冠心病心房肌Cx40、Cx43的表达及其与房颤病理机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景心房颤动(Atrial Fibrillation, AF)是一种以心房不协调活动而导致心房机械功能恶化为特征的室上性心动过速性心律失常。房颤是一种常见的心律失常,关于房颤的触发、驱动和维持机制目前仍不是很清楚,在触发、驱动机制方面,心脏腔静脉系统如冠状静脉、上下腔静脉、肺静脉系统等部位的灶性放电可触发阵发性房颤。此外心房肌迷走神经张力异常也可能和触发机制有关,在维持机制方面,近年来,由于对房颤研究的不断深入,心房重构(atrial remodeling)越来越受到重视,心房重构包括心房电重构(AER)和心房的结构重构(AAR)。
     病理学上房颤分为孤立性房颤和病理性房颤。在病理性房颤的发生和维持机制中,左心房扩大被视为最重要的因素之一。心房扩大一方面促进心房内形成多折返环,另一方面改变了心房肌的电生理特性。研究表明,心律失常更多地依赖于细胞间电激动的被动传导(即被动电生理活动),并且证实细胞间缝隙连接(Gap Junction GJ)作为细胞间的一种特殊通道介导着细胞间电和化学信号的传递,在维持电和机械耦联的正常进行以及确保心肌协调收缩方面起着重要作用。组成缝隙连接的蛋白简称连接蛋白(Connexion Cx),在人体心肌中,主要有Cx31.9、Cx37、Cx40、Cx43和Cx45五种连接蛋白,其中Cx43在四个心腔均分布丰富,Cx45主要分布在心肌传导束及蒲氏纤维,Cx40主要分布在心房肌,是心房电激动传导的关键蛋白。许多基础研究认为房颤发生后在数秒至数分钟内即出现离子的浓度、离子通道的活性和磷酸化改变,数小时至数天即出现离子通道的信使核糖核酸(mRNA)表达和蛋白表达改变,包括缝隙连接蛋白(Cx)的改变。随后出现心房肌细胞肥大、凋亡、炎性细胞浸润、间质纤维化。目前对缝隙连接蛋白Cx40、Cx43变化在风湿性心脏病房颤的发生中的作用有较多的研究报道,但缝隙连接蛋白Cx40、Cx43在冠心病房颤患者左、右心房肌中的表达、分布,Cx40重构与房颤及左心房大小的关系如何还少有报道。本研究将通过对比冠心病房颤患者左右心房肌中缝隙连接蛋白Cx40、Cx43, Cx40mRNA、Cx43mRNA的表达,变化及光镜、电镜下的结构重构,分三个部分对冠心病房颤的机制进行探讨。
     目的:
     观察冠心病窦性心律正常左房大小(SR)、窦性心律左房扩大(SR+LAD)、心房颤动并左房扩大者(AF+LAD)及风湿性心脏病心房颤动并右房扩大者(AF+RAD)左、右心房肌细胞缝隙连接蛋白(Cx40mRNA、Cx40)的表达变化,探讨Cx40mRNA、Cx40在左、右心耳肌中的表达,与左、右心房大小的关系及在冠心病房颤发生中的作用。
     方法:
     选择26例接受冠状动脉旁路移植术的冠心病患者和11例接受换瓣术的风心病患者为研究对象,37例患者术前均接受冠状动脉造影检查,根据心电图和心脏彩超资料分为四组:AF+LAD组11例,AF+RAD组11例,SR+LAD组8例,SR组7例,分别于手术中切取左、右心耳标本(左心房大小正常者一般只切取右心耳肌标本)。用RT-PCR方法及免疫印迹法(Western blot)检测Cx40mRNA、Cx40的表达。
     结果:
     1. Cx40mRNA、Cx40表达量均值在扩大的右心房和正常大小的右心房肌标本中有显著差异(P<0.01)。
     2. Cx40mRNA、Cx40表达量均值在SR+LAD、AF+LAD组左心耳肌标本中比较无显著性差异(P>0.05)。
     3. Cx40mRNA、Cx40表达量均值在SR+LAD、AF+LAD和AF+RAD组左心耳肌标本中与正常大小的右心耳肌标本比较明显降低,有显著性差异(P<0.01)。
     结论:
     1.左、右心房扩大后心房肌Cx40mRNA、Cx40表达下调。
     2.左心房扩大并房颤后Cx40mRNA、Cx40表达无进一步下调。
     3.心房扩大和Cx40表达下调可能是房颤的产生和维持的重要因素。
     目的:
     观察窦性心律正常左房大小(SR)、窦性心律左房扩大(SR+LAD)、心房颤动并左房扩大者(AF+LAD)及心房颤动并右房扩大者(AF+RAD)左、右心房肌细胞Cx43mRNA和Cx43表达的变化、探讨Cx43mRNA和Cx43表达的变化及在房颤中的作用。
     方法:
     选择26例接受冠状动脉旁路移植术的冠心病患者和20例接受换瓣术的风心病患者为研究对象,46例患者术前均接受冠状动脉造影检查,根据心电图和心脏彩超资料分为四组:AF+LAD组26例,AF+RAD组20例,SR+LAD组8例,SR组12例,分别于手术中切取左、右心耳标本(左心房大小正常者一般只切取右心耳肌标本)。用RT-PCR法检测Cx43mRNA表达,用免疫印迹法(Western blot)检测Cx43蛋白的表达。
     结果:
     Cx43mRNA和Cx43表达量均值在四组患者的左、右心房肌标本中采用方差分析及两-两比较均无显著差异(P>0.05)。
     结论:
     1.不论是否发生左、右心房扩大和房颤,左、右心房肌细胞中Cx43mRNA表达无明显变化。
     2.不论是否发生左、右房扩大和房颤,左、右心房肌细胞中Cx43表达无明显变化,
     3.左、右心房扩大和房颤对Cx43mRNA和Cx43的表达均无明显影响,说明Cx43mRNA和Cx43表达的变化对房颤的发生影响较少。
     目的:
     制备光镜、电镜标本,应用光镜、电子显微镜观察心房肌细胞、细胞间质及缝隙连接的结构变化,探讨心房肌细胞、细胞间质及缝隙连接重构的变化在房颤发生中的作用。
     方法:
     选择26例接受冠状动脉旁路移植术的冠心病患者和11例接受换瓣术的风心病患者为研究对象,37例患者术前均接受冠状动脉造影检查,根据心电图和心脏彩超资料分为四组:AF+LAD组11例,AF+RAD组11例,SR+LAD组8例,SR组7例,分别于手术中切取左、右心耳标本(左心房大小正常者一般只切取右心耳肌标本)。观察心房肌细胞的形态和大小、细胞核的异形和大小、细胞间缝隙连接的变化、细胞间质纤维化的比例及脂肪浸润情况。
     结果:
     1.光镜下左、右心房扩大患者心房肌细胞肥大、细胞核肥大异形、细胞间质纤维化和脂肪浸润程度与左、右心房大小正常的患者比较有显著差异(P<0.01)。
     2.电镜下心肌细胞肌原纤维溶解、断裂;线粒体数量明显增多,且大小不一;细胞核异型明显;闰盘扭曲,盘旋重叠,模糊、不连续;心肌间质纤维增生明显与左、右心房大小正常的患者比较有显著差异(P<0.01)。
     结论:
     左、右心房扩大后,心房肌细胞、细胞间基质及细胞间缝隙连接发生了重构,心房结构重构是导致房颤的发生和维持的重要因素。
Background:Atrial fibrillation is a kind of supraventricular arrhythmia which is a complete absence of coordinated atrial systole.commonly encountered arrhythmia. The mechanism of onset and maintenance of atrial fibrillation is not fully understood, though many recent studies have allowed improvements in the comprehension of the pathophysiology of the arrhythmia. For onset of atrial fibrillation, some researches on mechanism of onset dicovered the focal discharge could resulted in paroxysm AF in the vena cava system such as the vena coronaria, the superior and inferior vena cava and pulmonary vena. Besides, an increase in sympathetic tone, cardiac fat pad and vascular nerves in chambers heart is considered by many researchers as an important factor in initiating and maintaining atrial fibrillation, which first result in atrial premature beats, paroxysmal atrial tachycardia by diminish autorhythmic cell membrance potential, after-depolarization and triggers. For maintenance of atrial fibrillation, many recent studies have allowed atrial remodeling is the important reentry substrate of atrial fibrillation, which include atrial electroical remodeling and atrial anatomical remodeling.
