微位移机电系统机械结构的设计与分析计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对应用于空间多自由度微位移工作台的双轴柔性铰链机构进行研究,推导柔性铰链柔度计算公式。在此基础上对柔性铰链微位移工作台进行研究,建立工作台的理论数学模型。本文针对柔性铰链微位移工作台的分析与设计方法进行如下研究:
     1.利用力学和微积分基本方程推导了双轴柔性铰链转动柔度的一般设计计算公式,并给出了θ_m=π/2时常用直圆型柔性铰链转动柔度。公式是精确推导的结果,表达式较J.M.Paros给出的公式简洁。通过得到的公式定量地分析了铰链参数对转动柔度的影响。同时针对多个不同尺寸柔性铰链,采用推出的计算公式、J.M.Paros公式和有限元法进行计算,三种计算方法的结果吻合很好,说明推出的计算公式的正确性和简洁性。
     2.利用能量法推导了双轴柔性铰链柔度的系列设计计算公式。在此基础上得到了常用的直圆双轴柔性铰链柔度的设计计算公式。并指出了应用柔度计算公式应注意的问题。
     3.根据有限单元法基本原理,把柔性铰链单元视为变截面梁单元,建立了柔性铰链单元的刚度矩阵。在此基础上,建立了单自由度微位移工作台的有限元数学模型,得到了微位移工作台的位移输出特性。同时,用有限元分析软件对微位移工作台进行实体建模和分析计算并与理论模型进行比较,计算结果表明两种方法计算的结果吻合很好,相对误差很小,验证了理论模型的正确性。
     4.设计了一种新型压电式双自由度微位移工作台,提出了一种采用直角双杆机构代替平行四杆机构实现双自由度运动的方法。
     5.基于卡氏第二定理推导了新型工作台在不同方向上的输出刚度解析表达式,在此基础上推导出了工作台的前两阶固有频率。根据得到的输出刚度表达式,定量地分析了柔性铰链参数及连杆长度对工作台输出刚度的影响。同时针对三组不同尺寸参数的工作台,采用有限元法对其进行数值计算,并与理论计算比较,结果表明两种方法计算结果吻合很好,说明了理论模型的正确性。
This thesis researches on the double-axis flexure hinges which widely used in the space multi-DOF micro-displacement work stage, and presents the compliance equations for double-axis flexure hinges. Based on the compliance equations, this thesis researches on the flexure hinges micro-displacement stage, and creates the theoretical modal of the stage. Therefore, in this thesis, the analysis and design methodology for flexure hinges micro-displacement stage are presented and the following studies are completed:
     1. Based on the basic equation of mechanics and calculus, this paper presents the deduction process of design equation for calculating the rotation compliance of double-axis flexure hinge. And this paper also presents the rotation compliance equation of right circular double-axis flexure hinge (θ_m=π/2). The equation isexact and more concise in expression than J.M.Paros's. The analytical equation is built to quantitatively analyze the influence of parameters of flexure hinge of rotation compliance. Simultaneously, a number of right circular double-axis flexure hinges with different shapes are analyzed with finite element analysis method. And comparison is made between the present equation and those of widely used J.M.Paros' equations. The results of three methods to calculate the rotation compliance are in good agreement, which indicates that the analytical equations are correct and concise.
     2. Based on the energy method, this paper presents the compliance equations for double-axis flexure hinges and right circular double-axis flexure hinges. Some suggestions are made in regard to the design of flexure hinges.
     3. By applying the basics principles of the finite element methods, a finite element modal of flexure hinge which is looked as non-uniform beam. Based on the stiffness matrix, the finite element modal of a single direction translation micro-displacement is created. The characteristic in the displacement output of the stage is gained by the modal. Simultaneously, a finite element simulation modal of the stage is constructed by finite element analysis software. And comparison is made between the theoretical modal and the simulation modal. The results of two methods to calculate the output displacement are in good agreement, which indicates that the theoretical modal is correct.
     4. A novel two degree of freedom micro-displacement work stage derived by PZT was developed. And a vertical two-bar mechanism was designed to replace four-bar parallel mechanism to realize two degree of freedom motions.
     5. Castigliano's second theorem was used to derive a series of analytical equations for computing the output stiffness and resonant frequency for different directions of the stage. The analytical equations were built to quantitatively analyze the influence of parameters of flexure hinge and length of link bar of output stiffness. Simultaneously, three group different dimensions of the stages were analyzed with finite element analysis method. And comparison was made between the theoretical modal and finite element modal. The results of the two methods were in good agreement, which indicated that the analytical equations were correct.
引文
[1] Codourey, W. Zesch, R. Buchi, et al. A Robot System for Automated Handling in Micro-Word[C]. International Conference on Robotics and Automation, 1995: 185-190.
