南黄海浮游细菌的分布特点与水文现象的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用表面荧光显微镜计数法和分级稀释培养技术对我国南黄海聚球蓝细菌和异养细菌在各个季节的分布特点、摄食压力的来源以及物理水文现象对其分布影响进行了研究,同时还对浮游细菌的年际变化进行了探讨。
     1.春季三个航次中聚球蓝细菌平均丰度为3.71×10~4 cells/ml,生物量为10.91μg Cl~(-1);异养细菌平均丰度为3.86×10~5 cells/ml,生物量为17.72μg Cl~(-1)。在垂直方向上,聚球蓝细菌一直表现为中层>表层>底层,而异养细菌在每个航次中的表现都不尽相同,但总体来说仍是中上层丰度较大。
     春末夏初,海区多种水团的存在导致水域水文现象复杂,其中潮汐锋、层化现象等对浮游细菌的分布产生很明显的影响。聚球藻(Synechococcus)蓝细菌生物量最大值主要分布于潮汐锋区及层化区表层和水体中层,异养细菌生物量最大值则多出现在混合区的表、底层和层化区的表层。
     2.夏季对黄海冷水团鼎盛时期的浮游细菌的生态学研究表明:(1)垂直方向上聚球蓝细菌生物量和异养细菌的表现特点不同,聚球蓝细菌生物量的分布情况是中层>表层>底层;异养细菌丰度在垂直方向上的分布状况是表层>中层>底层。
     (2)聚球蓝细菌对浮游植物总生物量的贡献为2~99%(平均为42.5%),异养细菌生物量与浮游植物总生物量的比值为0.05~6.37(平均为0.85)。(3)浮游细菌的分布于水体温度和盐度变化有一定关系,冷水团中的浮游细菌生物量最低。(4)小型浮游动物对聚球藻蓝细菌的捕食率为0.20~0.42/d。
     3.秋冬季节,11月份黄海沿岸流比暖水流对聚球蓝细菌分布的影响要大,聚球蓝细菌主要分布在黄海沿岸流经过的南黄海北部水域;而异养细菌的分布在此时与聚球蓝细菌的分布恰恰相反。1月份,异养细菌的分布与暖流水的入侵有很好的相关性,主要分布在暖流水的舌锋位置34°N附近;聚球蓝细菌主要分布在暖流水经过的区域33~34.5°N。
     秋、冬季,海区突出的水文特征为沿岸流及黄海暖流,它们的强弱、流向及分布直接影响了浮游细菌的分布状况。
We studied the seasonal distribution pattern of Cyanobacterium Synechococcus and heterotrophic bacteria with the epifluorescence microscope, the grazing pressure using size-classed and dilution method, and their relations with some important hydrological phenomenon on the bacterioplankton distribution, and samely discussed the potential annual variations of bacterioplankton in Southern Yellow Sea, China.
     1. In spring, the average abundance and biomass of Synechococcus was 3.71×10~4 cells ml~(-1) and 10.91μg Cl~(-1) respectively, while those of heterotrophic bacteria was 3.86×10~5 cells ml~(-1) and 17.72μg Cl~(-1), based on the samples collected in June 2002, 2003 and 2004. With regard to their vertical distributions, Synechococcus always showed its density in the middle water layer (10~20m) and scarce in bottom water layer. Heterotrophic bacteria showed more in the middle and surface water layer, though it had some difference in the three cruises.
     The distribution of bacterioplankton was influenced by the Yellow Sea Water and Subei Coastal water in surface water layer and by the Qingdao Cold Water Mass, Yellow Sea Water, Subei Coastal Water and the Changjiang (Yangtzriver) Dilution Water in bottom layer. Maximal biomass value of Synechococcus mainly occurred in the tidal front, or the middle water layer, the surface of the stratified zone. The maximal abundance of heterotrophic bacteria occurred in the surface, bottom waters in the mixed zone of different waters and the surface water in the stratified zone vertically. The tidal front might be an important factor to affect the distribution of bacterioplankton biomass in the late-spring and early-summer in the southern Yellow Sea.
     2. In summer, the results showed: 1) the biomass value of Synechococcus ranged in
引文
白洁,李岿然,李正炎等. 渤海春季浮游细菌分布与生态环境因子的关系. 青岛海洋大学学报, 2003, 33(6): 841~846.
    白洁,张昊飞,李岿然等. 海洋异养浮游细菌生物量及生产力的制约因素. 中国海洋大学学报, 2004, 34(4): 594~602.
    刁焕祥, 沈志良. 黄海冷水域水化学要素的垂直分布特性. 海洋科学集刊, 1985, 25: 41~51.
    冯士筰,李凤岐,李少箐主编. 海洋科学导论,高等教育出版社,1999 年 6 月第一版,272~350.
    国家技术监督局. 中华人民共和国国家标准 GB12763.5-2003. 海洋调查规范 海洋生物调查[M]. 北京: 中国标准出版社, 2003. 5-30.
    胡敦欣, 丁宗信, 熊庆成. 东海北部一个气旋行涡旋的初步分析. 海洋科学集刊, 1984, 21: 87~100.
    柯林,洪花生. 海洋生态系统中原生动物摄食速率的研究方法简述. 海洋科学, 1999, 23(1): 40~43.
    蓝淑芳.黄海暖流的调查研究. 海洋科学, 1993, 17(1): 38~40.
    乐肯堂. 冬季黄海暖流水的起源. 海洋学报, 1992, 14(2): 9~19.
    李军. 渤海兰点马鲛食物链结构的研究, 海洋科学集刊, 1990, 31: 93~107.
    梁威,邱东茹,熊丽等. 荧光原位杂交技术(FISH)及其在环境微生物学中的应用. 生命科学, 2002, 14(3): 186~188.
    刘桂梅, 孙松. 春秋季黄海海洋锋对中华哲水蚤分布的影响. 自然科学进展, 2002, 12(11): 1150~1154.
    刘子琳, 宁修仁. 杭州湾锋区浮游植物现存量和初级生产力. 东海海洋, 1994, 12(4): 58~66.