     In current literatural, atrial fibrillation is generally subdivided into two forms:lone and pathological atrial fibrillation. Dilated left atrial has been considered to be one of the major factors linked to inducibility and persistence of pathological atrial fibrillation.Atrial enlargement may be related to both the multiple re-entrant circuits and electrophysiological characteristics of the atrial myocardium. In fact, all of myocardium is involved in any type of arrhythmia (including AF); arrhythmia is no fewer determined by passive current conduction than membrane channels. Accounting for AF is incomplete regardless of passive conduction between cells. It has been proved that gap junction is the only base structure responsible for intercellular current conduction. Gap junction is a specialized regions of the membranes of adjacent cells, containing arrays of densely packed intercellular channels that directly connect the cytoplasmic compartments of neighboring cells and permit ihtercellular passage of ions and small molecules. Gap junctions maintain cellular homeostasis by allowing communication between adjacent cells. In the heart, gap junctions provide the pathways for intercellular current flow, enabling coordinated action potential propagation. Gap-junctional channels are constructed from connexins (Cxs), a multigene family of conserved proteins termed connexins. In the mammalian heart, Single gap junction channel is composed of six connexin that abbreviate Cx by the molecular weight of the specific protein. It has been established that mammalian cardiac express Cx31.9, Cx37, Cx40, Cx43and Cx45. but different tissue of the heart express different amounts and combinations of these connexins, Cx43 was confirmed to be abundantly in all four chambers in human heart, Cx45 expression appears to be within the atrioventricular conduction system and Cx40 is present specifically in the atrium and in the specialized conducting system. Studies have shown that the changes of ionic concentration, ionic channel activities and phosphorylation have involved by the initiation of atrial fibrillation in a few seconds or minutes, and the expression changes of mRNA and proteins,including connexins, take place in several hours or days later. Structural changes are present in atrial fibrillation including atrium myocytes hypertrophia, apoptosis, inflammatory cell infiltrate and interstitial fibrosis.
     Cx40 gap junction channel was speculated to play critical roles in atria arrhythmia and AF. Although there are a few of researches about Cx40 and Cx43 on mechanisms of rheumatic heart disease AF, there are few reports about the changes of Cx40 and Cx43 expression, spatial distribution patern, and their morphology in human atrial myocardium from coronary heart disease. Our study composed of three parts aim to reveal the expression of Cx40, Cx40mRNA, Cx43, Cx43mRNA and the disorganization of connexin40 in the atrium myocardium of patients with coronary heart disease,, which to probe the mechanisms of atrial fibrillation in coronary heart disease.
     Objective:
     To explore the expression of Cx40mRNA、Cx40 in atrium myocardium of patients suffering from coronary heart disease with or without artial dilated or atrial fibrillation.
