神经再生诱发心源性猝死的钾通道机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的心源性猝死(SCD)是指由各种心脏疾患导致的突然意外死亡,最常见于冠心病并发心肌梗塞(MI)患者,多由致命性心律失常——心室纤颤(VF)所致。MI慢性期发生的SCD(迟发性SCD)的发病机制目前仍未阐明。近年来有些学者报道心梗后心脏自主神经异常芽生可诱发SCD,并且左心交感神经再生可导致心电图QT间期延长。QT间期延长是室性心动过速(VT)、VF和SCD的重要危险因子,而后除极是产生触发性心律失常的重要原因。由于QT间期延长的最重要原因是心肌细胞动作电位时程(APD)延长,而APD延长反映心肌细胞复极延缓,后者的最可能原因是钾通道的表达和功能的降低;同时,触发活动多由心肌细胞静息电位不稳定所致,因此我们推测,参与心肌细胞动作电位复极的一些钾电流(如瞬时外向钾电流Ito和延迟整流钾电流IK等),以及参与心肌细胞静息电位(RP)形成的钾通道(内向整流钾电流I_(Kl))的表达和功能降低,可能是心脏自主神经再生和重塑诱发SCD的重要机制。本工作的目的是验证这些推测,并重点研究即心交感神经过度增生对Ito和I_(Kl)的表达和功能的影响,以及对心率变异性(HRV)的影响。
     方法实验动物用成年雄性Wistar大鼠,体重200-250g。利用内源性NGF合成诱导剂4-甲基邻苯二酚(4-MC)慢性腹腔注射促进心交感神经芽生;用液氮经腹腔冷冻法造成局部心肌冻伤坏死以模拟心肌梗塞(MI);膜片箝技术全细胞记录分析单个心肌细胞Ito和I_(Kl)的电流密度;用Western-blot技术测定心肌细胞Kv4.2和Kir2.1(分别编码Ito和I_(Kl)通道α亚基)蛋白表达的变化,以β-actin为内参照。记录大鼠体表心电图,分析交感神经芽生和重塑对HRV的影响。实验动物共分五组(每组n=8):(1)4-MC组:观察单纯4-MC慢性给药对神经芽生对心肌细胞Ito和I_(Kl)表达和功能的影响;(2)MI组:观察单纯心梗对Ito和I_(Kl)的影响;(3)MI+4-MC组:用4-MC加强MI后心脏神经再生,观察心肌细胞Ito和I_(Kl)表达和功能的变化;(4)假手术组(正常对照组)。(5)急性4-MC组:观察4-MC本身对心肌的电生理特性是否有影响。另有18只大鼠分为三组(每组n=6)分别观察正常对照以及急、慢性4-MC给药情况下HRV的变化。
     结果(1)4-MC组和MI+4-MC组的心交感神经分布密度明显高于对照组;(2)4-MC组、MI组和MI+4-MC组动物左心室心肌细胞的Ito和I_(Kl)电流密度明显低于对照组,其中以MI+4-MC组的Ito电流密度降低最为显著;(3)Ito和I_(Kl)电流的动力学特征在不同组中没有明显差异;(4)急性注射4-MC对大鼠左心室心肌细胞Ito和I_(Kl)电流密度无明显影响;(5)4-MC组、MI组和MI+4-MC组的Kv4.2和Kir2.1通道的蛋白表达水平明显低于对照组,其中以MI+4-MC组的Kv4.2和Kir2.1蛋白表达降低最为显著;(6)慢性腹腔注射4-MC造成心交感神经芽生可使大鼠心率变异性(HRV)的多个参数均明显降低,而急性4-MC给药对HRV没有明显影响。
     结论4-MC慢性注射可导致心交感神经芽生、重塑和神经分布密度增高;心交感神经芽生可使心肌细胞Ito和I_(Kl)的膜蛋白水平和电流密度均降低,而且这些作用可被心梗所加强;心交感神经芽生可导致HRV降低,而急性4-MC注射对Ito和I_(Kl)电流无明显影响,对HRV也没有明显影响,提示上述4-MC的作用是通过诱导心交感神经芽生实现的,而不是4-MC的急性药理作用所致。该项研究提示,心交感神经芽生对心肌细胞Ito和I_(Kl)通道的下调作用可能是慢性心梗患者心交感神经芽生诱发心律失常及SCD的重要机制之一。
Background and Objective Sudden cardiac death(SCD) refers to sudden and unexpected death caused by various cardiac diseases,which mostly is the result of life-threatening arrhythmias such as ventricular fibrillation(VF).SCD occurs mainly among patients with coronary artery diseases,especially in those with myocardial infarction(MI).The underlying mechanism of SCD in chronic MI is poorly understood. Recently,it is reported that cardiac sympathetic nerve sprouting in chronic MI induced VT, VF and SCD.Furthermore,sympathetic nerve sprouting in left ventricle resulted in long QT syndrome(LQTS).It is well known that LQT is a critical risk factor of SCD,and is mainly caused by prolongation of action potential duration(APD),we hypothesize that down-regulation of the key potassium channels which are responsible for the repolarization of action poteltial and the mantinence of resting potential,such as transient outward potassium current(Ito) and inward rectifier potassium current(I_(K1)),is one of the leading mechanisms accounts for the induction of arrhythmias and SCD by nerve sprouting.The purpose of the present study is to test this hypothesis.