    刘子琳, 越川海, 宁修仁等. 长江冲淡水区细菌生产力研究. 海洋学报, 2001, 23(4): 93~99.
    宁修仁, 沃洛 D. 长江口及其毗邻东海水域聚球蓝细菌的分布和细胞特征及其环境调解. 海洋学报, 1991, 13: 552~559.
    宁修仁, 沃洛 D. 英吉利海峡蓝细菌增长速率和被摄食速率的测定. 海洋学报, 1992, 14(4): 84~93.
    宁修仁. 海洋微型和超微性浮游生物. 东海海洋, 1997b,15(3): 60~64.
    宁修仁. 微型生物食物环. 东海海洋, 1997a, 15(1): 66~68.
    沈国英, 施并章. 海洋生态学[M]. 厦门: 厦门大学出版社, 1990. 119-193.
    苏纪兰, 黄大吉. 黄海冷水团的环流结构. 海洋与湖沼增刊, 1995, 26(5): 1~7.
    孙晟, 肖天, 岳海东. 秋季与春季东、黄海蓝细菌 (Synechococcus spp.) 生态分布特点. 海洋与湖沼, 2003, 34(2): 161~168.
    孙晟,东黄海海洋蓝细菌(Synechococcus)生态学研究,中科院研究生院硕士论文,2002.
    孙书存,陆健健. 微型浮游生物生态学研究概述. 生态学报,2001, 21(2): 302~308.
    孙松, 王荣, 张光涛等. 黄海中华哲水蚤度夏机制初探. 海洋与湖沼, 浮游动物研究专辑, 2002, 92~99.
    孙松, 唐启升. 海洋生态学研究现状与发展趋势. 海洋与湖沼, 浮游动物研究专辑, 2002, 1~9.
    汤毓祥, 郑义芳. 关于黄、东海海洋锋的研究. 海洋通报, 1990, 9(5): 89~96.
    汤毓祥, 邹娥梅, 李兴宰等. 南黄海环流的若干特征. 海洋通报, 2000, 22(1): 1~16.
    唐启升, 范元炳, 林海. 中国海洋生态系统动力学研究发展战略初探. 地球科学进展, 1996 , 11(2): 160~168.
    王保栋. 黄海冷水域生源要素的变化特征及相互关系. 海洋学报, 2000, 22(6): 47~54.
    王斐,郑天凌,洪华生. 海洋病毒在微生物食物环中的重要作用.海洋科学,1998,41~43.
    王新刚,孙松. 粒径谱理论在海洋生态学研究中的应用. 海洋科学,2002,26(4): 36~39.
    王真良,刘晓丹. 北黄海浮游动物昼夜垂直移动的初步研究, 黄渤海海洋, 1989, 7(4): 50~54.
    翁学传, 张以恳, 王从敏等. 黄海冷水团的变化特征. 青岛海洋大学学报, 1989, 19(1): 119~131.
    吴玉霖, 孙松, 张永山等. 2000 年秋季南黄海浮游植物分布特征及其与浮游动物的关系. 海洋与湖沼, 浮游动物研究专辑, 2002, 26~36.
    肖 天, 王 荣. 春季与秋季渤海蓝细菌 (聚球蓝细菌属) 的分布特点. 生态学报, 2002, 22(12): 2071~2078.
    肖 天, 岳海东, 张武昌. 东海聚球蓝细菌 (Synechococcus) 的分布特点及在微食物环中的作用. 海洋与湖沼, 2003, 34(1): 33~43.
    肖 天, 张武昌, 王 荣. 海洋蓝细菌在微食物环中的作用初步研究. 海洋科学, 1999, 23(5): 48~50.
    肖 天. 海洋浮游细菌的生态学研究. 地球科学进展, 2001, 16(1): 60~64.
    肖 天. 海洋细菌在微食物环中的作用. 海洋科学, 2000, 24(7): 4-6.
    薛廷耀. 海洋细菌学. 第一版. 北京:科学出版社, 1962. 1~10.
    张启龙, 翁学传, 杨玉玲. 南黄海春季水团分析, 海洋与湖沼, 1996, 27(4): 421~428.
    张书文, 夏长水, 袁业立. 黄海冷水团水域物理-生态耦合数值模式研究. 自然科学进展, 2002, 12(3): 315~319.
    张武昌,王 荣. 海洋微型浮游动物对浮游植物和初级成产力的摄食压力.生态学报, 2001, 21(8):1360~1368.
    张 彤,方汉平. 微生物分子生态技术:16S rRNA/DNA 方法. 微生物学通报, 2003, 30(2): 97~101.
    赵保仁. 黄海冷水团锋面与潮混合. 海洋与湖沼, 1985, 16(6): 451~459.
    赵保仁. 黄海潮生陆架锋的分布. 黄渤海海洋, 1987, 5(2): 16~23.
    赵保仁, Limeberner R, 胡敦欣等. 黄海南部及东海北部夏季若干水文特征. 海洋与湖沼, 1991, 22(2): 132~139.
    赵三军, 肖 天, 岳海东. 秋季东、黄海异养细菌(Heterotrophic bacteria)的分布特点. 海洋与湖沼, 2003, 34(3): 295~305.
    赵三军, 岳海东, 肖 天. 海洋异养细菌生物量与生产力的研究方法. 海洋科学, 2002, 26(1): 21-23.
    郑天凌,薛雄志,李福东. 海洋微生物在生态环境中的作用,海洋科学,1994a, No 3: 35~37.
    郑天凌,王海黎,洪华生. 微生物在碳的海洋生物地球化学循环中的作用,生态学杂志,1994b, 13(4): 47~50.
    左 涛, 王 荣, 王 克等. 夏季南黄海浮游动物的垂直分布与昼夜垂直移动, 生态学报, 2004, 24(3): 524~530.
    Agawin N S R, Duarte C M, Agustí. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr, 2000, 45(3): 591~600.