    [2] Yi-Cheng Hsu, Ying-Chien Tsai, Yeh-Lin Ho, et al. A Novel Fiber Alignment Shit Measurement and Correction Technique in Laser-Welded Laser Module Packaging[J]. Journal of Lightwave technology, 2005, 23(2): 486-494.
    [3] 杨辉.精密超精密加工技术在微机械制造中的应用[J].航空精密制造技术.2006,42(1):1-4.
    [4] Nikolai Dechev, William L. Cleghorm, James K. Mills. Design of Grasping Interface for Microgrippers and Micro-Parts Used in the Microassembly of MEMS[C]. International Conference on Information Acquisition June 27-July3, 2005, Hongkong and Macau China.
    [5] Leocadia V. Paliulis, R. Bruce Nicklas. Micromanipulation of Chromosomes Reveals that Cohesion Release during Cell Division is Gradual and Does Not Require Tension [J]. Current Biology, 2004, 14: 2124-2129.
    [6] 张斌珍,李科杰,张文栋.GaAs基微机械加工技术[J].半导体技术,2006,31(7):481-484.
    [7] 王建林,胡小唐.纳米定位技术研究现状[J].机械设计与研究,2000(1):43-44.
    [8] Qing Yao, J. Dong, P. M. Ferreira. Design, Aanlysis, Fabrication and Testing of a Parallel-Kinematic Micropositioning XY Stage[J]. International Journal of Machine Tools & Manufacture, 2006: 1-16.
    [9] Dongmin Kim, Dong Yeon Lee, Dae Gab Geveon. A New Nano-accuracy AFM System for Minimizing Abbe Errors and the Evaluation of its Measuring Uncertainly[J]. Ultramierosopy, 2006: 1-6.
    [10] 袁哲俊.精密和超精密加工技术的新进展[J].工具技术,2006(40):1-9.
    [11] 袁哲俊.使用SPM的纳米级加工技术的新进展[J].纳米技术与精密工程,2004,2(1):45-49.
    [12] E.-S. Lee, S.-Y. Baek. A Study on Optimum Griding Factors for Aspheric Convex Surface Micro-lens Using Design of Experiments[J]. Internationnal Journal of Machine Tools & Manufacture, 2007(47): 509-520.
    [13] Byungkyu Kim, Hyunjae Kang, Deok-Ho Kim, et al. Flexible Microassembly System Based on Hybird Manipulation Scheme[C]. Conference on Intelligent Robot and System, Las Vegas Nevada, October 2003.
    [14] Hui Xie, Weibin Rong, Jiatao Wang, et al. Optomechatronic Design of Integrated Systems of Mieroassembly of MEMS Sensors[C]. International Conference on Mechatronics and Automation, June 25-28, 2006, Louyang, China.
    [15] Linning Sun, Hui Xie, Weibin Rong, et al. Task-Reconfigurable System for MEMS Assembly[C]. International Conference on Robotics and Automation Barcelona, Spain, April 2005.
    [16] Prof. Dr.-Ing, H. H Janocha. Mieroactuators-Principles, Applications Trends Laboratory for Process Automation(LPA), 2001: 458-467.
    [17] Xinhan Huang, Xiadong Lv, Min Wang. Development of A Robotic Microassembly System with Multi-Manipulator Cooperation[C]. International Conference on Mechatronics and Automation, June 25-25, 2006, Luoyang, China.
    [18] 刘天军,侯丽雅,章维一.细胞操作用锻针器的设计[J].机械设计,2004,21(4):14-15.
    [19] Tetsuya Sano, Hideki Yamamoto. Multi Agent Micromanipulation System[C]. International Workshop on Imaging Systems and Techniques Niagara Falls, Sheraton Hotel on the Falls, 13-14 May, 2005.
    [20] Z. Wang, B-G. Hu, et al. Cell Detection and Tracking for Micromanipulation Vision System of Cell-operation Robot[J]. IEEE, 2000: 1592-1597.
    [21] K. K. Tan, S. C. Ng. Computer Controlled Piezoaetuator for Cell Manipulation[J]. IEE Proc-Nanobitechnol. 2003, 150(1): 15-20.
    [22] Kazuaki Nagayama, Shinichiro Yanagihara, et al. A Novel Micro Tensile Tester with Feed-back Control for Viscoelastic Analysis of Single Isolated Smooth Muscle Cells[J]. Medical Engineering & Physics, 2006: 1-9.
    [23] 陈寅,林良明,高立明等.微型电子机械系统应用与微创外科手术的研究[J].中国医疗器械杂志,2000,24(5):283-285.
    [24] 未晓东.我国微创心脏外科的现状和思考[J].中国微创外科杂志,2003,3(5):369-371.
    [25] 马建旭,王立鼎,吴一辉.微电子机械系统在生物医学领域中的应用[J].光学精密工程,1996,4(1):1-6.
