://www.mikrotools.com/product-DT110.html.
    8. Willemin-Macodel SA, Website:http://www.willnmin-macodel.com/.
    9. Makino, website:http://www.makino.com/default.asp.
    10. Kugler of America, website:http://www.kuglerofamerica.com/micro_m.html.
    11. B.Rooks, The shrinking sizes in micro manufacturing. Assembly Automation,2004,24(4): 352-356.
    12. Mori Seiki, Website:http://www.moriseiki.com/english/indes.html.
    13. Y. Okazaki, and K. Ashida. Microfactory-concept, history, and developments [J], ASME Journal of Manufacturing Science and Engineering,126:837-844,2004.
    14. T. Kitaharat, Y. Ishikawa. Development of Micro-lathe[J], Journal of Mechanical Engineering Laboratory,1996,50(5):117-123.
    15. Fortgang. J, Marquez. J, and Singhose. W, "Application of command shaping on micro-mills," in 2004 Japan-USA Flexible Symposium on Automation, (Denver, CO),2004.
    16. Fortgang. J, Singhose. W, and Perez. H, "Command shaping for micro-mills and CNC controllers," in American Controls Conference, (Portland, Oregon),2005.
    17. Lu Zinan, Yoneyama Takeshi. Micro Cutting in the Micro Lathe Turning System [J], International Journal of Machine Tools & Manufacture,1999,39(7):1171-1183.
    18. Okazaki. Y, "Desktop ultra high-speed milling machine," in 3rd International Workshop on Microfactories, (Minneapolis, MN), pp.41-44,2002.
    19. Okazaki. Y., Mori. T., and Norita. N., "Desktop NC milling machine with 200 krpm spindle," in ASPE 2001 Annual Meeting, (Crystal City, VA), pp.192-195,2001.
    20. Kanga I S, Kimb J S, Kimc J H, Kangc M C, Seo Y W. A mechanistic model of cutting force in the micro end milling process. Journal of Materials Processing Technology [J],2007, 187-188:250-255.
    21. Young-bong Bang, Kyung-min Lee, Seungryul Oh.5-axis Micro Milling Machine for machining micro parts [J], Advanced Manufacturing Technology,2004,110(2):112-120.
    22. Rusnaldy, Tae Jo Ko, Hee Sool Kim. An experimental study on microcutting of silicon using a micromilling machine [J], Advanced Manufacturing Technology,2008,39:85-91.
    23.孙雅洲,梁迎春,董申.微小型化机床的研制[J],哈尔滨工业大学学报,2005,(5):591-593.
    24.祝捷.数控机床复合加工的新发展[J],天津职业院校联合学报,2006,85.
    25.贾春德,姜增辉.车铣原理[M],北京:国防工业出版社,2003.
    26. S. K. Choudhury, K. S. Mangrulkar. Investigation of orthogonal turn-milling for the machining of rotationally symmetrical work pieces [J], Materials Processing Technology, 2000.99(7):120-128.
    27.姜增辉,贾春德,张延生等.几个重要的工艺参数对正交车铣的影响[J],沈阳工业学院学报,1998,9:25-28.
    28.张民柱.复合加工—未来机床发展的重要方向[J],机电产品市场,2005年第2期.
    29. Joel D. Fortgang. Combined mechanical and command design for micro-milling machines [D], Woodruff School of Mechanical Engineering, Georgia Institute of Technology,2006.
    30. H. Shinno and Y. Ito. Computer aided concept design for structural configuration of machine tools:variant design using directed graph [J], Transactions of ASME,11:311-318, 1987.
    31.石伟.立式车铣复合数控机床方案设计与运动分析[D],西安理工大学,2006.
    32. F. T. S. Chan. Design of material handling equipment selection system:an integration of expert system with analytic hierarchy process approach [J], Integrated Manufacturing Systems, 13:58-68,2003.
    33. W.Y.Bao and I.N.Tansel. Modeling microend-milling operations. part Ⅰ:analytical cut-ting force model [J], International Journal of Machine Tools & Manufacture,40:2155-2173,2000.
    34.李增刚.ADAMS入门详解与实例[M],北京:国防工业出版社,2006.
    35.于淼.虚拟轴混联研抛机床多柔体动力学研究[D],吉林大学博士学位论文,2004.
    36.韩会斌.机床结合面阻尼系数识别研究[D],北京工业大学硕士论文,2001,6.
    37.曹建峰.基于Parker 6K的三维微切削机床数控系统开发[D],东北大学,2008.
    38.米金泰.三轴微铣削机床数控加工功能的开发[D],东北大学,2008.
    39.刘毅.基于PMAC的微小型机床数控系统的研究[D],哈尔滨工业大学,2006.
    40.王晟,韩泽坤.Access数据库开发经典案例解析[M],北京:清华大学出版社,2006.
    41.冯正奎,毕长波.在西门子802D四轴铣床上加工圆柱凸轮的过程优化[J],金属加工,2008,5,60-63.
    42.任洪娥,王锐鑫.单转台四轴数控机床空间刀具补偿研究[J],机床与液压,2009,37(4),1-3.
    43.王卫兵,王金生.Pro/ENGINEER数控编程实用教程[M],北京:清华大学出版社,2006,1-11.
    44.方建军.数控加工自动编程技术[M],北京:化学工业出版社,2004,2-11.
    45.王礼建.车铣复合加工技术[J],航空制造技术,2004,20(4),48-49.
    46.刘福林.完美的车铣组合——七轴五联动复合车铣中心[J],航空制造技术,2004,21(5),114.
    47.徐衡.FANUC系统数控铣床和加工中心培训教程[M],北京:化学工业出版社,2006,67-72.
    48.孙德茂.数控机床铣削加工直接编程技术[M],北京:机械工业出版社,2004,15-39.
    49.王仁德,赵春雨,张耀满.机床数控技术[M],沈阳:东北大学出版社,2002,20-27.
    50.吴明友.数控铣床(FANUC)考工实训教程[M],北京:化学工业出版社,2006,100-115.
    51.张霖,赵东标,张建明,孙学赞,庞长涛.微细切削用小型数控铣床的研制[J],东南大学学报,2007,37(1):26-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700