RAS抑制剂改良高甲状腺素致心房颤动基质的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心房颤动(atrial fibrillation, AF)是临床上最常见的心律失常之一,是心血管事件的独立危险因素。AF常导致心功能下降和动脉血栓栓塞,具有发病率高、致残率高、致死率高、花费高的特点,严重影响患者生活质量。随着人口老龄化,AF的危害将越发严重,必将带来巨大的社会和经济负担。
     研究表明,RAS激活在AF的发生和维持中扮演着重要角色。动物实验和临床研究均显示RAS抑制剂可降低AF的发生率。ACEI可降低心房压,减少房性早搏,减轻心房纤维化,降低AF复律后复发。
     AF是甲亢最常见的并发症之一。10%-15%的甲状腺功能亢进患者合并AF,而不明原因的AF患者大约有13%伴有甲状腺素生化指标的异常。有的患者在甲状腺功能正常后转为窦性心律,而部分患者在甲状腺功能完全正常后三个月内AF仍然存在,表明有引起AF的基质存在。因此,弄清高甲状腺素引起AF基质的机制对于预防和治疗高甲状腺素继发的AF具有重要的意义。
     研究提示,甲状腺素可通过多种途径引起RAS激活。目前,对高甲状腺素下易患房颤的机制研究主要集中在甲状腺素的直接毒性作用上,对于甲状腺素是否通过RAS间接引起AF鲜有报道;关于RAS抑制剂是否可以通过抑制RAS激活改良高甲状腺素诱导的AF基质尚无报道。
     基于上述理论及存在的问题,本研究拟通过腹腔注射左旋甲状腺素建立高甲状腺素兔模型,然后给予RAS抑制剂贝那普利和厄贝沙坦,检测高甲状腺素模型兔心房电生理特性变化,了解RAS抑制剂是否可以改善高甲状腺素诱导的异常电生理特性,降低AF发生;与此同时,通过检测心房结构重构,离子通道重构和缝隙连接重构等变化明确RAS抑制剂对高甲状腺素诱导的异常电生理特性影响的潜在机制;在此基础上,我们还将通过差异表达蛋白组学技术,全面的探讨高甲状腺素致AF的机制及RAS在其中扮演的角色。共包括以下三个部分。
     第一部分RAS抑制剂对高甲状腺素诱导的心房异常电生理特性的影响
     目的:探讨RAS抑制剂对高甲状腺素诱导的异常电生理特性和房颤诱发率的影响。
     方法:将40只新西兰大白兔随机分为四组(n=10):正常对照组,高甲状腺素组,贝那普利组和厄贝沙坦组。正常对照组和高甲状腺素组分别腹腔注射等量生理盐水和左旋甲状腺素(50μg/kg/d)。贝那普利组和厄贝沙坦组在腹腔注射左旋甲状腺素(50μg/kg/d)的同时灌服贝那普利(1mg/kg/d)或厄贝沙坦(10mg/kg/d)。4w后行心内电生理检测,评价AERP、AERP的频率适应性和房颤诱发率。
     结果:在高甲状腺组房颤诱发率为75%,显著高于正常对照组10%。给予贝那普利或厄贝沙坦显著降低房颤诱发率,分别为37%和44%。高甲状腺素组AERP200较正常对照组明显缩短,分别为97.10±4.75ms和75.13±5.41ms ( P<0.01)。但在高甲状腺素组、贝那普利组和厄贝沙坦组三组间AERP200无明显差异,分别为75.13±5.41ms、76.63±4.44ms和79±4.95ms。AERP150和AERP130在各组间的趋势与AERP200相同。正常对照组的AERP的频率适应性正常,当基础周长从200ms缩短为130ms时,AERP200较AERP130缩短了12.70±2.95ms。而高甲状腺素组,当基础周长从200ms缩短为130ms时,AERP200较AERP130缩短了6.25±2.55ms,明显小于正常对照组,且差异有统计学意义(P<0.01)。给予贝那普利或厄贝沙坦明显抑制甲状腺素引起这种变化。
     结论:贝那普利和厄贝沙坦可以部分改良高甲状腺素诱导的异常电生理特性,降低房颤诱发率。
     第二部分RAS抑制剂对高甲状腺素诱导的心房重构的影响
     第一节RAS抑制剂对高甲状腺素诱导的心房结构重构的影响
     目的:探讨RAS抑制剂对高甲状腺素诱导的心房结构重构的影响。
     方法:将40只新西兰大白兔随机分为4组,分组及处理方式同第一部分。4w后,取左心房组织,10%的多聚甲醛中固定24h,常规脱水,透明,石蜡包埋,切片(4μm),行HE染色和Masson染色,普通光镜观察各组病理结构变化,计算心房肌胶原容积分数,评价各组心房肌纤维化程度。
     结果:HE染色见正常对照组肌节排列和细胞间隙均正常。甲状腺素组心肌纤维增粗、紊乱和断裂,细胞间隙增大,肌纤维分散、坏死,明显的纤维组织增生,脂肪变性,脂肪组织增多,少许炎性细胞浸润。贝那普利组和厄贝沙坦组细胞形态排列与高甲状腺素组相似,但上述异常病理变化较甲状腺素组明显减轻。Masson染色见高甲状腺素组蓝色胶原纤维较正常对照组明显增多,心房肌胶原容积分数分别为7.3±1.3%和17.1±2.2%,P<0.01;而贝那普利和厄贝沙坦明显抑制高甲状腺素诱导的胶原纤维增多,心房肌胶原容积分数在贝那普利组和厄贝沙坦组分别为12.3±1.8%和11.7±1.2%,与甲状腺素组比有统计学意义,P<0.01。
     结论:贝那普利和厄贝沙坦可改善高甲状腺素诱导的心房结构重构。
     第二节RAS抑制剂对高甲状腺素诱导的心房离子通道重构的影响
     目的:探讨RAS抑制剂对高甲状腺素诱导的心房离子通道重构的影响。
     方法:将40只新西兰大白兔随机分为4组,分组及处理方式同第一部分。4w后,取左心房组织,常规方法提取RNA和蛋白质,通过Real time PCR和Western blot检测L型Ca~(2+)通道电流和Ito电流相关亚基基因和蛋白变化。
     结果:高甲状腺素组Cav1.2和Cav1.3mRNA表达较正常对照组明显降低,贝那普利和厄贝沙坦均可明显抑制甲状腺素引起的这种改变。Western blot结果显示,Cav1.2蛋白在各组间的变化与mRNA的变化同步。与正常对照组比较,高甲状腺素组kv1.4 mRNA表达明显增高,而kv4.2和kv4.3 mRNA表达在两组间差异无显著性。贝那普利组和厄贝沙坦组kv1.4、kv4.2和kv4.3 mRNA表达较高甲状腺组明显增高。Western blot结果显示,kv4.2蛋白在各组间的表达与mRNA表达趋势一致。
     结论:贝那普利和厄贝沙坦可抑制高甲状腺素诱导的L型Ca~(2+)通道电流相关亚基的减少,而对Ito电流相关亚基的变化无明显抑制作用。
     第三节RAS抑制剂对高甲状腺素诱导的缝隙连接重构的影响
     目的:探讨RAS抑制剂对高甲状腺素诱导的缝隙连接重构的影响。
     方法:将40只新西兰大白兔随机分为4组,分组及处理方式同前。4w后,取左心房组织,通过Real time PCR和Western blot检测Cx43和Cx40基因和蛋白在各组中的变化,通过免疫荧光技术检测Cx43和Cx40在各组心房肌细胞中的分布特点。
     结果:Cx43 mRNA表达在高甲状腺素组较正常对照组明显增加,而Cx40 mRNA在两组间无明显差异,贝那普利和厄贝沙坦增加Cx43和Cx40 mRNA的表达。在蛋白水平,高甲状腺素组Cx40蛋白表达较正常对照组明显降低,贝那普利和厄贝沙坦明显增加Cx40蛋白的表达,Cx43蛋白表达与mRNA趋势一致。免疫荧光发现,甲状腺素组Cx40和Cx43呈异质性分布,排列紊乱,端端连接比例较正常对照组明显减少。贝那普利和厄贝沙坦能明显减轻缝隙连接的异质性分布和排列紊乱,增加端端连接比例。