    Amon R M W, Benner R. Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr, 1996, 41(1): 41~51.
    Ayukai T. Possible limitation of the dilution technique for estimating growth and grazing mortality rates of picoplankton cyanobacteria in oligotrophic trophic waters. J. Experimental Marine Biology and Ecology, 1996, 198: 101~111.
    Azam F, Fenchel J, Field J G, et al. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser, 1983, 10: 257-263.
    Beardsley R C. Discharge of the Changjiang (Yangtze River) into the East China Sea. Cont. Shelf Res, 1985, 4:57~76.
    Beardsley C, Pernthaler J, Wosniok W, et al. Are readily culturable bacteria in coastal North Sea waters suppressed by selective grazing mortality? Appl Environ Microbiol, 2003, 69 (5): 2624~2630.
    Bell U T, Kuparinen J. Assessing Phytoplankton and Bacterioplankton Production During Early Spring in Lake Erken, Sweden. Appl Environ Microbiol, 1984, 48 (6): 1221~1230.
    Bergh?ivind, Borsheim K Y, Bratbak G, et al. High abundance of viruses found in aquatic environments. Nature, 1989, 340: 467~468.
    Bettarel Y, Amblard C, Sime-Ngando T, et al. Viral lysis, flagellate grazing potential, and bacterial production in Lake Pavin. Microbial Ecology, 2003, 45(2): 119~127.
    Bianchi A, Wambeke F V, Garcin J. Bacterial utilization of glucose in the water column from eutrophic to oligotrophic pelagic areas in the eastern North Atlantic Ocean. Journal of Marine System, 1998, 14: 45-55.
    Biddanda B, Opsahl S, Benner R. Plankton respiration and carbon flux through bacterioplankton on the Louisiana shelf. Limnol & Oceanogr, 1994, 39(6): 1259-1275.
    Binder B J, Chisholm S W, Olson R J, et al. Dynamics of picophytoplankton, ultraphytoplankton and bacteria in the central equatorial Pacific. Deep-Sea Res Ⅱ , 1996, 43(4-6): 907~931.
    Bj?rnsen P K, Kuparinen J. Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean. Mar Ecol Prog Ser, 1991, 71: 185-194.
    Bj?rnsen P K. Automatic determination of bacterioplankton biomass by image analysis. Appl Environ Microbial, 1986, 51(6) : 1199~1204.
    Boelen P, Boer M K, Kraay G W, et al. UVBR-induced DNA damage in natural marine picoplankton assemblages in the tropical Atlantic ocean. Mar Ecol Prog Ser, 2000, 193: 1~9.
    Bratbak G, Dundas I. Bacterial dry matter content and biomass estimations. App. Environ. Microbiol, 1984, 48: 755-757.
    Bratbak G. Bacterial biovolume and biomass estimation. App Environ Microbiol, 1985, 49: 1488~1493.
    Brett M T, Lubnow F S, Manuel V A, et al. Nutrient control of bacterioplankton and phytoplankton dynamics. Aquatic Ecology, 1999, 33: 135~145.
    Brown S L, Landry M R, Barber R T, et al. Picophytoplankton dynamics and production in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Res. Ⅱ, 1999, 46: 1745~1768.
    Burkill P H, Leakey R J G, Owens N J P, et al. Synechococcus and its importance to the microbial foodweb of the northwestern Indian Ocean. Deep-Sea Res. II, 1993, 40(3): 773~782.
    Calbet A. Mesozooplankton grazing effect on primary production: a global comparative analysis in marine ecosystems. Limnology & Oceanography, 2001, 46(7): 1834~1830.
    Callieri C, Karjalainen S M, Passoni S. Grazing by ciliates and heterotrophic nanoflagellate on picocyanobacteria in Lago Maggiore, Italy. J Plankton Res, 2002, 24(8): 785~796.
    Campbell L, Carpenter E J. Diel patterns of cell division in marine Synechococcus spp. (cyanobacteria): use of the frequency of dividing cells technique to measure growth rate. Mar Ecol Prog Ser, 1986a, 32: 139~148.
    Campbell L, Carpenter E J. Estimating the grazing pressure of heterotrophic nanoplankton on Synechococcus spp. using the sea water dilution and selective inhibitor techniques. Mar Ecol Prog Ser, 1986b, 33: 121~129.
    Campbell L, Landry M R, Constantinou J, et al. Response of microbial community structure to environmental foring in the Arabian Sea. Deep-Sea Res. II, 1998, 45: 2310~2326.
    Campbell L, Vaulot D. Photosynthetic picoplankton community structure in the subtropical North Pacfic Ocean near Hawaii (station ALOHA). Deep-Sea Res, 1993, 40(10): 2043~2060.
    Campbell L, Vaulot D. The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol Oceanogr, 1994, 39(4): 954~961.
    Carlson C A, Ducklow H W. Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea. Aqua Micro Ecol, 1996, 10: 69~85.
    Caron D A, Lim E L, Miceli G, et al. Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community. Mar Ecol Prog Ser, 1991,76: 205~217.
    Caron D A, Peele E R, Lim E L, Dennet M R. Picoplankton and nanoplankton and their trophic coupling in surface waters of the Sargasso Sea south of Bermuda. Limnol Oceanogr, 1999, 44(2): 259~272.
    Caron D A. The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermude. Deep-Sea Res, 1995a, 42: 943~972.
    Chang J, Lin K-H, Chen K-M. et al. Synechococcus growth and mortality rates in the East China Sea :rang of variations and correction with environment factors. Deep-Sea Res II, 2003, 50:1265~1278
    Charpy L & Blanchot J. Photosynthetic picoplankton in French Polynesian atoll lagoons: estimation of taxa contribution to biomass and production by flow cytometry. Mar Ecol Prog Ser, 1998, 162: 57~70.
    Chiang K P, Kuo M C, Chang J, et al. Spatial and temporal variation of Synechococcus population in the East China Sea and its contribution to phytoplankton biomass. Continental Shelf Research, 2002, 22: 3~13.