     Methods:
     26 patients with Coronary heart disease and 11 patients with rheumatic heart disease undergoing cardiac surgery for coronary artery bypass graft were involved in this study and were divided into four groups according to the atrial size and rhythm. All patients were examined by coronary arteriongraphy, echocardiogram and ECG before surgical operation.11 cases with AF and left atrial dilatation(AF+LAD),8 with sinus rhythm and left atrial dilatation (SR+LAD),7 sinus rhythm without atrial dilatation (SR) and 11 cases with AF and right artial dilatation(AF+RAD). Expression of Cx40mRNA was detected by RT-PCR. Expression of Cx40 was detected by immunoblotting assay(western blot).
     Results:
     1. Significantly decreased were observed in the Cx40mRNA、Cx40 expression in atrium myocardium in all of the atrial dilatation groups (P <0.05).
     2. No obvious changes were observed in the Cx40mRNA、Cx40 expression in AF+LAD group and SR+LAD group(P> 0.05).
     3. Comparing with the Cx40mRNA、Cx40 expression in right atrium of the SR group, AF+LAD group and SR+LAD group, there was significantly decreased than that in the left atrium in AF+LAD group and SR+LAD group(P< 0.01).
     Conclusion:
     The decrease expression of Cx40mRNA、Cx40 is relation with left atrial dilatation, the decrease expression of Cx40mRNA、Cx40 and left atrial dilatation could be an important agents in the occurrence and maintenance of AF.
     Objective:
     To explore the effects of connexin 43mRNA and connexin 43 and the left atrium size in the AF by studying the expression of Connexin43mRNA and connexin 43 in Atrium of patients suffering from coronary heart disease with or without AF.
     Methods:
     26 patients with Coronary heart disease and 11 patients with rheumatic heart disease undergoing cardiac surgery for coronary artery bypass graft were involved in this study and were divided into four groups according to the atrial size and rhythm.11 cases with AF and left atrial dilatation (AF+LAD),8 with sinus rhythm and left atrial dilatation (SR+LAD),7 sinus rhythm without atrial dilatation (SR) and 11 cases with AF and right artial dilatation(AF+RAD). Expression of Cx43mRNA was detected by RT-PCR. Expression of Cx43 was detected by immunoblotting assay(western blot).
     Results:
     No obvious change was observed in the Cx43mRNA and Cx43 expression in dilated atrial myocytes in the four groups (P> 0.05).
     Conclusion:
     The expression of Cx43mRNA and Cx43 is not relation with left atrial dilatation and the expression of Cx43mRNA and Cx43 contribute less than the expression of Cx40 in the occurrence and maintenance of AF.
     Objective:
     The labelled samples were examined using a confocal microscope and light microscope to explore the anatomical structure of dilated atrium in the patients with coronary heart disease.
     Methods:
     26 patients with Coronary heart disease and 11 patients with rheumatic heart disease undergoing cardiac surgery for coronary artery bypass graft were involved in this study and were divided into four groups according to the atrial size and rhythm.11 cases with AF and left atrial dilatation (AF+LAD),8 with sinus rhythm and left atrial dilatation (SR+LAD),7 sinus rhythm without atrial dilatation (SR) and 11 cases with AF and right artial dilatation(AF+RAD). The spatial distribution pattern of Cx40 were detected through light microscope and confocal lasers canning microscopy assay.
     Results:
     1.The results revealed atrial anatomical remodeling have involved in the dilatation of atrial myocytes.
     2.Myolysis, glucogen aggregation, fibrosis, cytochondriom change and nuclear depolymerize have been observed by confocal microscope in dilated atrial myocytes.
     3. Adipose infiltration, hypertrophia, nuclear multiplication, nuclear atypia and interstitial fibrosis have been observed by light confocal
     Conclusion:
     Atrial anatomical remodeling have involved in the dilatation of atrial myocytes which could be an important agent in the recurrence formation of AF.
引文
[1]Kannel WB, Abbot RD,Savage DD, et al.Epidemiology features of chronic atrial fibrillation;The Framingham study.N Engl J Med 1982;306:1018-22.
    [2]Wolf PA,Abbot RD,Kannel WB et al.,Atrial fibrillation as an independent risk factor for stroke; The Framingham study.Stroke 1991;22:983-8.
    [3]Fox CS,Parise H,D'Agostino RB Sr, et al.Parental atral fibrillation as a risk factor for atral fibrillation in offspring. JAMA2004;291:2851-55.
    [4]Darbar D,Herron KJ,Ballew JD,et al.Familial atrial fibrillation is a genetically heterogeneous disorder J Am Coll Cardiol 2003;41:2185-92.
    [5]Chambers PW. Lone atrial fibrillation:Pathologic or not? Med Hypotheses 2007;68:281-7.
    [6]Xu J,Cui G,Esmailian F,et al.Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation.Circulation 2004; 109:363-68
    [7]Wang TJ,Paris H,Levy D,et al.Obesity and the risk of new-onset atrial fibrillation. JAMA 2004;292:2471-77.
    [8]Pan NH, Tsao HM,.Chang NC,et al.Aging dilates atrium and pulmonary veins: implications for the genesis of AF.Chest 2008;133(1):190-6.
    [9]Kostin S, Klein G, Szalay Z, et al. Structural correlate of atrial fibrillation in human patients. Cardiovasc Res 2002;54:361-79.
    [10]Janse MJ. Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res 2004;61:208-217.
    [11]Boyden PA,Tilley LP,Albala A,et al.Mechanisms for atrial arrhythmias associated with cardiomyopathy:a study of feline hearts with primary myocardial disease.Circulation 1984;69:1036-47.
    [12]Everett TH,Li H,Mangrum JM,et al.Electrical,morphological,and ultrastructural remodeling and reverse remodeling in a canine model of chronic atrial fibrillation.Circulation 2000; 102:1454-60.