     结论:贝那普利和厄贝沙坦可明显改善高甲状腺素诱导的Cx43和Cx40密度和分布异常。
     第三部分高甲状腺素诱导心房颤动基质的蛋白组学研究
     目的:采用蛋白组学技术全面探讨甲亢易患AF的机制,了解RAS激活在其中的作用。
     方法:将30只新西兰大白兔随机分为三组(n=10),正常对照组、高甲状腺素组和厄贝沙坦组,处理方法同前。4w后,取右心房组织,提取总蛋白,样品制备,行2-DE,银染,照相。所有2-DE完成后通过PDQest软件分析,找出差异蛋白点。然后,通过MALDI-TOF-MS-MS鉴定差异蛋白点。最后,采用生物信息学手段分析相关蛋白的结构、功能以及与高甲状腺素致房颤的相关性。
     结果:通过PDQuest软件分析发现2-DE结果重复性较好,匹配率为88.6%。正常对照组、高甲状腺素组和厄贝沙坦组的蛋白点数分别为:1314±58、1364±69和1287±47,各点在图中分布均匀。应用PDQuest软件对各组的标准凝胶图像之间进行配比分析,共发现25个差异蛋白点。与正常对照组相比,高甲状腺素组有11个蛋白增加,10个蛋白减少,4个蛋白消失。厄贝沙坦组较高甲状腺素组有7个蛋白增加, 13个蛋白降低,1个新增。通过MALDI-TOF-MS-MS鉴定出21个蛋白点,19种蛋白,其中13种蛋白可能参与了高甲状腺素致AF基质的形成。
     结论:多种蛋白可能参与了高甲状腺素致AF基质的形成;RAS激活参与了部分AF基质的形成。
Atrial fibrillation (AF) is the most common arrhythmia in clinical practice representing an independent risk factor for cardiovascular events. AF often results in cardiac insufficiency and artery embolism with characters of high morbidity, high disability, high mortality and high cost, which seriously affect the quality of the patients’life. With the population aging, the harm of AF will continue to grow and bring great social and economic burden.
     RAS plays an important role in the promotion and maintainance of AF. Experimental and clinical study suggested RAS inhibitor could reduce the incidence of AF. ACEI could reduce the atrial pressure, the atrial premature beat, the atrial fibrosis and the recurrence after cardioversion.
     AF is the most common cardiac complication of hyperthyroidism. AF occurs in 10%-15% of patients with hyperthyroidism. 13% of AF patients without definite cause suffer from disorder of thyroxine related biochemistry index. Some patients can convert to sinus rhythm after thyroid function resume normal. But for some patients, AF still exists even three months later after thyroid function resume normal, which suggests there exists the AF substrate. Therefore, make clear the mechanism has the vital significance in the prevention and treatment of AF underlying hyperthyroid
     Studies suggested that thyroxine could result in RAS activation by many pathway. However, present studies were mainly concentrated on direct toxic effects of thyroxine. whether RAS activation indirectly involved in the substrate AF was seldom reported. There were no study on whether RAS inhibitors could improve the substrate of AF underlying hyperthyroid.
     Based on the above mentioned theoretical basis and problems, this study was designed as follows: firstly, hyperthyroid rabbit model was established by intraperitoneal injection levorotatory thyroxine(L-Thy), and given RAS inhibitors: benazepril or irbesartan; Then atrial electrophysiological properties were detected to identify whether RAS inhibitors could improve the abnormal electrophysiological properties underlying hyperthyroid, thus reducing the occurrence of AF; Meanwhile, the atrial structural remodeling, ion channels remodeling and gap junctions remodeling were evaluated to explore the potential mechanism of RAS activation influence on hyperthyroid rabbit; Based on above, proteomics study was performed to comprehensive analysis of the mechanism of hyperthyroid susceptibility to AF and the role of RAS.