     Methods Adult Wistar rats weighing 200~250g were used in this study.To induce cardiac nerve sprouting,4-methylcatechol(4-MC,10μg/kg body weight),a potent stimulator of endogenous NGF synthesis,was injected intraperitoneally daily for 4 weeks. MI was induced by liquid nitrogen freeze-thaw injury.The current densities of Ito and Ik1 was analyzed by whole cell recording technique.The protein levels of membrane Kv4.2 and Kir2.1 were evaluated by Western blotting and normalized to the level ofβ-actin. HRV perameters,such as mean RR intervals,SDNN of RR intervals,RMSSD of RR intervals,ApEn of RR intervals and Poincaréplot of RR intervals,were analysized based on the ECG recording.The animals were devided into five groups:(1) 4-MC group,served to observe the effect of nerve sprouting on the expression and function of Ito and I_(k1).(2) MI group,to observe the effect of MI on the expression and function oflto and I_(k1).(3) MI+4-MC group,to observe the effect of a combination of MI and nerve sprouting on the expression and function of Ito and I_(k1).(4) Sham surgery group(normal control group).(4) Acute 4-MC group,to observe the direct effect of 4-MC on Itol and Ik1 currents.An extra of 18 rats were devided into three groups(n=6 for each group) to observe the HRV changes at the conditions of acute 4-MC,chronic 4-MC and normal control,respectively.
     Results(1) Cardiac sympathetic nerves densities significally increased in 4-MC and MI+4-MC groups compared with sham group;(2) the current densities of Ito and Ik1 of the left ventricular(LV) myocytes decreased significantly in groups of 4-MC,MI and MI+4-MC compared with control group(P<0.01),with the lowerest values found in the MI+4-MC group;(3) there was no difference in the current dynamics of Ito and I_(k1) among these groups;(4) acute injection of 4-MC did not affect any of these potassium currents in LV myocytes;(5) the membrane protein levels of Kv4.2(αsubunit of Ito channel) and Kir2.1(αsubunit of Ik1 channel) significantly decreased in the LV myocytes from 4-MC group,MI group and MI+4-MC group compared with sham sugery group(P<0.01),with the lowerest values found in MI+4-MC group;(5) The HRV decreased in animals treated with chronic 4-MC injection but not in animals received acute 4-MC injection,as shown by the values of mean RR intervals,SDNN,RMSSD,ApEn and Poincaréplot of RR intervals.
     Conclusion Chronic 4-MC injection induces cardiac sympathetic nerve sprouting, remodeling and hyperinnervation and downregulates both the membrane protein levels and current densities of Ito and Ik1 in LV myocytes.MI facilitates the downregulation of Ito and Ik1.Cardiac sympathetic nerve sprouting also decreases HRV.Acute 4-MC did not affect the current density and HRV,suggesting that the decreases in both the expression and function of Ito and Ik1 channels and HRV are related with nerve sprouting but not with the acute pharmacological effect of 4-MC.These results suggest that downregulation of Ito and Ik1 may be one of the leading mechanisms by which cardiac nerve sprouting induces ventricular arrhythmias ans SCD in chronic MI.
引文
1. Myerburg RJ, Castellanos A: Cardiac arrest and sudden cardiac death. In Braunwald E, ed: Heart Disease: A Textbook of Cardiovascular Medicine. Fourth Edition. WB Saunders, Philadelphia, 1992, pp.756-789.
    