    [13]Roberts R. Genomics and cardiac arrhythmias. J Am Coll Cardiol
    2006;47:9-21.
    [14]Severs NJ, Rothery S, Dupont E, et al. Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system. Microsc Res Tech 2001; 52:301-22.
    [15]Cottrell GT, Wu Y, Burt JM. Cx40 and Cx43 expression ratio influences heteromeric/heterotypic gap junction channel properties. Am J Physiol Cell Physiol 2002;282:C1469-82.
    [16]Mehran F,Marti FA,Bierhuizen BK,et al. The human Cx40 promoter polymorphism -44G→A differentially affects transcriptional regulation by Sp1 and GATA4. Biochemical et Biophysica Acta 2006;1759:491-96.
    [17]Kanno S, Saffitz JE. The role of gap junctions in electrical conduction and arrhythmogenesis in the heart. Cardiovasc Pathol 2001;10:169-77.
    [18]Olgin JE, Verheule S. Transgenic and knockout mouse models of atrial arrhythmias. Cardiovasc Res 2002;54 (2):280-21.
    [19]van Rijen HV, vanVeen TA, van Kempen MJ,et al. Impaired conduction in the bundle branches of mouse hearts lacking the gap junction protein connexin40. Circulation 2001; 103:1591-98.
    [20]Verheule S, van Batenburg CA, Coenjaerts FE, et al. Cardiac conduction abnormalities in mice lacking the gap junction protein connexin40. J Cardiovasc Electrophysiol 1999; 10 (10):1380-89.
    [21]Vanderbrink BA, Sellitto C, Saba S,et al. Connexin40-deficient mice exhibit atrioventricular nodal and infra-Hisian conduction abnormalities. J Cardiovasc Electrophysiol 2000; 11:1270-76.
    [22]Kanno S, Saffitz JE. The role of gap junctions in electrical conduction and arrhythmogenesis in the heart. Cardiovasc Pathol 2001; 10:169-77.
    [23]van Veen TAB,van Rijen HVM,Opthof T. Cardiac conduction channels: modulation of expression and channel properties.Cardiovasc Res 2001; 51(2):217-29.
    [24]Cristina V,Emmanuel D,Steven RC,et al.Chamber- ralated differences in connexin expression in the human heart. J Moll Cell Cardiol
    1999;31:991-1003.
    [25]Nao T, Ohkusa T, Hisamatsu Y, et al. Comparison of expression of connexin in right atrial myocardium in patients with chronic AF versus those in sinus rhythm. Am J Cardiol 2003; 91:678-83
    [26]Kanagaratnam P, Cherian A, Stanbridge RD, et al. Relationship between connexins and atrial activation during human atrial fibrillation. J Cardiovasc Electrophysiol 2004; 15:2006-16.
    [27]van der Velden HM,Ausma J,Rook MB,et al. Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc Res 2000;46:476-86.
    [28]李大强,冯义柏,张会琴.心房肌间隙连接重构与风湿性瓣膜病患者心房颤动的关系.中华医学杂志2004;84:384-86.
    [29]Emmanuel D,Yu Shien K,Stephen RB,et al.The gap junction protein connexin 40 is elevated in patients susceptible to postoperative atrial fibrillation. Circulation 2001;103:842-49.
    [30]钟国强,黄从新,刘唐威,等.异型缝隙连接通道和磷酸化对心脏缝隙连接的调变[J].中华心律失常学杂志,2003,7(4):229-33.
    [31]Lampe PD, Lau AF. The effects of connexin phosphorylation of gap junctional communication. Int J Biochem Cell Biol 2004;36(7):1171-86.
    [32]Parkash R, Green MS, Kerr CR, et al. The association of left atrial size and occurrence of atrial fibrillation:a prospective cohort study from the Canadian Registry of Atrial Fibrillation. Am Heart J 2004;148:649-54.
    [33]Tang M, Zhang S, Sun Q, et al. Alterations in electrophysiology and tissue structure of the left atrial posterior wall in a canine model of atrial fibrillation caused by chronic atrial dilatation. Circ J 2007; 71:1636-42.
    [34]Bosch RF,Zeng XR,Grammer JB,et al. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 1999;44(6):121-31.
    [35]Verheule S, Wilson EE, Arora R, et al. Tissue structure and connexin expression of canine pulmonary veins. Cardiovasc Res 2002;55(4):727-38.
    [36]Stergiopoulos K, Alvarado JL, Mastroianni M, et al. Heterodomain interactions as a mechanism for the regulation of connexin channels. Circ Res 1999;84:1144-55.
    [37]Roberts R. Genomics and cardiac arrhythmias. J Am Coll Cardiol 2006;47:9-21.
    [38]Polontchoik L, Haefliger JA, Ebelt B et al. Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J Am Coll Cardiol 2001;38(3):883.
    [39]Heather S. Duffy, Andrew L. Wit. Is there a role for remodeled connexins in AF? No simple answers. J Molecular and Cellular Cardiology 2008;44:4-13.
    [40]Velden vander HM,van Kempen MJ,Groenewegen WA,et al.Comparative analysis of the distribution of the gap junction proteins connexins 40 and 43 in chronic atrial fibrillation in patients and a goat model. Circulation 1997;96(8):237.
    [41]Valiunas V, Gemel J, Brink PR,et al. Gap junction channels formed by coexpressed connexin40 and connexin43. Am J Physiol Heart Circ Physiol 2001;281:H1675-89.
    [42]Valiunas V, Weingart R, Brink PR. Formation of heterotypic gap junction channels by connexins 40 and 43. Circ Res 2000;86:E42-49.
    [43]Cardin S, Libby E, Pelletier P, et al. Contrasting gene expression profiles in two canine models of atrial fibrillation. Circ Res 2007;100:425-33.