     Overall,The study was composed of the following three parts.
     PARTⅠTHE EFFECTS OF RAS INHIBITORS ON ABNORMAL ELECTROPHY- SIOLOGICAL PROPERTIES UNDERLYING HYPERTHYROID
     Objective: To explore the effects of RAS inhibitors on abnormal electrophysiological properties underlying hyperthyroid and the occurrence of induced AF.
     Methods: 40 New Zealand white rabbit were randomly divided into four groups (n = 10) : sham group, thyroxine group, benazepril group and irbesartan group. The rabbits in sham group and thyroxine group only received peritoneal injection saline or peritoneal injection L-Thy 50ug/kg/day for four weeks respectively. The rabbits in benazepril and irbesartan group received peritoneal injection L-Thyroxine (50 ug/kg/day) and benazepril (1 mg/kg/day) or irbesartan (10 mg/kg/day) orally for four weeks. 4w later, intracardiac electrophysiologic study was performed to evaluate AERP, physiologic rate adaptation of AERP and the occurrence of induced AF.
     Results: the occurrence of induced AF in thyroxine group was significantly higher than sham group (75% vs 10%), and administered benazepril or irbesartan significantly reduced it (37% and 44%,respectively). Compared with the sham group, the AERP200 in thyroxine group was significantly shortened (97.10±4.75ms vs 75.13±5.41ms, P<0.01). However, no significant difference was found in AERP200 among thyroxine group, benazepril group and irbesartan group (75.13±5.41ms vs 76.63±4.44ms, 79±4.95ms, P=0.28). AERP150 and AERP130 in each group had the same trend with AERP200. The physiologic rate adaptation of the AERP was normal. The AERP130 shortened for 12.70±2.95ms in contrast to AERP200. But the difference in thyroxine group was significantly shorter compared with sham group(6.25±2.55ms vs 12.70±2.95ms). Administered benazepril or irbesartan significantly inhibited the shorten.
     Conclusion: Benazepril or irbesartan could partly improve abnormal electrophysiological properties underlying hyperthyroid and thus reduce the occurrence of AF.
     PARTⅡTHE EFFECTS OF RAS INHIBITORS ON ATRIAL REMODELING UNDERLYING HYPERTHYROID
     SECTIONⅠ: THE EFFECTS OF RAS INHIBITORS ON ATRIAL STRUCTURAL REMODELING UNDERLYING HYPERTHYROID
     Objective: To investigate the effects of RAS inhibitors on atrial structural remodeling underlying hyperthyroid.
     Methods: 40 New Zealand white rabbits were randomly divided into four groups. The group and treatment strategy were the same to part 1. 4w later, left atrial free wall was carefully dissected from all tissue preparations, and immersed in 10% phosphate-buffered formalin for 24h. After dehydration, each section was cut into 4μm-thick slices. Deparaffinized sections were stained with HE and Masson. Observed the pathological structure changes by microscopy and calculated collagen volume fraction in each groups to evaluate atrial fibrosis.
     Results: Atrial myocyte from sham rabbits showed a normal composition of sarcomeres distributed throughout the cell, and the intracellular space also appeared normal. Hyperplasia, disturbance, fragment of myocyte fiber, widen intracellular space, inflammation cell filtration and obvious fibrous connective tissue accrementition were observed in thyroxine group. However, these changes were significantly attenuated by benazepril or irbesartan. Masson dyeing showed blue collagen fiber in thyroxine group significantly increased compared with sham group (collagen volume fraction: 17.1±2.2% vs 7.3±1.3%, P<0.01, for sham group and thyroxine group respectively). Benazepril or irbesartan group could significantly restrain the increase (collagen volume fraction: 12.3±1.8% , 11.7±1.2% vs 17.1±2.2%,P<0.01, for benazepril group, irbesartan group and thyroxine group respectively).
     Conclusion: Benazepril or irbesartan could improve atrial structural remodeling underlying hyperthyroid.
     SECTIONⅡ: THE EFFECTS OF RAS INHIBITORS ON ATRIAL ION CHANNEL REMODELING UNDERLYING HYPERTHYROID
     Objective: To investigate the effects of RAS inhibitors on atrial ion channel remodeling underlying hyperthyroid.
     Methods: 40 New Zealand white rabbits were randomly divided into four groups. The group and treatment strategy were the same to part 1. 4w later, left atrial free wall was carefully dissected from all tissue preparations. Extracted RNA and protein with routine methods. The real-time PCR and western blot was performed to detect the expression of L-type Ca~(2+) channel and Ito current related subunit.
     Results: The mRNA expression of Cav1.2 and Cav1.3 in thyroxine group significantly reduced compared with sham group. Benazepril and irbesartan could significantly inhibite these reductions. The result of western blot demostated the protein expression of Cav1.2 parallelled with the mRNA expression. The mRNA expression of kv1.4 in thyroxine group was higher than in sham group. However, no significant difference were seen for the mRNA expression of kv4.2 and kv4.3. Benazepril and irbesartan significantly increased these mRNA expression. The result of western blot showed that the protein expression of kv4.2 was consistent with its mRNA expression.
     Conclusion: Benazepril and irbesartan could inhibit the reduction of L-type Ca~(2+) channels related subunit, but couldn’t inhibit the changes of Ito related subunit underlying hyperthyroid.
     SECTIONⅢ: THE EFFECTS OF RAS INHIBITORS ON ATRIAL GAP JUNCTION REMODELING UNDERLYING HYPERTHYROID
     Objective: To investigate the effects of RAS inhibitors on atrial gap junction remodeling underlying hyperthyroid.