    2. Antman EM, Braunwald E: Acute myocardial infarction: In Braunwald E, ed: Heart Disease: A Textbook of Cardiovascular Medicine. Fifth Edition. WB Saunders,Philadelphia, 1997, pp. 1184-1288.
    
    3. Domanski MJ, Exner DV, Borkowf CB, Geller NL, Rosenberg Y, Pfeffer MA: Effect of angiotensin converting enzyme inhibition on sudden cardiac death in patients following acute myocardial infarction. A meta-analysis of randomized clinical trials. J Am Coll Cardiol 1999; 33: 598-604.
    
    4. Schwartz PJ, Stone HL. The role of the autonomic nervous system in sudden coronary death. Ann N Y Acad Sci, 1982, 382:162-80.
    
    5. Cao J-M, Fishbein MC, Han JB, Lai WW, Lai AC, Wu T-J, Czer L, Wolf PL,DentonTA.Shintaku IP, Chen P-S, Chen LS: Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 2000; 101: 1960-1969.
    
    6. Cao J-M, Chen LS, Kenknight BH, Ohara T, Lee M-H, Tsai J, Lai WW, Karagueuzian HS, Wolf PL, Fishbein MC, Chen P-S. Nerve sprouting and sudden cardiac death.Circ Res 2000;86:816-821.
    
    7. Shengmei Zhou, Ji-Min Cao, Lan S Chen, Gina M Suh, Kamlesh Asotra, Michael C Fishbein, Peng-Sheng Chen: (?)3-adrenoceptor Upregulation in a Canine Model of Sudden Cardiac Death. PACE 2003, 26(4), Part II: 1046
    
    8. Veldkamp MW, Verkerk AO, van Ginneken AC, Baartscheer A, Schumacher C, de Jonge N, de Bakker JM, Opthof T. Norepinephrine induces action potential prolongation and early afterdepolarizations in ventricular myocytes isolated from human end-stage failing hearts. Eur Heart J 2001;22(11):955-63.
    9. Vracko R. Thorning D, Frederickson RG: Nerve fibers in human myocardial scars.Hum Pathol 1991;22:138-146.
    
    10. Zhou S, Cao J-M, Tebb Z, Ohara T, Huang H-L A, Omichi C, Lee M-H, KenKnight BH, Chen LS, Fishbein MC, Karagueuzian HS, Chen P-S: Modulation of QT interval by cardiac sympathetic nerve sprouting and the mechanisms of ventricular arrhythmia in a canine model of sudden cardiac death. J Cardiovasc Electrophysiol 2001; 12 (9):1068-1073.
    
    11. Woo MA, Mick MJ, Piedmonte MR, et al. Patterns of best-to-beat heart rate variability in advanced heart failure. J. Am Heart .1992; 123:704.
    
    12. Saita K, Ohi T, Hanaoka Y, Furukawa S, Furukawa Y, Hayashi K, Matsukura S. A catechol derivative (4-methylcatechol) accelerates the recovery from experimental acrylamide-induced neuropathy. J Pharmacol Exp Ther 1996; 276(1):231-7
    
    13. Saita K, Ohi T, Hanaoka Y, Furukawa S, Furukawa Y, Hayashi K, Matsukura S.Effects of 4-methylcatechol, a stimulator of endogenous nerve growth factor synthesis,on experimental acrylamide-induced neuropathy in rats. Neurotoxicology 1995;16(3):403-12.
    
    14. Hanaoka Y, Ohi T, Furukawa S, Furukawa Y, Hayashi K, Matsukura S. The therapeutic effects of 4-methylcatechol, a stimulator of endogenous nerve growth factor synthesis, on experimental diabetic neuropathy in rats. J Neurol Sci 1994;122(1):28-32.
    
    15. Kaechi K. Effects of catechol compound administration on nerve growth factor synthesis in the peripheral nervous system. Nippon Seikeigeka Gakkai Zasshi 1992;66(10):1051-8.
    
    16. Hanaoka Y, Ohi T, Furukawa S, Furukawa Y, Hayashi K, Matsukura S. Effect of 4-methylcatechol on sciatic nerve growth factor level and motor nerve conduction velocity in experimental diabetic neuropathic process in rats. Exp Neurol 1992;115(2):292-6.
    
    17. Dianne L. Atkins, William J. Marvin, Jr. Chronotropic responsiveness of developing sinoatrial and ventricular rat myocytes to autonomic agonists following adrenergic and cholinergic innervation in vitro. Circulation Research 1989; 64: 1051-1062.
    
    18. Patricia M. Martinelli. Elizabeth R.S. Camargos. Rat heart GDNF: effect of chemical sympathectomy. Histochem Cell Biol 2002; 118: 337-343.
    
    19. Rudolf Vracko and David Thorning. Freeze-thaw injury of rat heart across an intact diaphragm: a new model for the study of the response of myocardium to injury.Cardiovasc Res 1985;19,76-84.
    
    20. David R. Van Wagoner, Amber L. Pond, Patrick M. McCarthy, James S. Trimmer,Jeanne M. Nerbonne. Outward K~+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ res. 1997; 80: 772-781.
    