    [44]Lamirault G, Gaborit N, Le Meur N, et al. Gene expression profile changes associated with chronic atrial fibrillation and underlying valvular heart disease in man. J Mol Cell Cardiol.2006;40:173-84.
    [45]Musil LS, Cunningham BA, Edelman GM, et al. Differential phosphory-lation of the gap junction protein connexin43 in junctional communication competent and deficient cell lines. J Cell Biol 1990;111:2077-88.
    [46]Laird DW, Puranam KL, Revel P.Turnover and phosphorylation dynamics of connexin 43 gap junction protein in cultured cardiac myocytes.Biochem J 1991;273:67-72.
    [47]Lioudmila P, Jacques-Antoine H, Berit E,et al. Effects of chronic atrial fibrillation on gap junction distribution in human and rat atrial.J Am Coll Cardiol 2001;38:883-91.
    [48]Musil LS, Goodenough DA. Biochemical analysis of connexin 43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 1991;115:1357-74.
    [49]Brundel BJ, Henning RH, Kampinga HH,et al. Molecular mechanisms of remodeling in human atrial fibrillation. Cardiovascular Research 2002;54 (2):315-324.
    [50]Ausma J, van der Velden HM, Lenders MH, et al. Reverse structural and gap junctional remodeling after prolonged atrial fibrillation in the goat. Circulation 2003; 107(15):2051-58.
    [51]Guerrero PA, Schuessler RB, Davis LM, et al. Slow ventricular conduction in mice heterozygous for a connexin43 null mutation. J Clin Invest 1997;99: 1991-1998.
    [52]Simon AM, McWhorter AR, Chen H, et al. Decreased intercellular communication and connexin expression in mouse aortic endothelium during lipopolysaccharide-induced inflammation. J Vasc Res 2004;41:323-333.
    [53]Sivasubramanian N, Coker ML, Kurrelmeyer KM, et al. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 2001; 104:826-831
    [54]Kaprielian RR, Gunning M, Dupont E, et al. Downregulation of immunodetectable connexin43 and decreased gap junction size in the pathogenesis of chronic hibernation in the human left ventricle. Circulation 1998;97:651-60.
    [55]van Rijen HV, Eckardt D, Degen J, et al. Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation 2004;109:1048-1055
    [56]Wetzel U, Boldt A, Lauschke J, et al. Expression of connexins 40 and 43 in human left atrium in atrial fibrillation of different aetiologies. Heart 2005;91:166-70.
    [57]Daleau P, Boudriau S, Michaud M, et al.Preconditioning in the absence or presence of sustained ischemia modulates myocardial CX43 protein levels and gap junction distribution.Can J Physiol Pharmacol 2001;79:371-78.
    [58]van der Velden HM, Jongsma HJ. Cardiac gap junctions and connexins:their role in atrial fibrillation and potential as therapeutic targets. Cardiovasc Res 2002;2:270-79.
    [59]Nattel S. New ideas about atrial fibrillation 50 years on. Nature 2002;415:219-26.
    [60]Nitta T, Ishii Y, Miyagi Y, et al. Concurrent multiple left atrial focal activations with fibrillatory conduction and right atrial focal or reentrant activation as the mechanism in atrial fibrillation. J Thorac Cardiovasc Surg 2004; 127:770-778.
    [61]Todd DM, Skanes AC, Guirandon G, et al. Role of the posterior left atrium and pulmonary veins in human lone atrial fibrillation:Electrophysiological and pathological date from patients undergoing atrial fibrillation surgery. Circulation 2003; 108:3108-14.
    [62]Corradi D, Callegari S, Benussi S,et al. Myocyte changes and their left atrial distribution in patients with chronic atrial fibrillation related to mitral valve disease. Hum Pathol 2005; 36:1080-89.
    [63]朱慧,张薇,郭辰虹,等.心房肌基质金属蛋白酶-9和组织金属蛋白酶抑制因子-1表达改变对心房颤动心房重构机制的研究方法[J].中华医学杂志,2005,85(1):45-48.
    [64]朱慧,张薇,张供,等.心房肌解整合素-金属蛋白酶15/整合素β1基因表达在心房颤动中的变化[J].中华心血管病杂志,2005,33(1):53-56.
    [65]Li D, Fareh S, Leung TK, Nattel S. Promotion of atrial fibrillation by heart failure in dogs:Atrial Remodeling of a different sort. Circulation 1999; 100:87-95.
    [66]Spach MS, Heidlage JF, Dolber PC, Barr RC. Changes in anisotropic conduction caused by remodeling cell size and the cellular distribution of gap junctions and Na+ channels. J Electrocardiol 2001; 34(Suppl):69-76.
    [67]Ikeda T, Czer L, Trento A, et al. Induction of meandering functional reentrant wave front in isolated human atrial tissues. Circulation 1997; 96:3013-20.
    [68]Tsai CF, Tai CT, Hsieh MH, et al. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava:electrophysiological characterics and results of radiofrequency ablation,Circulation 2000; 102:67-74.
    [69]Schwartzman D, Bazaz R, Nosbisch J. Common left pulmonary vein:a consistent source of arrhythmogenic atrial ectopy. J Cardiovasc Electrophysiol 2004;15:560-66.
    [70]Schauerte P, Scherlag BJ, Pitha J, et al. Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation. Circulation 2000; 102:2774-80.
    [71]Pappone C, Santinelli V, Manfuso F, et al. Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation 2004; 109:327-34.
    [72]Saba S, Janczewski AM, Baker LC, et al. Atrial contractile dysfunction, fibrosis, and arrhythmias in a mouse model of cardiomyopathy secondary to cardiac-specific overexpression of tumor necrosis factor. Am J Physiol Heart Circ Physiol 2005;289:H1456-H1467.