     Methods: 40 New Zealand white rabbits were randomly divided into four groups. The group and treatment strategy were the same to part 1. Four weeks later, left atrial free wall was carefully dissected from all tissue preparations. The real-time PCR and western blot was performed to detect the expression of Cx43 and Cx40. The fluorescent immunohistochemistry was performed to detect the distribution of Cx43 and Cx40.
     Results: The mRNA expression of Cx43 in thyroxine group significantly increased compared with sham group, but no obvious difference was shown for Cx40. Benazepril and irbesartan increased the mRNA expression of Cx43 and Cx40. In the protein level, the expression of Cx40 in thyroxine group significantly lower than sham group. Benazepril and irbesartan significantly increased the protein expression of Cx40. The protein expression of Cx43 was consistent with the mRNA expression. Fluorescent immunohistochemistry found that thyroxine group Cx43 and Cx40 displayed with a heterogeneous distribution, arranging disorderly and obvious reduction of polar connection. Benazepril and irbesartan significantly extenuated the gap junctions heterogeneity distribution and arranging disorderly, and increased the proportion of polar connection.
     Conclusion: Benazepril or irbesartan could improve the abnormal expression and distribution of Cx43and Cx40.
     PARTⅢPROTEOMICS STUDY ON THE SUBSTRATE OF THE ATRIAL FIBRILLATION UNDERLYING HYPERTHYROID
     Objective: To comprehensive explore the mechanism of hyperthyroid susceptibility to AF and the role of RAS activation in it.
     Methods: 30 New Zealand white rabbits were randomly divided into three groups (n = 10) : sham group, thyroxine group and irbesartan group The treatment strategy were the same to part 1. Four weeks later, the right atrial free wall was carefully dissected from all tissue preparations;Prepared sample with routine methods; Performed 2-DE and silver stain; Took picture; Detected differential proteins points with PDQest soft; Identificated proteins with MALDI-TOF-MS-MS; Then, analyzed the construction and function of these protein, and evaluated the association between these protein and hyperthyroid susceptibility to atrial fibrillation.
     Results:The results of 2-DE had high repeatability and the matching rate was 88.6%. The protein spot number was 1314±58, 1364±69 and 1287±47 in sham group, thyroxine group and irbesartan group respectively. Matched and analyzed with PDQuest soft and found 25 differential protein spots. 8 protein spots increased, 10 protein spots decreased and 4 protein spots disappeared were seen in thyroxine group compared with sham group. There were 7 protein spots increased, 13 protein spots decreased and 1 new protein spots disappeared in irbesartan group compared with thyroxine group. 21 protein spots (19 protein) was successfully identified , and we believed there were 13 protein being associated with the substate of AF underlying hyperthyroid.
     Conclusion:Many proteins were involved in the substrate of AF underlying hyperthyroid. RAS activation was associated with part of these substrates.
引文
[1] Prystowsky EN, Jr Benson DW, Fuster V, et al. Management of patients with atrial fibrillation. A Statement for Healthcare Professionals. From the Subcommittee on Electrocardiography and Electrophysiology[J]. American Heart Association. Circulation. 1996;93:1262-1277.
    [2] Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study[J]. JAMA. 2001;285:2370-2375.
    [3]胡大一,孙艺红,周自强等.中国人非瓣膜性心房颤动脑卒中危险因素的病例-对照研究[J].中华内科杂志,2003;42(3):157-161.
    [4] Cooper HA, Bloomfield DA, Bush DE, et al. Relation between achieved heart rate and outcomes in patients with atrial fibrillation (from the Atrial Fibrillation Follow-up Investigation of Rhythm Management [AFFIRM] Study) [J]. Am J Cardiol. 2004;93(10):1247-1253.
    [5] Camm AJ,Kirchhof P,Lip GY,et al. Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC) [J]. Eur Heart J. 2010;31(19):2369-2429.
    [6] Fuster V, Rydén LE, Cannom DS, et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation-executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients with Atrial Fibrillation) [J]. Eur Heart J. 2006;27(16):1979-2030.
    [7] Fuster V, Rydén LE, Cannom DS, et al. 2011 ACCF/AHA/HRS Focused Updates Incorporated Into the ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines[J]. Circulation. 2011;123:269-367.
    [8] Ehrlich JR, Hohnloser SH, Nattel S. Role of angiotensin system and effects of itsinhibition in atrial fibrillation: clinical and experimental evidence[J]. Eur Heart J, 2006;27:512-518.
    [9] Casaclang-Verzosa G, Gersh BJ, Tsang TS. Structural and functional remodeling of the left atrium: clinical and therapeutic implications for atrial fibrillation[J]. J Am Coll Cardiol. 2008;51:1-11.
    [10] Crijns HJ, Tjeerdsma G, De Kam PJ, et al. Prognostic value of the presence and development of atrial fibrillation in patients with advanced chronic heart failure[J]. Eur Heart J. 2000;21:1238–1245
    [11] Webster MW, Fitzpatrick MA, Nicholls MG, et al. Effect of enalapril on ventricular arrhythmias in congestive heart failure[J]. Am J Cardiol. 1985;56:566–569.
    [12] Li D, Shinagawa K, Pang L, et al. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure[J]. Circulation. 2001; 104 :2608–2614.
    [13] Madrid AH, Bueno MG, Rebollo JM, et al. Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent atrial fibrillation: a prospective and randomized study[J]. Circulation. 2002;106:331–336.
    [14] Van Den Berg MP, Crijns HJ, et al. Effects of lisinopril in patients with heart failure and chronic atrial fibrillation[J]. J Card Fail. 1995;1:355–363. 331.
    [15] Ueng KC, Tsai TP, Yu WC, et al. Use of enalapril to facilitate sinus rhythm maintenance after external cardioversion of long-standing persistent atrial fibrillation. Results of a prospective and controlled study[J]. Eur Heart J. 2003; 24:2090–2098.
    [16] Osman F, Gammage MD, Sheppard MC, et al. Clinical review: cardiac dysrhythmias and thyroid dysfunction:the hidden menace[J]? J Clin Endocrinol Metab. 2002; 87:963-967.