    Cho B C and Azam F. Major role of bacteria in biogeochemical fluxes in the marine’s interior. Nature, 1988, 332(6163): 441~443.
    Cho B C, Azam F. Biogeochemical significance of bacterial biomass in the ocean's euphotic zone. Mar Ecol Prog Ser, 1990, 63: 253~259.
    Christaki U, Jacquet S, Dolan J R, et al. Growth and grzing on Prochlorococcus and Synechococcus by two marine ciliates. Limnol. Oceanogr. , 1999, 44(1): 52~61.
    Cochlan W P, Wikner J, Steward G F, et al. Spatial distribution of Viruses, bacteria, and chlorophyll-a in neritic, oceanic and estuarine environments. Mar Ecol Prog Ser, 1993, 92: 77~87.
    Cole J J, Findlay S, Pace M L. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser, 1988, 43: 1~10.
    Connon S A and Giovannoni S J. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Applied & Environmental Microbiology, 2002, 68(8): 3878~3885.
    Crump B C, Hopkinson C S, Sogin M L, et al. Microbial biogeography along an estuarine salinity gradient: combined influence of bacterial growth and residence time. Applied & Environmental Microbiology, 2004, 70(3): 1494~1505.
    Crump B C, King G W, Bahr M, et al. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Applied & Environmental Microbiology, 2003, 69(4): 2253~2268.
    Cuhel R, Waterbury J B. Biochemical composition and short term nutrient incorporation patterns in unicellular marine cyanobacterium, Synechococcus (WH7803). Limnol. Oceanogr. , 1984, 29: 370~374.
    del Giorgio P A, Cole J J, Cimbleris A. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature, 1997, 385:148–151.
    del Giorgio P A, Cole J J. Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst, 1998, 29: 503~541.
    Dolan J R and Simek K. Ingestion and digestion of an autotrophic picoplankter, Synechococcus, by a heterotrophic nanoflagellate, Bodo saltans. Limnology Oceanography, 1998, 43(7): 1740~1746.
    Duarte C M, et al. The limits to models in ecology, in: Canham, C.D. et al. (Ed.) (2003). Models in ecosystem science. pp. 437~451.
    Ducklow H W, Hill S M. Tritiated thymidine incorporation and the growth of heterotrophic bacteria in warm core rings. Limnol Oceanogr, 1985, 30: 260~272.
    Ducklow H W, Kirchman D L, Quinby H L, et al. Bacterioplankton carbon cycling during the spring bloom in the western North Atlantic Ocean. Deep-Sea Res. II, 1993, 40: 245~263.
    Ducklow H W, Quinby H L, Carlson C A. Bacterioplankton dynamic in the equatorial Pacific during the 1992 El Niňo. Deep Sea Res II, 1995, 42(2/3): 621~638.
    Ducklow H W, Kirchman D L, Anderson T R. The magnitude of spring bacterial production in the North Atlantic Ocean. Limnology and Oceanography, 2002, 47(6): 1684~1693.
    Durand M D, Olson R J, Chisholm S W. Phytoplankton population dynamics at the Bermuda Atlantic Time-series stations in the Sargasso sea. Deep-Sea Res. II, 2001, 48: 1983~2003.
    Eiler A, Langenheder S, Bertilsson S, et al. Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Appl Environ Microbial, 2003, 69(7): 3701~3709.
    Fagerbakke K M, Heldal M. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat Microb Ecol, 1996, 10: 15~27.
    Falkowski P G, Barber R T, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science, 1998, 281: 200~206.
    Ferris M J and Palenik B. Niche adaptation in ocean cyanobacteria. Nature, 1998, 396(6708): 226~228.
    Floodgate G D, Fogg G E, Jones D A, et al. Microbiological and zooplankton activity at a front in Liverpool Bay. Nature, 1981, 290: 133~136.
    Froneman P W, Mcquaid C D. Preliminary investigation of ecological role of microzooplankton in the Kariega Estuary, South Africa. Estuarine, Coastal and Shelf Science, 1997, 45: 689~695.
    Frost B W. Effect of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calannus pacificus. Limonol Oceanogr, 1972, 17: 805~815.
    Fuhrman J A, Azam F. Thymidine incorporation as a measurement of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Marine Biology, 1982, 66: 109~120.
    Fuhrman J A, Mcmanus G B. Do bacteria-sized marine eukaryotes consume significant bacterial production?, Science, 1984, 224: 1257~1260.
    Fuhrman J A, Noble T. Viruses and protests cause similar bacterial mortality in coastal seawater. Limnol Oceanogr, 1995, 40(7): 1236~1242.
    Fuhrman J A, Sleeter T D, Carlson C A, et al. Dominance of bacterial biomass in the Sargasso sea and its ecological implications. Mar Ecol Prog Ser, 1989, 57: 207~217.
    Fuhrman J A. Bacterioplankton secondary production estimates for coastal waters of British Columbia, and California. Appl Environ Microbial, 1980, 39(6): 1085~1095.
    Fuhrman J A. Marine viruses and their biogeochemical and ecological effects. Nature, 1999, 399: 541~548.
    Gallagar S M, Waterbury J B, Stoecker D K. Efficient grazing and utilization of the marine cyanobacterium Synechococcus sp. by larvae of the bivalve Mercencaria. Mar Biol , 1994, 119: 251~259.
    Garrison D L, Gowing M M, Hughes M P, et al. Microbial food web structure in the Arabian Sea: a US JGOFS study. Deep-Sea Res. II, 2000, 47: 1378~1422.
    Gasol J M. A framework for the assessment of top-down vs bottom-up control of heterotrophic nanoflagellate abundance. Mar Ecol Prog Ser, 1994, 113(3): 291~300.
    Glover H E, Campbell L, Prézelin B B. Contribution of Synechococcus spp. to size-fractioned primary productivity in three water masses in the Northwest Atlantic Ocean. Marine Biology, 1986, 91: 193~203.
    Goldman J C and Caron D A. Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep-Sea Res. 1985, 32: 899~915.