    [73]Sanders P, Berenfeld O, Hocini M, et al. Spectral analysis identifies sites of high frequency activity maintaining atrial fibrillation in humans. Circulation 2005;112:789-97.
    [74]Everett TH, Olgin JE. Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm 2007;4:S24-27.
    [75]Allessie M, Ausma J, Schotten U, et al. Electrical,contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 2002;54:230-46.
    [76]Frustaci A, Chimenti C, Bellocci F, et al. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 1997;96:1180-84.
    [77]Corradi D, Callegari S, Benussi S, et al. Regional left atrial interstitial remodeling in patients with chronic atrial fibrillation undergoing mitral-valve surgery. Virchows Arch 2004; 445:498-505.
    [78]Morillo CA, Klein GJ, Jones DL, et al. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained
    atrial fibrillation. Circulation 1995; 91:1588-95.
    [79]Ausma J, Litjens N, Lenders M-H, et al. Time course of atrial fibrillation-induced cellular structure remodeling in atria of the goat. J Mol Cell Cardiol 2001; 33: 2083-94..
    [80]Sanders P, Berenfeld O, Hocini M, et al. Spectral analysis identifies sites of high frequency activity maintaining atrial fibrillation in humans. Circulation 2005;112:789-97.
    [81]Sakabe K, Fukuda N, Soeki T,et al.Relation of age and sex to atrial electrophysiological properties in patients with no historu of atrial fibrillation.Pacing Clin Electrophysio 2003;26:1238-44.
    [82]Kistler PM, Sanders P, Fynn SP, et al. Electrophysiologic and electroanatomic changes in the human atrium associated with age. J Am Coll Cardiol 2004;44:109-16.
    [83]Rohr S, Kucera JP, Fast VG, et al. Paradoxical improvement of impulse conduction in cardiac tissue by partial cellular uncoupling. Science 1997; 275:841-44.
    [84]Spach MS, Heidlage JF, Dolber PC, Barr RC. Changes in anisotropic conduction caused by remodeling cell size and the cellular distribution of gap junctions and Na+ channels. J Electrocardiol 2001; 34(Suppl):69-76.
    [1]Kannel WB, Wolf PA, Benjamin EJ, et al. Prevalence, incidence,prognosis, and predisposing conditions for atrial fibrillation:populationbased estimates. Am J Cardiol 1998;82:2N-9N.
    [2]Nattel S. New ideas about atrial fibrillation 50 years on. Nature 2002;415:219-26.
    [3]Allessie MA, Boyden PA, Camm AJ,et al. Pathophysiology and prevention of atrial fibrillation. Circulation2001; 103:769-77.
    [4]Cha TJ,Ehrlich JR,Zhang L,et al.Atrial tachycardia remodeling of pulmonary vein cardiomyocytes:comparison with left atrium and potential relation to arrhythmogenesis[J].Circulation,2005,111 (6):728-35.
    [5]Nattel S, Maguy A, Le Bouter S, et al. Arrhythmogenic ion-channel remodeling in the heart:heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 2007;87(2):425-56.
    [6]Hoffmann E, Sulke N, Edvardsson N, et al. On behalf of the Atrial Fibrillation Therapy (AFT) Trial Investigators Initiation of AF; New insights into the initiation of atrial fibrillation:a detailed intraindividual and interindividual analysis of the spontaneous onset of atrial fibrillation using new diagnostic pacemaker features. Circulation 2006;113(16):1933-41.
    [7]Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998;339:659-66.
    [8]Wit AL, Boyden PA. Triggered activity and atrial fibrillation. Heart Rhythm 2007;4:S17-23.
    [9]Chen YJ, Chen SA, Chen YC, et al. Effects of rapid atrial pacing on the arrhythmogenic activity of single cardiomyocytes from pulmonary veins: implication in initiation of atrial fibrillation. Circulation 2001;104:2849-54.
    [10]Patterson E, Lazzara R, Szabo B, et al. Sodium-calcium exchange initiated by the Ca2+ transient:an arrhythmia trigger within pulmonary veins. J Am Coll Cardiol 2006;47:1196-206.
    [11]Wijffels MC, Kirchhof CJ, Dorland R, and Allessie MA. AF begets AF. A study in awake chronically instrumented goats. Circulation 92:1954-1968,1995.
    [12]Sandres P, Jais P, Hocini M, et al. Electrical disconnection of the coronary sinus by radiofrequency catheter ablation to isolate a trigger of atrial fibrillation. J Cardiovasc Electrophysiol 2004;15:364-8.
    [13]Wit AL, Cranefield PF. Triggered and autonomic activity in the canine coronary sinus. Circ Res 1977;41(4):435-45.
    [14]Hocini M, Ho SY, Kawara T, et al.Electrical conduction in canine pulmonary veins:electrophysiological and anatomic correlation. Circulation 2002; 105:2442-8.
    [15]Yeh H, Lai YJ, Lee SH, et al. Heterogeneity of myocardial sleeve morphology and gap junctions in canine superior vena cava. Circulation 2001; 104(25):3152-7.
    [16]Ehrlich JR, Cha TJ, Zhang L, et al. Cellular electrophysiology of canine pulmonary vein cardiomyocytes:action potential and ionic current properties. J Physiol 2003;551:801-13.
    [17]Arora R, Verheule S, Scott L, et al.Arrhythmogenic substrate of the pulmonary veins assessed by highresolution optical mapping. Circulation 2003;107:1816-21.
    [18]Kalifa J, Jalife J, Zaitsev AV, et al. Intra atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation 2003;108:668-71.