    [17] Sawin CT, Geller A, Wolf PA, Belanger AJ, Baker E, Bacharach P, Wilson PW, Benjamin EJ, D'Agostino RB. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons[J]. N Engl J Med. 1994;331:1249-1252.
    [18] Bielecka-Dabrowa A, Mikhailidis DP, Rysz J, et al. The mechanisms of atrial fibrillation in hyperthyroidism[J]. Thyroid Res. 2009;2:4.
    [19] Staffurth JS, Gibberd MC, Fui SN. Arterial embolism in thyrotoxicosis with atrial fibrillation[J]. Br Med J. 1977;2:688-690.
    [20] Kobori H, Hayashi M, Saruta T. Thyroid Hormone Stimulates Renin Gene Expression Through the Thyroid Hormone Response Element[J]. Hypertension. 2001;37:99-104.
    [21] Sernia C, Marchant C, Brown L, Hoey A. Cardiac angiotensin receptors in experimental hyperthyroidism in dogs. Cardiovasc Res[J]. 1993;27:423-428.
    [22] Marchant C, Brown L, Sernia C. Renin-angiotensin system in thyroid dysfunction in rats. J Cardiovasc Pharmacol[J]. 1993;22:449-455.
    [1] Nakashima H, Kumagai K, Umta H, et al. AngiotensinⅡantagonist prevents electrical remodelling in atrial fibrillation[J]. Circulation. 2000;101:2612-2617.
    [2] Kumagai K, Nakashima H, Urata H. Effects of AngiotensinⅡType 1 Receptor Antagonist on Electrical and Structural Remodeling in Atrial Fibrillation[J]. J Am Coll Cardiol. 2003;41:2197–2204
    [3] Fazio S, Palmieri EA, Lombardi G, et al. Effects of thyroid hormone on the cardiovascular system[J]. Recent Prog Horm Res. 2004;59:31-50.
    [4] Sgarbi JA, Villaca FG, Garbeline B, et al. Romaldini JH. The effects of early antithyroid therapy for endogenous subclinical hyperthyroidism in clinical and heart abnormalities[J]. J Clin Endocrinol Metab 2003;88:1672-1677.
    [5] Lui YH, Yang XP, Sharov VG, et al. Paracrine systems in the cardioprotective effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats[J]. Hypertension. 1996;27:7–13.
    [6] Matsuo K, Kumagai K, Annoura M, et al. Effects of an angiotensinⅡantagonist on reperfusion arrhythmias in dogs[J]. Pacing Clin Electrophysiol. 1997;20:938–945.
    [7] Harada K, Komuro I, Hayashi D, et al. AngiotensinⅡtype 1a receptor is involvedin the occurrence of reperfusion arrhythmias[J]. Circulation.1998;97:315–317.
    [8] Pedersen OD, Bagger H, Kober L, et al. Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction[J]. Circulation. 1999;100:376–380.
    [9] Kobori H, Hayashi M, Saruta T. Thyroid Hormone Stimulates Renin Gene Expression Through the Thyroid Hormone Response Element[J]. Hypertension. 2001;37(1):99-104.
    [10] Sernia C, Marchant C, Brown L, et al. Cardiac angiotensin receptors in experimental hyperthyroidism in dogs [J]. Cardiovasc Res. 1993;27:423-428.
    [11]苏立,代引,邓武等.从钙离子调控改变探讨RAS系统阻断剂逆转甲状腺素促心肌肥厚的机制[J].中华心血管病杂志, 2008;36:744-749.
    [12] Tieleman RG, Gelder ICVG, Crijns HJGM, et al. Early recurrences of atrial fibrillation after electrical cardioversion: a result of fibrillationinduced electrical remodeling of the atria[J]? J Am Coll Cardiol. 1998;31:167–173.
    [13] Touyz RM, Sventek P, Lariviere R, et al. Cytosolic calcium changes induced by angiotensinⅡin neonatal rat atrial and ventricular cardiomyocytes are mediated via angiotensinⅡsubtype 1 receptors[J]. Hypertension.1996;27:1090–1096.
    [14] Allen AM, Zhuo J, Mendelsohn FAO. Localization of angiotensin AT1 and AT2 receptors[J]. J Am Soc Nephrol. 1999;10:S23–S29.
    [15] Fazio S, Palmieri EA, Lombardi G, Biondi B. Effects of thyroid hormone on the cardiovascular system[J]. Recent Prog Horm Res. 2004;59:31-50.
    [16] Sgarbi JA, Villaca FG, Garbeline B, Villar HE, Romaldini JH. The effects of early antithyroid therapy for endogenous subclinical hyperthyroidism in clinical and heart abnormalities[J]. J Clin Endocrinol Metab. 2003;88:1672-1677.
    [1] Allessie M, Ausma J, Sehotten U, et a1. Electrical,contractile and structural remodeling during atrial fibrillation[J]. Cardiovasc Res. 2002,54(2):230.
    [2] Shinagawa K, Shi YF, Tardif JC, et a1. Dynamic nature of atrial fibrillation substrate during development and reversal of heart failure in dogs[J]. Circulation,2002,105(22):2672.
    [3] Li D, Shinagawa K, Pang L, et a1. Efects ofangiotensin-converting enzyme inhibition on the development of the atrial fibrillation snh strate in dogs with ventricular tachypacing-induced congestive heart failure[J]. Circulation. 2001; 104:2608-26l4.
    [4] Brundel BJ, Ausma J, van Geider IC, et a1. Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation[J]. Cardiovasc Res. 2002, 54(2):380-389.
    [5] Li D, Fareh S, Leung TK, et a1. Promotion of atrial fibrillation by heart failure in dogs:atrial remodeling of a different sort[J]. Circulation.1999;100(1):87—95.
    [6] Boldt A, Lauschke J, Weigl J, et al. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease[J]. Heart. 2004;90:400-405.