    González J M, Sherr E B, Sherr B F. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol. 1990, 56(3): 583~592.
    González J M, Suttle C A. Grazing by marine nanoflagellate on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser, 1993, 94: 1~10.
    González N, Anadón R, Viesca L. Carbon flux through the microbial community in a temperature sea during summer: role of bacterial metabolism. Aquat Microb Ecol, 2003, 33: 117~126.
    Guixa-Boixereu N, Vaque D, Gasol J M, et al. Distribution of viruses and their potential effect on bacterioplankton in an oligotrophic marine system. Aquatic Microbial Ecology, 1999, 19(3): 205~213.
    Hagstrom A, Larsson U, Horsted P, et al. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environmnts. Appl Environ Microbiol, 1979, 37: 805~812.
    Hagstrom A,Ammerman J W, Henrichs S, et al. Bacterioplankton growth in seawater: II. Organic matter utilization during steady-state growth in seawater cultures. Mar Ecol Prog Ser, 1984, 18:41~48.
    Hagstrom A, Azam F, Andersson A, et al. Microbial loop in an oligotrophic pelagic marine ecosystem: Possible roles of cyanobacteria and nanoflagellates in the organic fluxes. Mar Ecol Prog Ser, 1988,49:171~178.
    Hagstrom A, Pommier T, Rohwer F, et al. Ues of 16S ribosomal DNA for delineation of marine bacterioplanktin species. Applied & Environmental Microbiology, 2002, 68(7): 3628~3633.
    Hara S, Terauchi K, Koike I. Abundance of viruses in marine waters: assessment by epifluoerscence and transmission electron microscopy. Applied & Environmental Microbiology, 1991, 57(9): 2731~2734.
    Harris G P. Picoplankton Ecology, Structure, Function and Fluctuations. Chapman and Hall, 1986, 21~235.
    Heinanen A. Bacterioplankton in a subarctic estuary: the Gulf of Bothnia (Baltic Sea). Mar Ecol Prog Ser, 1992, 86: 123~131.
    Hobbie J E, Daley R J, Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. App. Environ. Microbiol. , 1977, 33(5): 1225~1228.
    Huang B Q, Hong H S, Wang H L. Size-fractioned primary productivity and the phytoplankton-bacteria relationship in the Taiwan Strait. Mar. Ecol. Prog. Ser. , 1999, 183: 29~38.
    Hulot F D, Lacroix G, Lescher-Moutoue F, et al. Functional diversity governs ecosystem response to nutrient enrichment. Nature, 2000, 405(6784): 340~344.
    Hwang C Y, Cho B. Virus-infected bacteria in oligotrophic open waters of the East Sea, Korea. Aquat Micro Ecol, 2002, 30: 1~9.
    Iriarte A. Size-fractionted chlorophyll a biomass and picophytoplankton cell density along a longitudinal axis of a temperate estuary. J Plankton Res, 1993, 15(5): 485~500.
    Iturriage R, Mitchell B G. Chrococcoid cyanobacteria: a significant component in the food web dynamics of the open ocean. Mar Ecol Prog Ser, 1986, 28: 271~297.
    Jahnke R A, Craven D B. Quantifying the role of heterotrophic bacteria in the carbon cycle: a need for respiration rate measurements. Limnol Oceanogr, 1995, 40(2): 436~441.
    Jochem F. On the distribution and importance of picocyanobacteria in a boreal inshore area (Kiel Bight, Western Baltic). J. Plankton Res, 1988, 10: 1022~1099.
    Jürgens K and Güde H. The potential importance of grazing-resistant bacteria in planktonic systems. Mar Ecol Prog Ser, 1994, 112: 169~188.
    Kana T M, Glibert P M. Effect of irradiances up to 2000 μE m~(-2) s~(-1) on marine Synechococcus Wh7803.1. Growth, pigmentation, and cell composition.Deep-Sea Res, 1987, 34:479~495.
    Kirchman D L. Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific. Mar Ecol Prog Ser, 1990, 62: 47~54.
    Kirchman D L, James H R, Barber R T. Biomass and biomass production of heterotrophic bacteria along 140°W in the equatorial Pacific: Effect of temperature on the microbial loop. Deep-Sea Res. II, 1995, 42(2/3): 603~619.
    Kirchman. D L, Keil R G, Simon, et al. Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic pacific. Deep-Sea Research I, 1993, 40: 967~988.
    Kroer N. Bacterial growth efficiency on natural dissolved organic matter. Limnol Oceanogr, 1993, 38(6): 1282~1290.
    Kphcc A E. Marine Microbiology (Deep Sea)[M]. Translate by Sun G Y, Li S Z. Beijing:Science Press, 1964.
    Krempin D W, Sullivan C W. The seasonal abundance, vertical distribution, and relative microbial biomass of chrococcoid cyanobacteria at a station in southern California coastal waters. Can. J. Microbiol. , 1981, 27: 1341~1344.
    Kroer N. Relationships between biovolume and carbon and nitrogen content of bacterioplankton. FEMS Microbiol Ecol, 1994, 13: 217~224.
    Landry M R, Hassett R P. Estimating the grazing impact of marine micro-zooplankton . Marine Biology, 1982, 67: 283~288.
    Landry M R, Kirshtein J, Constantinou J. Abundances and distributions of picoplankton populations in the central equatorial pacific from 12°N to 12°S, 140°W. Deep-Sea Res. II, 1996, 43: 871~890.
    Landry M R. Microzooplankton grazing in the equatorial Pacific. Deep Sea Res. II, 1995, 42(2/3): 657~671.
    Laybourn-Parry J and Parry J. Flagellates and the microbial loop. In: Leadbeater B S C & Green J C: The Flagellates: Unity, diversity and evolution (Systematics Association Special Volumes), 2000, 216~239.
    Lee S, Fuhrman J A. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol., 1987, 53(6): 1298~1303.
    Legendre L, Courties C, Troussellier M. Flow cytometry in oceanography 1989-1999: environmental challenges and research trends. Cytometry, 2001, 44: 164~172.