    [19]Page RL, Wilkinson WE, Clair WK,et al.Asymptomatic arrhythmias in patients with symptomatic paroxysmal atrial fibrillation and paroxysmal supraventricular tachycardia. Circulation 1994;89:224-7.
    [20]Wijffels MC, Kirchhof CJ, Dorland R, et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 1995;92:1954-68.
    [21]Moe GK, Abildskov JA. Atrial fibrillation as a self sustaining arrhythmia independent of focal discharges. Am Heart J 1959;58:59-70.
    [22]Konings KT, Kirchhof CJ, Smeets JR, et al. High-density mapping of electrically induced atrial fibrillation in humans. Circulation 1994;89:1665-80.
    [23]Allessie M, Lammers WJ, Bonke FI, et al. Experimental evaluation of Moe's multiple wavelet hypothesis on atrial fibrillation. In:Zipes DP,Jalife J, editors. Cardiac Electrophysiology and Arrhythmias. Orlando:Grune & Stratton; 1985. p. 265-75.
    [24]Allessie MA, Bonke FI, Schopman FJ. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. Ⅱ:The role of nonuniform recovery of excitability in the occurrence of unidirectional block, as studied with multiple microelectrodes. Circ Res 1976;39:168-77.
    [25]赵庆彦,黄从新.心房颤动的基因水平研究与治疗展望.中华心律失常学杂志.2006,10(1):47-49.
    [26]Berenfeld O, Mandapati R, Dixit S, et al. Spatially distributed dominant excitation frequencies reveal hidden organization in atrial fibrillation in the Langendorf-perfused sheep heart. J Cardiovasc Electrophysiol 2000; 11:869-79.
    [27]Haissaguerre M, Hocini M, Prashantahna S, et al. Localized sources maintaining atrial fibrillation organized by prior ablation. Circulation 2006; 113:616-25.
    [28]Sanders P, Berenfeld O, Hocini M, et al. Spectral analysis identifies sites of high frequency activity maintaining atrial fibrillation in humans. Circulation 2005;112:789-97.
    [29]Everett TH, Olgin JE. Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm 2007;4:S24-7.
    [30]Xu J, Cui G, Esmailian F, et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation 2004;109:363-8.
    [31]Everett TH 4th, Verheule S, Wilson EE,et al.Left atrial dilatation resulting from chronic mitral regurgitation decreases spatiotemporal organization of AF in left atrium. Am J Physiol Heart Circ Physiol 286:H2452-H2460,2004.
    [32]Christ T, Boknik P, Wohrl S, et al.Reduced L-type Ca2 current density in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 2004; 110:2651-7.
    [33]Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor):defective regulation in failing hearts. Cell 2000;101:365-76.
    [34]Yagi T, Pu J, Chandra P, et al. Density and function of inward currents in right atrial cells from chronically fibrillating canine atria. Cardiovasc Res 2002;54:405-15.
    [35]Dun W, Chandra P, Danilo Jr P, et al. Chronic atrial fibrillation does not further decrease outward current. It increases them.Am J Physiol Heart Circ Physiol 2003;285:H1378-84.
    [36]Van Wagoner DR, Pond AL, McCarthy PM, et al.Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res 1997;80:772-81.
    [37]朱慧,张薇,郭辰虹,等.心房肌基质金属蛋白酶-9和组织金属蛋白酶抑制因子-1表达改变对心房颤动心房重构机制的研究方法[J].中华医学杂志,2005,85(1):45-48.
    [38]朱慧,张薇,张供,等.心房肌解整合素-金属蛋白酶15/整合素β1基因表达在心房颤动中的变化[J].中华心血管病杂志,2005,33(1):53-56.
    [39]Zhang H, Garratt CJ, Zhu J, et al. Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans.Cardiovasc Res 2005;66:493-502.
    [40]Li D, Melnyk P, Feng J, et al. Effects of experimental heart failure on atrial cellular and ionic electrophysiology.Circulation 2000;101:2631-8.
    [41]van der Velden HM, Ausma J, Rook MB, et al,Allessie MA, et al. Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc Res 2000;46:476-86.
    [42]Harris AL. Emerging issues of connexin channels:biophysics fills the gap. Q Rev Biophys 2001;34(3):325-472.
    [43]Duffy HS, Fort AG, Spray DC. Cardiac connexins:genes to nexus. Adv Cardiol 2006;42:1-17.
    [44]Cruciani V, Mikalsen SO. The vertebrate connexin family. Cell Mol Life Sci 2006;63(10):1125-40.
    [45]Verheule S, van Kempen MJ, Welscher PH, et al.Characterization of gap junction channels in adult rabbit atrial and ventricular myocardium. Circ Res 1997;80(5):673-81.
    [46]Vozzi C, Dupont E, Coppen SR, et al. Chamber-related differences in connexin expression in the human heart. J Mol Cell Cardiol 1999;31(5):991-1003.
    [47]Dupont E, Ko Y-S, Rothery S, et al. The gap-junctional protein connexin40 is elevated in patients susceptible to postoperative atrial fibrillation. Circulation 2001;103:842-9.
    [48]Kanagaratnam P, Rothery SR, Patel P, et al. Relative expression of immunolocalized connexins 40 and 43 correlates with human atrial conduction properties. J Am Coll Cardiol 2002;39:116-23.
    [49]Kostin S, Klein G, Szalay Z, et al. Structural correlate of atrial fibrillation in human patients. Cardiovasc Res 2002;54:361-79.
    [50]Lampe PD, Lau AF. The effects of connexin phosphorylation of gap junctional communication. Int J Biochem Cell Biol 2004;36(7):1171-86.
    [51]Herve JC, Bourmeyster N, Sarrouilhe D, et al. Gap junctional complexes:from partners to functions. Prog Biophys Mol Biol 2007;94(1-2):29-65.