    [7] Ausma J, Dispersyn GD. Duimel H, et a1. Changes in uhrastructural calcium distribution in goat atria during atrial fibrillation[J]. J Mol Cell Cardiol. 2000;32(3): 355-364.
    [8] Baroldia G, Malcom D. Silverb, et al. Myofiberbreak-up: A marker of ventricular fibrillation insudden cardiac death. International Journal of Cardiology[J]. 2005;100: 435– 441
    [9] Kucera JP, Rudy Y. Mechanistic insights into very slow conduction in branching cardiac tissue. A model study[J]. Circ Res. 2001;89:799–806.
    [10] Anderson KR,Sutton MG,Lie JT.Histopathological types of cardiac fibrosis in myocardial disease[J]. J Pathol.1979;128:79-85.
    [11] Kobori H, Ichihara A, Miyashit Y,et al. Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy[J]. Journal of Endocrinology. 1999;160:43–47.
    [12]王凡,李光生.实验性坏死性心肌病.谷伯起主编.心血管病理学[M].北京:人民卫生出版社.
    [13] Lorenzen LN, Gramley F, Jedamzik,et al. Atrial Fibrillation, Fibrosis, and Hypoxia[J]. Cardiovascular Pathology. 2004;200: 289-294.
    [1] Nattel S, News ideas about fibrilation 50 years on. Nature[J]. 2002;415(6868): 329-226.
    [2] ChenYC, Chen SA, Chen YJ, et al. Effects of thyroid hormone on the arrhythmogenic activity of pulmonary veincardiomyocytes[J]. J Am Coll Cardiol.2002;39:366-372.
    [3] Rubinstein I, Binah O. Thyroid hormone modulates membrane currents in inea-pig ventricular myocytes[J]. Naunyn Schmiedebergs Arch Pharmacol.1989;340:705 -711.
    [4] Shimoni Y, Banno H, Clark RB. Hyperthyroidism selectively modi-fied a transient potassium current in rabbit ventricular and atrial myocytes[J]. J Physiol (Lond).1992; 457: 369–89.
    [5] Sakaguchi Y, Cui G, Sen L. Acute effects of thyroid hormone on inward rectifier potassium channel currents in guinea-pig ventricular myocytes[J]. Endocrinology . 1996;137:4744-4761.
    [6] Watanabe H, Ma, Washizuka T, et al. Thyroid hormone regulates mRNA expression and currents of ion channels in rat atrium[J]. Biochemical and Biophysical Research Communications. 2003; 308:439–444.
    [7] Ehrlich JR, Hohnloser SH, Nattel S. Role of angiotensin system and effects of its inhibition in atrial fibrillation: clinical and experimental evidence[J]. European Heart Journal. 2006;27:512–518.
    [8]苏立,代引,邓武等.从钙离子调控改变探讨RAS系统阻断剂逆转甲状腺素促心肌肥厚的机制[J].中华心血管病杂志, 2008;36:744-749.
    [9] Sernia C, Marchant C, Brown L, Hoey A. Cardiac angiotensin receptors in experimental hyperthyroidism in dogs[J]. Cardiovasc Res. 1993;27:423-428.
    [1] Kanagaratnam P, Cherian A, Stanbridge RD, et al. Relationship between connexins and atrial activation during human atrial Fibrillation[J]. J Cardiovasc Electrophysiol. 2004;15:206-213.
    [2] Severs NJ, Rothery S, Dupont E, et al. Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system[J]. Microsc Res Tech 2001;52:301-322.
    [3] Vozzi C, Dupont E, Coppen SR, et al. Chamber-related differences in connexin expression in the human heart[J]. J Mol Cell Cardiol.1999;31:991-1003.
    [4] Harris AL. Emerging issues of connexin channels: biophysics fills the gap[J]. Q Rev Biophys. 2001,34;325
    [5] Peters NS, Coromilas J,Severs NJ, et al. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia[J]. Circulation. 1997;95(4):988-996.
    [6] Van der Velden HM, van Kempen MJ, Wijffels MC, et al. Altered pattern of connexin40 distribution in persistent atrial fibrillation in the goat[J]. J Cardiovasc Electrophysiol. 1998;9:596-607.
    [7] Kostin S, Klein G, Szalay Z, et al. Structural correlate of atrial fibrillation in humanpatients[J]. Cardiovasc Res. 2002;54:361-379.
    [8] Polontchouk L, Ebelt B, Jackels M, et al. Chronic effects of endothelin 1 and angiotensin II on gap junctions and intercellular communication in cardiac cell[J]. FASEB J. 2002;16(1):87-89.
    [1] Graves PR, Haystead T. Molecular Biologist’s Guide to Proteomics[J]. microbiology and molecular biology reviews. 2002;66(1): 39–63.
    [2] Service, Robert F. Proteomics:The view ahead. Science[J]. 2001;294:2076.
    [3] Pandey A, Mann M. Proteomics to study genes and genomes[J]. Nature. 2000;405 (6788):837-846.
    [4] Chen Y, Zhou Y, Lin X, et al. Molecular interaction and functional regulation of connexin50 gap junctions by calmodulin[J]. Biochem J. 2011 Feb 14.
    [5] Kanagaratnam P, Cherian A, Stanbridge RD, et al. Relationship between connexins and atrial activation during human atrial Fibrillation[J]. J Cardiovasc Electrophysiol. 2004;15:206-213.
    [6] Severs NJ, Rothery S, Dupont E, et al. Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system[J]. Microsc Res Tech. 2001;52:301-322.
    [7] Vozzi C, Dupont E, Coppen SR, et al. Chamber-related differences in connexin expression in the human heart[J]. J Mol Cell Cardiol.1999;31:991-1003.
    [8] Chunmei Wang, Nan Li, Xingguang Liu. A Novel Endogenous Human CaMKⅡInhibitory Protein Suppresses Tumor Growth by Inducing Cell Cycle Arrest via p27 Stabilization. The journal of biological chemistry[J]. 2008; 283(17):1565–11574.