    Lemée R, Rochelle-Newall E, Wambeke F V, et al. Seasonal variation of bacterial production, respiration and growth efficiency in the open NW Mediterranean Sea. Aquat Microb Ecol, 2002, 29: 227~237.
    Levinsen H and Nielsen T G. The trophic role of marine pelagic ciliates and heterotrophic dinoflagellates in arctic and temperate coastal ecosystems: A cross-latitude comparison. Limnology & Oceanography, 2002, 47(2): 427~439.
    Li W K W, Dickie P M, Lrwin B D, et al. Biomass of bacteria, cyanobacteria, prochlorophytes and photosynthetic eukaryotes in the Sargasso Sea. Deep Sea Res. 1992, 39(3/4): 501~519.
    Li W K W, Subba R D V, Harrison J C. Autotrophic picoplankton in the tropical ocean. Science, 1983, 219: 292~295.
    Li W K W. Composition of ultraphytoplankton in the Central North-Atlantic. Mar Ecol Prog Ser, 1995, 122(1-3): 1~8.
    Li W K W. Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnol Oceanogr, 1998, 43(7): 1746~1753.
    Liu G M, Sun S, Wang H, et al. Abundance of Calanus sinicus across the tidal front in the Yellow Sea, China. Fish. Oceanogr., 2003, 12(4/5): 191~298.
    Liu H B, Campbell L, Landry M R. Growth and mortality rates of Prochlorococcus and Synechococcus measured with a selective inhibitor technique. Mar Ecol Prog Ser, 1995, 116: 277~287.
    Loferer-Kr?ssbacher M, Klima J, Psenner R. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl Environ Microbiol, 1998, 64: 668-694.
    Logan B E, Kirchman D L. Uptake of dissolved organics by marine bacteria as a funtion of fluid motion. Marine Biology, 1991, 111: 175~181.
    Lomas M W, Glibert P M, Shiah F-K, et al. Microbial processes and temperature in Chesapeake Bay: current relationships and potential impacts of regional warming. 2002, Global Change Biology, 8 (1): 51-70.
    Maranger R and Bird D F. Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar Ecol Prog Ser, 1995, 121(1~3): 217~226.
    Marchant H J, Wright A T, Wright S W. The distribution and abundance of chroococcoid cyanobacteria in the Southern Ocean. Polar Biol. , 1987, 1:1~9.
    Marcus Reckermann. Ultraphytoplankton and protozoan communities and their interactions in different marine pelagic ecosystems(Arabian Sea and Baltic Sea)(Dissertation Thesis), University of Rostock, June 1996.
    Marie D, Brussaard C P D, Thyrhaug R, et al. Enumeration of marine viruses in culture and natural samples by Flow Cytometry. Appl Environ Microbiol, 1999, 65(1): 45~52.
    Matthew T C, Kirchman D L. Community Composition of Marine Bacterioplankton Determined by 16S rRNA Gene Clone Libraries and Fluorescence In Situ Hybridization. Appl Environ Microbiol, 2000, 66(12): 5116~5122.
    Mcmanus G B. Flow analysis of a planktonic microbial food web model. Marine Microbial Food Webs, 1991, 5(1): 145~160.
    Meyers S P. Developments in aquatic microbiology. Internatl Microbiol, 2000, 3: 203–211.
    Michaels A F, Silver M W. Primary production, sinking fluxes and the microbial food web. Deep-Sea Res., 1988, 35A: 473~490.
    Middelboe M, Hagstr?m A, Blackburn N, et al. Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria. Microbial Ecology, 2001, 42(3): 395~406.
    Moore L R, Post A F, Rocap G, et al. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr, 2002, 47(4): 989~996.
    Moriarty D J W. Techniques for estimating bacterial growth rates and production of biomass in aquatic environments[A]. Grigorova R, Norris J R. In Methods in Microbiology (22): Techniques in Microbial Ecology [C]. San Diego: Academic Press, 1990. 211~234.
    Murphy L S, Haugen E M. The distribution and anundance of phototrophic ultraplankton in the North Atlantic. Limnol Oceanogr, 1985, 30: 47~58.
    Newell S Y, Sherr B F, Sherr E B, et al. Bacterial response to the presence of eukaryotic inhibitors in water from a coastal marine environment. Mar Environ Res, 1983, 10: 147~157.
    Ning Xiuren and Daniel Vaulot. Estimating Synechococcus spp. growth rates and grazing pressure by heterotrophic nanoplankton in the English Channel and the Celtic Sea . Acta Oceanologica Sinica .,1992, 11(2): 255~273
    Norland S, Heldal M, Tumyr O. On the relation between dry matter and volume of bacteria. Microb Ecol, 1987, 13: 95~101.
    Norland S. The relationship between biomass and volume of bacteria[A]. Kemp P F, Sherr B F, Sherr E B, and Cole J J (ed.). Handbook of methods in aquatic microbial ecology[C]. London: Lewis Publishers, 1993. 303~307.
    Nuria G, Kristine L, Carlos P. Viral lysis and bacterivory during a phytoplankton bloom in coastal water microcosm. Applied & Environmental Microbiology, 1999, 65(5): 1949~1958.
    Olson R J, Chisholm S W, Zettler E R, et al. Spatial and temporal distribution of prochlorophyte picoplankton in the North Atlantic Ocean. Deep-Sea Res, 1990, 37(6): 1033~1051.
    Pernthaler J, Scattler B, Simerk K, et al. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquatic Microbial Ecology, 1996, 10(3): 255~263.
    Pingree R D, Pugh P R, Holligan P M, et al. Summer phytoplankton blooms and red tides along tidal fronts in the approaches to the English channel. Nature, 1975, 258: 672~677.
    Platt T, Subba R D V, Irwin B. Photosynthesis of picoplankton in the Oligotrophic Ocean. Nature, 1983, 301: 702~704.
    Pomeroy L R. The ocean's food web, a changing paradigm. BioScience, 1974, 24(9): 499~504.