    [52]Stergiopoulos K, Alvarado JL, Mastroianni M, et al. Heterodomain interactions as a mechanism for the regulation of connexin channels. Circ Res 1999;84:1144-55.
    [53]Verheule S, Wilson EE, Arora R, et al. Tissue structure and connexin expression of canine pulmonary veins. Cardiovasc Res 2002;55(4):727-38.
    [54]Kanagaratnam P, Cherian A, Stanbridge RDL, et al. Relationship between connexins and atrial activation during human atrial fibrillation. J Cardiovasc Electrophysiol 2004; 15:206-13.
    [55]Valiunas V, Gemel J, Brink PR,et al. Gap junction channels formed by coexpressed connexin40 and connexin43. Am J Physiol Heart Circ Physiol 2001;281:H1675-89.
    [56]Valiunas V, Weingart R, Brink PR. Formation of heterotypic gap junction channels by connexins 40 and 43. Circ Res 2000;86:E42-9.
    [57]Cottrell GT, Wu Y, Burt JM. Cx40 and Cx43 expression ratio influences heteromeric/heterotypic gap junction channel properties. Am J Physiol Cell Physiol 2002;282:C1469-82.
    [58]Elenes S, Rubart M, Moreno AP. Junctional communication between isolated pairs of canine atrial cells is mediated by homogeneous and heterogeneous gap junction channels. J Cardiovasc Electrophysiol 1999;10(7):990-1004.
    [59]Spach MS, Starmer CF. Altering the topology of gap junctions; a major therapeutic target for atrial fibrillation. Cardiovasc Res 1990;30:336-44.
    [60]Gutstein DE, Morley GE, Tamaddon H, et al. Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res 2001;88(3):333-9.
    [61]Duffy HS, Albala A, Mutsaers N, et al. Remodeling of intercalated disks in infarct border zone causes slow transverse conduction by deposition of non functional connexin43 in lateral myocyte membranes.Circulation 2006;114 [Supplement, Scientific Session Abstracts].
    [62]Thijssen VL, van derVelden HM, van Ankeren EP, et al. Analysis of altered gene expression during sustained atrial fibrillation in the goat. Cardiovasc Res 2002;54(2):427-37.
    [63]Boos CJ, Anderson RA, Lip GY. Is atrial fibrillation an inflammatory disorder? Eur Heart J 2006;27(2):136-49.
    [64]Everett IV TH, Olgin JE. Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm 2007;4(3 Suppl):S24-7.
    [65]Anumonwo JM, Taffet SM, Gu H, et al.The carboxyl terminal domain regulates the unitary conductance and voltage dependence of connexin40 gap junction channels. Circ Res 2001;88(7):666-73.
    [66]Duffy HS, Ashton AW, O'Donnell P, et al. Regulation of connexin43 protein complexes by intracellular acidification. Circ Res 2004;94(2):215-22.
    [67]Van Veen TA, van Rijen HV, Jongsma HJ. Physiology of cardiovascular gap junctions. Adv Cardiol 2006;42:18-40.
    [68]Klein G, Schroder F, Vogler D, et al.Increased open probability of single cardiac L-type calcium channels in patients with chronic atrial fibrillation. Role of phosphatase.Cardiovasc Res 2003;59(1):37-45.
    [69]Boos CJ, Anderson RA, Lip GY. Is atrial fibrillation an inflammatory disorder? Eur Heart J 2006;27(2):136-49.
    [70]Chanson M, Berclaz PY, Scerri I,et al.Regulation of gap junctional communication by a pro-inflammatory cytokine in cystic fibrosis transmembrane conductance regulator-expressing but not cystic fibrosis airway cells. Am J Pathol 2001;158(5):1775-84.
    [71]Huang S, Jornot L, Wiszniewski L, et al.Src signaling links mediators of inflammation to Cx43 gap junctions channels in primary and transformed CFTR-expressing airway cells. Cell Commun Adhes 2003; 10(4-6):279-85.
    [72]Wetzel U, Boldt A, Lauschke J,et al. Expression of connexins 40 and 43 in human left atrium in atrial fibrillation of different aetiologies. Heart 2005;91:166-70.
    [73]Dobrev D,Wettwer E, Kortner A, et al, Ravens U. Human inward rectifier potassium channels in chronic and postoperative atrial fibrillation. Cardiovasc Res 2002;54:397-404.
    [74]Mandapati R, Skanes A, Chen J, et al. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation 2000;101:194-9.
    [75]Polontchouk L, Haefliger JA, Ebelt B, et al. Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J Am Coll Cardiol 2001;38(3): 883-91.
    [76]Nao T, Ohkusa TY, Hisamatsu Y, et al.Comparison of expression of connexin in right atrial myocardium in patients with chronic atrial fibrillation versus those in sinus rhythm. Am JCardiol 2003;91:678-83.
    [77]van der Velden H, Ausma J, Rook MB, et al, van Veen TAAB, Allessie MA, et al. Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc Res 2000;46:476-86.
    [78]Sakabe M, Fujiki A, Nishida K, et al.Enalapril prevents perpetuation of atrial fibrillation by suppressing atrial fibrosis and over-expression of connexin43 in a canine model of atrial pacing-induced left ventricular dysfunction. J Cardiovasc Pharmacol 2004;43:851-9.
    [79]Verheule S, van Batenburg CA, Coenjaerts FE, et al. Cardiac conduction abnormalities in mice lacking the gap junction protein connexin40. J Cardiovasc Electrophysiol 1999;10(10):1380-9.
    [80]Thomas SA, Schuessler RB, Berul CI, et al. Disparate effects of deficient expression of connexin43 on atrial and ventricular conduction: evidence for chamberspecific molecular determinants of conduction. Circulation 1998;97(7): 686-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700