    [9] Wu Y, Temple J, Zhang R, et al. Calmodulin kinaseⅡand arrhythmias in a mouse model of cardiac hypertrophy[J]. Circulation. 2002;106(10):1288–1293.
    [10] Bers DM, Grandi E. CaMKⅡregulation of cardiac ion channels[J]. J Cadriovasc Res.2009;54:180–187.
    [11] Kajii Y, Muraoka S, Hiraoka S, et al. A developmentally regulated and psychostimulantmechanisms for regulating K+ channel surface expression and clustering[J]. J CellBiol. 2000; 148:147158.
    [15] Lunn ML, Nassirpour R, Arrabit C, et al. A unique sorting nexin regulatestrafficking of potassium channels via a PDZ domain interaction[J]. Nat Neurosci.2007; 10:12491259.
    [16] Saito A, Sinohara H. Rabbit x-1-antiproteinase E: a novel recombinant serpinwhich does not inhibit proteinases[J]. Biochem J. 1995;307:369-375.
    [17] Kershnar E, Wu SY, Chiang CM. Immunoaffinity purification and functionalcharacterization of human transcription factor IIH and RNA polymerase II fromclonal cell lines that conditionally express epitope-tagged subunits of themultiprotein complexes[J]. J Biol Chem. 1998;273:34444-34453.
    [18] Ghayour-Mobarhan M, Rahsepar AA, Tavallaie S, et al.The potential role of heatshock proteins in cardiovascular disease: evidence from in vitro and in vivostudies[J]. Adv Clin Chem. 2009;48:27-72.
    [19] Joyeux M, Ribuot C, Bourlier V, et al. In vitro antiarrhythmic effect of prior wholebody hyperthermia: implication of catalase[J]. J Mol Cell Cardiol.1997;29:3285–3292.
    [20] Schafler AE, Kirmanoglou K, Balbach J, et al. The expression of heat shock protein60 in myocardium of patients with chronic atrial fibrillation[J]. Basic Res Cardiol.2002;97:258–261.
    [21] Vitadello M, Ausma J, Borgers M, et al. Increased myocardial GRP94 amountsduring sustained atrial fibrillation:a protective response[J]? Circulation. 2001;103:2201–2206.
    [22] Mandal K, Torsney E, Poloniecki J, et al. Association of high intracellular, but notserum, heat shock protein 70 with postoperative atrial fibrillation[J]. Ann ThoracSurg. 2005;79:865–871.
    [23] Brundel BJJM, Henning RH, Ke Lei, et al. Heat shock protein upregulation protectsagainst pacinginduced myolysis in HL-1 atrial myocytes and in human atrialfibrillation[J]. J Mol Cell Cardiol. 2006;41:555–562.
    [24] Shehata M, Bie'che I, Boutros R, et al. Nonredundant functions for tumor proteind52-like proteins support specific targeting of TPD52[J]. Clin Cancer Res.2008;14:5050-5060.
    [25] Byrne JA, Maleki S, Hardy JR, et al. MAL2 and tumor protein D52 (TPD52) arefrequently overexpressed in ovarian carcinoma, but differentially associated with histological subtype and patient outcome[J]. BMC Cancer. 2010;17:(10):497.
    [26] Proux V, Provot S, Marx M, et al. Characterization of a leucine zipper-conraining protein indentifided by retroviral insertion avian neuroretinacells[J]. Biol Chem. 1996;271:30790-30797.
    [27] Kaiserova K, Tang XL, Srivastava S, et al. Role of nitric oxide in regulating aldose reductase activation in the ischemic heart. Journal of Biological Chemistry[J]. 2008;2 83(14):9101–9112,
    [28] Kasama S, Furuya M, Toyama T. Effect of atrial natriuretic peptide on left ventricular remodelling in patients with acute myocardial infarction[J]. European Heart Journal. 2008;29(12):1485-1494.
    [29] Pauly DF. The slow cardiac myosin regulatory light chain in heart failure[J]. Clinical Cardiology. 2011;34(1):10-11.
    [30] Fokstuen S, Lyle R, Munoz A, et al. A DNA resequencing array for pathogenic mutation detection in hypertrophic cardiomyopathy[J]. Hum Mutat. 2008;29:879–885.
    [31] Y Li, G Wu, Q Tang, C Huang, et al. Slow cardiac myosin regulatory light chain 2 (myl2) was down expressed in chronic heart failure patients[J]. Clin Cardiol. 2011;34(1):30–34.
    [1] Fuster V, Voute J, Hunn M, et al. Low priority of cardiovascular and chronic diseases on the global health agenda: a cause for concern[J]. Circulation. 2007;116(17):1966-1970.
    [2] Mayr J, Zhang AS, Greene D, et al. Proteomics-based Development of Biomarkers in Cardiovascular Diseasel[J]. Molecular & Cellular proteomics. 2006; 5(10): 1853-1864.
    [3] Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium[J]. Electrophoresis. 1995; 16 (1):1090–1094.
    [4] Wilkins, MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol[J]. Genet Eng Rev. 1996;13, 19–50.
    [5] Ashton PD, Curwen RS, Wilson RA. Linking proteome and genome: how to identify parasite proteins[J]. Trends in Parasitology. 2001; 17(4): 198-202.
    [6] Graves PR., Haystead TA. Molecular Biologist’s Guide to Proteomics[J]. Microbiology and Molecular Biology Reviews. 2002; 66 (1):139–163
    [7] Tyers M, Mann M. Overview From genomics to proteomics[J]. Nature. 2003;422(6928):193-197.
    [8] Bjellqvist B, Pasquali C, Ravier F, et al. A nonlinear wide-range immobilized pH gradient for two-dimensional electrophoresis and its definition in a relevant pH scale[J]. Electrophoresis. 1993;14(12):1357–1365.
    [9] Gorg AC, Obermaier G, Boguth A, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients[J]. 2000; Electrophoresis. 21(6): 1037–1053.