    Pomeroy L R. The microbial food web. Oceanus, 1992, 28~35.
    Pomeroy L R, Wiebe W J. Energy sources for microbial food webs. Marine Microbial Food Webs, 1993, 7(1): 101~118.
    Posch T, Loferer-Kr??bacher M, Gao G. Precision of bacterioplankton biomass determination: a comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors. Aquat Microb Ecol, 2001, 25: 55~63.
    Prézelin B B, Putt M, Glover H E. Diurnal patters in photosynthetic capacity and depth-dependent photosynthesis-irradiance relationships in Synechococcus spp. and larger phytoplankton in three water masses in the Northwest Atlantic Ocean. Marine Biology, 1986, 91: 205~217.
    Proctor L M, Fuhrman J A. Viral mortality of marine bacteria and cyanobacteria. Nature, 1990, 343: 60~62.
    Putland J N. MIcrozooplankton herbivory and bacterivory in Newfoundland coastal waters during spring, summer and winter. J. Plankton Research, 2000, 22(2): 253~277.
    Ram A S P, Nair S, Chandramohan D. Bacterial growth efficiency in the tropical estuarine and coastal waters of Goa, southwest coast of India. Microb Ecol, 2003, 45: 88~96.
    Raven J A. Small is beautiful: the picophytoplankton. Functional Ecology, 1998, 12, 503~513.
    Riemann L and Middelboe M. Stability of bacterial and viral community compositions in Danish coastal waters as depicted by DNA fingerprinting techniques. Aquatic Microbial Ecology, 2002, 27(3): 219~232.
    Rivkin R B, Anderson M R. Inorganic nutrient limitation of oceanic bacterioplankton. Limnol Oceanogr, 1997, 42(4): 730~740.
    Rivkin R B, Putland J N, Anderson M R, et al. Microzooplankton bacterivory and herbivory in the NE subarctic Pacific. Deep-Sea Res, 1999, 46: 2579~2618.
    Rivkin R B, Legendre L. Biogenic carbon cycling in the upper ocean: effect of microbial respiration. Science, 2001, 291: 2398~2400.
    Robinson C, Williams P J L. Plankton net community production and dark respiration in the Arabian Sea during September 1994. Deep-Sea Res II, 1999, 46: 745~765.
    Safi K A, Vant W N, Hall J A. Growth and grazing within the microbial food web of a large coastal embayment. Aquat Micro Ecol, 2002, 29: 39~50.
    Salvide G. A preliminary study of the distribution of chlorophyll a in the vicinity of fronts in the Celtic and western Irish Seas. Est. Coastal and Shelf Sci., 1976, 4: 617~625.
    Sanders R W, Caron D A. Relationship between bacteria and heterotrophic nanoflagellate in marine and fresh waters: An intere-cosystem comparison. Mar Ecol Prog Ser, 1992, 86: 1~14.
    Scaria D. On the role of bacteria in secondary production. Limnol Oceanogr, 1988, 33: 1220~1 224.
    Schwalbach M S, Hewson I, Fuhrman J A. Viral effects on bacterial community composition in marine plankton microcosms. Aquat Microb Ecol, 2004, 34: 117~127.
    Set?l? O and Kivi K. Plankton ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact. Aquatic Microbial Ecology, 2003, 32(3): 287~297.
    Sherr B F, Sherr E B, Andrew T L, et al. Trophic interactions between heterotrophic protozoa and bacterioplankton in esturine water analyzed with selective metabolic inhibitors. Mar Ecol Prog Ser, 1986, 32: 169~179.
    Sherr E, Sherr B. Role of microbes in pelagic food webs: a revised concept. Limnol. Oceanogr. , 1988, 33(5): 1225~1227.
    Sherr E B, Sherr B F. Microbial activity in aquatic systems from cell to biosphere. Aquatic Biosystems Plenary, 1999.(meeting)
    Sherry N D, Boyd P W, Sugimoto K, et al. Seasonal and spatial patterns of heterotrophic bacterial production, respiration, and biomass in the subarctic NE Pacific. Deep-Sea Research II, 1999, 46: 2557~2578.
    Shiah F K, Ducklow H W. Temperature and substrate regulation of bacterial abundance, production and specific growth rate in Chesapeake Bay, USA. Mar Ecol Prog Ser, 1994, 103: 297~308.
    Shiah F K, Ducklow H W. Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay. Limnol. Oceanogr. , 1994, 39(6): 1243~1258.
    Shiah F K, Liu K K, Kao SJ, et al. The coupling of bacterial production and hydrography in the southern East China Sea: spatial patterns in spring and fall. Continental Shelf Research, 2000, 20: 459~477.
    Shiah F K, Chen T Y, Gong G C, et al. Differential coupling of bacterial and primary production in mesotrophic and oligotrophic systems of the East China Sea. Aquat Microb Ecol, 2001, 23: 273~282.
    Shiah F K, Gong G C, Chen C C. Seasonal and spatial variation of bacterial production in the continental shelf of the East China Sea: possible controlling mechanisms and potential roles in carbon cycling. Deep-Sea Res.II, 2003, 1295~1309.
    Shimada A, Hasegawa T, Umeda I, et al. Spatial mesoscale patterns of West Pacific picophytoplankton as analyzed by flow cytometry: their contribution to subsurface chlorophyll maxima. Marine Biology, 1993, 115: 209~215.
    Simon M, Azam F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser, 1989, 51: 201~213.
    Smith E M, Kemp W M. Planktonic and bacterial respiration along an estuarine gradient: responses to carbon and nutrient enrichment. Aquat Microb Ecol, 2003, 30: 251~261.
    Smith E M, Kemp W M. Size structure and the production/respiration balance in a coastal plankton community. Limnol Oceanogr, 2001, 46(3): 473~485.
    Smith R, Hall J. Bacterial abundance and production in different water masses around South Island, New Zealand. New Zealand. Journal of Marine and Freshwater Research, 1997, 31: 515-524.