    [26] 张秀峰,季林红,孙立宁.新型光纤作业系统关键技术[J].机械工程学报,2005,41(10):128-131.
    [27] 张煦.光的微机电系统在光通讯网的应用[J].光通讯技术,2002,26(5):1-3.
    [28] 于波,刘荣,宗光华.基于双目视觉的光纤定位研究[J].机器人,2003,25(4):296-299.
    [29] Yi-Cheng Hsu, Ying Chien Tsai, Yeh Lin Ho. A Novel Fiber Alignment Shift Measurement and Correction Technique in Laser-Welded Laser Module Packaging[J]. Journal of Lightwave Technology, 2005, 23(2): 486-494.
    [30] Liguo Chen, Weibin Rong, Lining Sun. Micromanipulation Robot for Automatic Fiber Alignment[C]. International Conference on Mechatronics & Automatio Nigara Falls, Canda, July2005.
    [31] G. Schilling. Adaptive Optics Comes of Age[J]. Sky and Telescope. 2001, 8: 30-41.
    [32] 张志伟,俞信,杨秉新.自适应光学在空间光学遥感器上的应用[J].高技术通讯,200,3:48-52.
    [33] 郭东明,康仁科,苏建修等.超大规模集成电路中硅片平坦技术的未来发展[J]机械工程学报,2003,10(39):100-105.
    [34] 沈柏明.集成电路制造技术展望[J].微电子学,2002,32(3):202-205.
    [35] 苏建修,康仁科,郭东明.超大规模集成电路制造中硅片化学机械抛光技术分析[J].2003,28(10):28-31.
    [36] 雷勇,陈本永,杨元兆等.纳米级微动工作台的研究现状及发展趋势[J].浙江理工大学学报,2006,23(1):72-82.
    [37] Yingfei Wu, Zhaoying Zhou. An Xyθ Mechanism Actuated by One Actuator[J]. Mechanism and Machine Theory, 2004, 39: 1101-1110.
    [38] S. R. Park, S. H. Yang. A Mathematical Approach for Analyzing Ultra Precision Positioning System With Compliant Meehanism[J]. Journal of Materials Processing Technology, 2005, 164-165: 1584-1589.
    [39] Jae W. Ryu, Dae-GAB Gueom, Kee S. Moont. Optimal Design of a Flexure Hinges Based Xyθ Wafer Stage[J]. Precsion Engineering, 1997, 21: 18-28.
    [40] Deyuan Zhang, Chienliu Chang, Takahito Ono, et al. A Piezodriven Xy-Microstage for Multiprobe Nanorecording[J]. Sensors and Actuators A, 2003, 108: 230-233.
    [41] 陈大任.压电陶瓷微位移驱动器概述[J].电子元件与材料,1994,13(1):2-7.
    [42] Takeshi Morita, Minoru K. Kurosawa, Toshiro Higuchi. A Cylindrical Micro-ultrasonic Motor (stator Transducer Size: 1.4mm in Diameter and 5.0mm long)[J]. Ultasonics, 2000, 38: 33-36.
    [43] Peng Gao, Kui Yao, Xiaosong Tang, et al. A Piezoelectric Micro-actuator With a Three-dimensional Structure and Its Micro-fabrication[J]. Sensors and Actuators A, 2004, 115: 483-489.
    [44] C. Zinck, D. Pinceau, E. Defay, et al. Development and Characterization of Membranes Actuated by a PZT Thin Film for MEMS Application[J]. Sensors and Actuators A, 2004, 115: 483-489.
    [45] 佟建华,刘梦伟,崔岩.基于MEMS的硅基PZT薄膜微力传感器芯片[J].压电与声光,2006,28(3):335-340.
    [46] Xiangcheng Chu, Long Ma, Longtu Li. A Disk-pivot Structure Micro Piezoelectric Actuator Using Vibration Mode B_(11)[J]. Ultrasonics, 2006, 44: 561-564.
    [47] 韦光辉,陈道炯,宫赤坤等.压电陶瓷驱动器控制模型建立及仿真[J].昆明理工大学学报(理工版),2004,29(6):50-53.
    [48] 刘德忠,费仁元,李剑锋等.磁致伸缩微动驱动器的研制[J].北京工业大学学报,2002,28(4):405-408.
    [49] 曹志彤,何国光,陈宏平.超磁致伸缩微位移直线驱动器[J].压电与声光,2002,24(5):358-361.
    [50] 李翠红,叶子申,孟永钢等.超磁致伸缩—压电直线式蠕动机构的设计[J].清华大学学报(自然科学版),2005,45(8):1055-1061.
    [51] Majtaba Ghodsi, Toshiynki Ueno, Hidekazn Teshima. "Zero-Power" Positioning Actuator for Cryogenic Environments by Combining Magnetostrictive Bimetal and HTS[J]. Sensor and Actuators A, 2006: 1-5.