    [10] McDonald WH, Ohi R, Miyamoto DT. Comparison of three directly coupled HPLC MS/MS strategies for identification of proteins from complex mixtures: single-dimension LC-MS/MS, 2-phase MudPIT, and 3-phase MudPIT. International Journal of of Mass Spectrometry[J]. 2002 ; 219(1): 245-251.
    [11] White MY, Cordwell SJ, McCarron HC, et al. Proteomics of ischemia/reperfusion injury in rabbit myocardium reveals alterations to proteins of essential functional systems. Proteomics[J]. 2005;5(5):1395–1410.
    [12] Yan L, Vatner DE, Kim SJ, et al. Autophagy in chronically ischemic myocardium[J]. Proc Natl Acad Sci U S A. 2005(39);102:13807–13812.
    [13] Mateos-Caceres PJ, Garcia-Mendez A, Lopez Farre A, et al. Proteomic analysis of plasma from patients during an acute coronary syndrome[J]. J Am Coll Cardiol 2004;44(8):1578–1583.
    [14] Labugger R, Organ L, Collier C, et al. Extensive troponin I and T modification detected in serum from patients with acute myocardial infarction[J]. Circulation 2000;102(11):1221– 1226.
    [15] Gramolini AO, Kislinger T, Liu PP, et al. Analyzing the cardiac muscle proteome by liquid chromatographymass spectrometry (LC-MS) based expression proteomics[J]. Methods in Molecular Biology. 2006;357:15–32.
    [16] Buscemi N, Murray C, Doherty-Kirby A, Lajoie G, Sussman MA, Van Eyk JE. Myocardial subproteomic analysis of a constitutively active Rac1-expressing transgenic mouse with lethal myocardial hypertrophy[J]. Am J Physiol Heart Circ Physiol. 2005(6);289:2325–2333.
    [17] Sawicki G, Jugdutt BI. Detection of regional changes in protein levels in the in vivo canine model of acute heart failure following ischemia reperfusion injury: functional proteomics studies[J]. Proteomics. 2004;4:2195–2202.
    [18] Li XP, Plei?ner KP, Scheler C, et al. A two-dimensional electrophoresis database of rat heart proteins[J]. Electrophoresis. 1999; 20(4-5): 891–897.
    [19] Dunn MJ, Corbett JM, Wheeler CH, et al. HSC-2DPAGE and the two-dimensional gel electrophoresis database of dog heart proteins[J]. Electrophoresis. 1997;18(15);2795–2802.
    [20] Corbett JM, Why HJ, Wheeler C H, et al. Cardiac protein abnormalities in dilated cardiomyopathy detected by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis[J]. 1998;19(11):2031–2042.
    [21] Knecht M, Regitz-Zagrosek V, Pleissner KP, et al. Dilated cardiomyopathy: Computer-assisted analysis of endomyocardial biopsy protein patterns by two-dimensional gel electrophoresis[J]. Eur J Clin Chem Clin Biochem. 1994;32(8): 615–624.
    [22] Knecht M, Regitz-Zagrosek V, Pleissner KP, et al. Characterization of myocardial protein composition in dilated cardiomyopathy by two-dimensional gel electrophoresis[J]. Eur Heart J. 1994;15 (Suppl. D), 37–44.
    [23] Pleissner KP, Regitz-Zagrosek V, Weise C, et al. Chamber-specific expression of human myocardial proteins detected by two-dimensional gel electrophoresis[J]. Electrophoresis. 1995:16(5), 841–850.
    [24] Pleissner KP, Soding P, Sander S, et al. Dilated cardiomyopathy-associated proteins and their presentation in a WWW-accessible two-dimensional gel protein database[J]. Electrophoresis. 1997;18(5): 802–808.
    [25] Thiede B, Thiede B, Otto A, Zimny-Arndt U, et al. Identification of human myocardial proteins separated by two-dimensional electrophoresis with matrix-assisted laser desorption/ionization mass spectrometry[J]. Electrophoresis. 1996;17(3):588–599.
    [26] Otto A, Thiede B, Muller EC, et al. Identification of human myocardial proteins separated by two-dimensional electrophoresis using an effective sample preparation for mass spectrometry[J]. Electrophoresis. 1996;17(10):1643–1650.
    [27] Scheler C, Muller, E C, Stahl J, et al. Identification and characterization of heat shock protein 27 protein species in human myocardial two-dimensional electrophoresis patterns[J]. Electrophoresis. 1997;18(15):2823–2831.
    [28] Mayr M, Yusuf S, Weir G. Combined Metabolomic and Proteomic Analysis of Human Atrial Fibrillation[J]. J Am Coll Cardiol. 2008;51(5):585–594.
    [29] Latif N, Baker CS, Dunn MJ, et al. Frequency and specificity of antiheart antibodies in patients with dilated cardiomyopathy detected using SDS-PAGE and western blotting[J]. J Am Coll Cardiol. 1993;22 (5):1378–1384.
    [30] Pohlner K, Portig I, Pankuweit S, et al. Identification of mitochondrial antigens recognized by antibodies in sera of patients with idiopathic dilated cardiomyopathy by two-dimensional gel electrophoresis and protein sequencing[J]. Am J Cardiol. 1997;80(8), 1040–1045.
    [31] Pankuweit S, Portig I, Lottspeich F, et al. Autoantibodies in sera of patients with myocarditis: characterization of the corresponding proteins by isoelectric focusing and N-terminal sequence analysis[J]. J Mol Cell Cardiol. 1997;29(1):77–84.
    [32] Latif N, Rose, ML, Yacoub MH, et al. Association of pretransplantation antiheart antibodies with clinical course after heart transplantation[J]. J Heart Lung Transplant. 1995;14(1 pt 1):119–126.
    [33] Wheeler CH, Collins A, Dunn MJ, et al. Characterization of endothelial antigens associated with transplant-associated coronary artery disease[J]. J Heart LungTransplant. 1995;14(6 pt 2), S188–S197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700