    Sorokin Y, Sorokin P, Mamaeva T. Density and distribution of bacterioplankton and planktonic ciliates in the Bering Sea and North Pacific. J. Plankton Res. 1996, 18: 1~16.
    Suttle C A and Chan A M. Marine cyanophages infecting ocean and coastal strains of Synechococcus: Abundance, morphology, cross-infectivity and growth characteristics. Mar Ecol Prog Ser, 1993, 92(1-2): 99~109.
    Suttle C A and Chan A M. Dyanmics and distribution of cyanophage and their effect on marine Synechococcus spp. Appl. Environ. Microbiol., 1994, 60(9): 3167~ 3174.
    Suttle C A and Chen F. Mechanisms and rates of decay of marine viruses in seawater. Appl. Environ. Microbiol., 1992, 58: 3721~3729.
    ?imek K and Chrzanowski T H. Direct and irdirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Applied & Environmental Microbiology, 1992, 58(11): 3715~3720.
    ?imek K, Jurgens K, Nedoma J. et al. Ecological role and bacterial grazing of Halteria spp.: small freshwater oilgotrichs as dominant pelagic ciliate bacterivores. Aquatic Microbial Ecology, 2000, 22(1): 43~56.
    ?imek K, Pernthaler J, Weinbauer M G, et al. Changes in bacterial community composition and dynamics and viral mortality rates associated with enchanced flagellate grazing in a mesoeutrophic reservoior. Applied & Environmental Microbiology, 2001, 67(6): 2723~2733.
    Takahashi M, Bienfang P K. Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian water. Marine Biology, 1983, 76: 203~211.
    Takahashi M, Kikuchi K, Yara Y. Importance of picocyanobacteria biomass (unicellular, blue-gree algae) in the phytoplankton population of the coastal waters off Japan. Marine Biology, 1985, 89: 63~69.
    Tarran G A, Zubkob M V, Sleigh M A, et al. Microbial community structure and Standing Stocks in the NE Atlantic in June and July of 1996. Deep-Sea Research Ⅱ, 2001, 48: 963~985.
    Tata K, Matsumoto K, Tata M, et al. Size distribution of phytoplankton community in Hiroshima Bay. Kagawa Daigaku Nogakuibu Gakujutsu Hokoku, 1994, 46: 27~35.
    Theil-Nielsen J, S?ndergaard M. Bacterial carbon biomass calculated from biovolumes. Arch Hydrobiol, 1998, 141: 195~207.
    Thingstad T F, Heldal M, Bratbak G, et al. Are Viruses important partners in pelagic food webs. Trends in Ecology & Evolution, 1993, 8(6): 209~213.
    Thingstad T F and Lignell R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol, 1997, 13(1): 19~27.
    Thingstad T F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr, 2000, 45(6): 1320~1328.
    Thomas W H, Dodson A N. Inhibition of diatom photosynthesis by Germanic acid: separation of diatom productivity from total marine primary productivity. Mar Biol, 1974, 27: 11~19.
    Toolan T. Coulometric carbon-based respiration rates and estimates of bacterioplankton growth efficiencies in Massachusetts Bay. Limnol Oceanogr, 2001, 46(6): 1298~1308.
    Trousselier M, Bouvy M, Courties C, et al. Variation of carbon content among bacterial species under starvation condition. Aquat Microb Ecol, 1997, 13: 113~119.
    Verity P G. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr 37: 1434~1446.
    Waterbury J B, Watson S W, Guillard R, et al. Widespread occurrence of a unicellular, marine planktonic cyanobacterium. Nature, 1979, 277: 293~294.
    Waterbury J B, Watson S W, Valois F W, et al. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In: Platt T, Li W K W(Eds.), Photosynthetic picoplankton. Canadian Bulletin of Fisheries and Aquatic Sciences, Department of Fisheries and Oceans, Ottawa, Canada, 1986, 214: 71~120.
    Watson S W, Novitsk T J, Quinby H L, et al. Determination of bacterial number and biomass in the marine environment. Appl Environ Microbiol, 1977, 33: 940~946.
    Wei H, Su J, Wan R, et al. Tidal front and the convergence of anchovy (Engraulis japonicus) eggs in the Yellow Sea. Fish. Oceanogr., 2003, 12(4/5): 434~442.
    Weinbauer M G, H?fle M G.. Significance of Viral Lysis and Flagellate Grazing as Factors Controlling Bacterioplankton Production in a Eutrophic Lake. Appl Environ Microbiol, 1998, 64(2): 431-438.
    Weisse T. Growth and production of hetertrophic nanoflagellates in a meso-eutrophic lake. J. Plankton Res., 1997, 19: 703~722.
    Wheeler P A, Kirchman D L.Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol Oceanogr, 1986, 31(5): 998~1009.
    Williams P J leB. Microbial contribution to overall marine plankton metabolism: direct measurements of respiration. Oceanol Acta, 1981, 4: 359~364.
    Wilhelm S W & Suttle C A. Viruses and nutrient cycles in the sea: Viruses play critical roles in the structure and function of aquatic food webs. BioScience, 1999, 49(10): 781~788.
    Wommack K E, Hill R T, Kessel M, et al. Distribution of viruses in the Chesapeake Bay. Appl. Envir. Microl, 1992, 58(9): 2965~2970.
    Wommack K E, Ravel J, Hill R T, et al. Population dynamics of Chesapeake Bay virioplankton: Total-communiy analysis by pulsed-field gel electrophoresis. Appl. Envir. Microl, 1999, 65(1): 231~240.
    Worden A Z, Binder B J. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat Microb Ecol, 2003, 30: 159~174.
    Wright R T, Coffin R B. Measuring microzooplankton grazing on planktonic marine bacteria by its impact on bacterial production. Micro Ecol, 1984, 10: 137~149.
    Wright R T, Coffin R B. Planktonic bacterial in estuaries and coastal waters of northern Massachusetts: Spatial and temporal distribution. Mar Ecol Prog Ser, 1983, 11: 205~216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700