    [52] F. E. Scire, E. C. Teague. Piezodriven 50um Rang Stage with Sub-nanometer Resolution[J]. Review of Seientifie Instruments, 1978, 49(12): 1735-1740.
    [53] L. J. Lacomb, et al. Piezodirven Scanner for Cryogenic Application[J]. Review of Scientific Instruments, 1988, 59(9): 1906-1950.
    [54] Jae W. Ryu, Dae-Gab Gweon, Kee S. Moont. Optimal Design of a Flexure Hinge XYθWafer Stage[J]. Precision Engineering, 1997, 21(1): 18-28.
    [55] Yingfei Wu, Zhaoying Zhou. An XYOMeehanism Actuated by One Actuator[J]. Mechanism and Machine Theory, 2004, 39: 1101-1110.
    [56] T. Fujii, et al. Mieroopatten Measurement with an Atomic Force Microscope[J]. Journal of Vacuum Science Technology, 1991, 9(2): 666-669.
    [57] D. Zhang, D. G. Chatuynd, X. Liu. Investigation of a 3-DOF Micro-positioning Table for Surface Grinding[J]. Internation Journal Mechanical Sciences, 2006, 1-8.
    [58] Yu Hui, Sun Lining, Liu Pingkuan, et al. Kinematics of Novel 6-HTRT Parallel Robor[J]. Journal of Harbin Institute of Technology(New Series), 2002, 9(2): 121-124.
    [59] P. E. Tenzer, R.Ben Mrad. On Amplification in Inchworm Precision Positioners[J]. Mechatronics, 2004, 14: 515-531.
    [60] J. Park, S. Keller, G. p. Garman, et al. Development of a Compact Displacement Accumulation Actuator Device for Both Large Force and Large Displacement[J]. Sensors and Actuator A, 2001, 90: 191-202.
    [61] Ho Nam Kwon, Sung Ho Jeong, Sun Kyn Lee, et al. Design and Characterization of a Micromachined Inchworm Motor with Termoelastic Linkage Actuators [J]. Sensor and Actuator A, 2003, 103: 143-149.
    [62] Min Hu, Zhaoying Zhou, Yong Li, et al. Development of a Linear Electrostrictive Servo Motor[J]. Precision Engineering, 2001, 25: 316-320.
    [63] Paros J. M, Weisboro L. How to Design Flexure Hinges[J]. Machine Design, 1965, 37(27): 151-157.
    [64] 吴鹰飞,周兆英.柔性铰链的设计计算[J].工程力学,2002,19(6):136-140.
    [65] Nicolae Lobontiu, Jeffrey S. N. Paine, Ephrahim Garcia, et al. Design of Symmetric Concic-section Flexure Hinges Based on Closed-form Compliance Equations[J]. Mechanism and Machine Theory, 2002, 37: 477-498.
    [66] Guimin Chert, Jianyuan Jia, Zhiwu Li. Right Circular Corner Filleted Flexure Hinges[C]. International Conference on Automation Science and Engineering Edmonton, Canada August 1 & 2, 2005.
    [67] Smith TS, Badam I V G, Pale J S, et al. Elliptical flexure hinges[J]. Rev Sci Instrum, 1997, 68(3): 1474-1483.
    [68] Lobontin N, Paine J S N, Grarcia E, et al. Corner-filleted flexure hinges[J]. ASME J Mech Design, 2001, 123(3): 346-352.
    [69] Nicolae Lobontin, Jeffrey S. N. Paine, Ephrahim Garcia, et al. Design of symmetric conic-section flexure hinges based on closed-form compliance equations[J]. Mechanism and Machine Theory, 2002, 37: 447-498.
    [70] 杨伯源,李和平,刘一华.材料力学(Ⅰ).北京:机械工业出版社,2002.
    [71] 黄则兵,葛文杰,马利娥.柔性机构的研究现状及其在仿生领域的应用前景[J].机械设计与研究,2004,20(z1):279-282.
    [72] Howell, Madha. A method for design compliant mechanisms with small-length flexural pivots[J]. Journal of Mechanical Design, Transaction of the ASME 116(1994): 280-289.
    [73] Rajesh Luharuka, Peter J. Hesketh. Design of fully compliant, in-plane rotary, bistable micromechanisms for MEMS applications[J]. Sensor and Actuators A, 2007(134): 231-238.
    [74] 张元海.一个改进的平面梁单元[J].计算力学学报,2002,19(1):109-111.
    [75] 谢贻权,何福保.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1981.
    [76] 沈健,朱仁胜,赵韩.单自由度微位移机构柔性铰链的研究[J].上海交通大学学报,2004,38(6):932-936.
    [77] 朱仁胜.纳米级多自由微位移工作台仿真的研究[D].合肥工业大学硕士学位论文,2004,4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700