    21. Yamauchi N, N Watanabe, H Kuriyama, et al. Suppressive effects of intracellular glutathione on hydroxyl radical production induced by tumor necrosis factor. Int. J.Cancer. 1990;46:884-888.
    
    22. Deshpande SS,Angkeow P, Huang J, et al. Racl inhibits TNF-alpha-induced endothelial cell apoptosis: dual regulation by reactive oxygen species. FASEB J.2000;14(12):1705-1714.
    
    23. Hashizume K, Hatanaka Y, Fukuda I, Sano T, et al. N-acetyl-L-cysteine suppresses constitutive expression of CD11a/LFA-lalpha protein in myeloid lineage. Leuk Res.2002; 26(10): 939-944.
    
    24. Lryuto M, Ono M, Izumi H, Yoshida S, et al. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells: possible roles of SP-1. J Biol Chem. 1996;271: 28220-28228.
    
    25. Hassankhani A, Steinhelper ME, Soonpaa MH, Katz EB, Taylor DA,Andrade-Rozental A, Factor SM, Steinberg JJ, Field LJ, Federoff HJ. Overexpression of NGF within the heart of transgenic mice causes hyperinnervation, cardiac enlargement, and hyperplasia of ectopic cells. Dev Biol. 1995 May;169(1):309-21.
    
    26. Heath BM, Xia J, Dong E, An RH, Brooks A, Liang C, Federoff HJ, Kass RS.Overexpression of nerve growth factor in the heart alters ion channel activity and beta-adrenergic signalling in an adult transgenic mouse. J Physiol. 1998; 512 ( Pt 3):779-91.
    
    27. Nitta A, Ito M, Fukumitsu H, Ohmiya M, Ito H, Sometani A, Nomoto H, Furukawa Y,Furukawa S. 4-methylcatechol increases brain-derived neurotrophic factor content and mRNA expression in cultured brain cells and in rat brain in vivo. J Pharmacol Exp Ther. 1999 Dec;291(3):1276-83.
    
    28. Liu YB, Wu CC, Lu LS, Su MJ, Lin CW, Lin SF, Chen LS, Fishbein MC, Chen PS,Lee YT. Sympathetic nerve sprouting, electrical remodeling, and increased vulnerability to ventricular fibrillation in hypercholesterolemic rabbits. Circ Res. 2003 May 30;92(10):1145-52
    
    29. Dirk J.Snyders. Structure and function of cardiac potassium channels. Cardiovasc Res 1999;42:377-390
    
    30. Nerbonne JM. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J Physiol 2000; 525(2): 285-298
    
    31. Nerbonne JM, Molecular basis of functional voltage-gated K~+ channel diversity in the mammalian myocardium. J Physiol 2000;525 Pt2:285-298.
    
    32. Xu H, Li H, Nerbonne JM. Elimination of the transient outward current and action potential prolongation in mouse atrial myocytes expressing a dominant negative K_(V4) alpha subunit. J Physiol 1999; 519 Pt 1: 11 -21.
    
    33. Wetzel GT, Klitzner TS. Developmental cardiac electrophysiology: recent advances in cellular physiology. Cardiovasc Res 1996; 31: E52-E60.
    
    34. Boyle WA, Nerbonne JM. A novel type of depolarization-activated k~+ current in isolated adult rat atrial myocytes. Am J Physiol 1991; 260:H1236-H1247.
    
    35. Litovsky SH, Antzelevitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res 1998; 62:116-126.
    
    36. Furukawa T, Kimura S, Furukawa N, Bassett AL, Myerburg RJ. Potassium rectifier currents differ in myocytes of endocardial and epicardial origin. Circ Res 1992;70:91-103.
    37. Boyle WA, Nerbonne JM. Two functionally distinct 4-aminopyridine-sensitive outward K~+ currents in rat atrial myocytes. J Gen Physiol 1992; 100: 1041-1067.
    
    38. Kenneth B. Walsh, Janea K. sweet, Graham E. Parks, Kathryn J. Modulation of outward potassium currents in aligned cultures of neonatal rat ventricular myocytes during phorbol ester-induced hypertrophy. J Mol Cell Cardiol 2001 ;33: 1233-1247.
    
    39. Nabauer M, Kaab S. Potassium channel down-regulation in heart failure. Cardiovasc Res 1998;37:324-334.
    
    40. Tomita F, Bassett AL, Myerburg RJ, Kimura S. Diminished transient outward currents in rat hypertrophied ventricular myocytes. Circ Res 1994; 75 :296-303.
    
    41. Brooksby P, Levi AJ, Jones JV. The electrophysiological characterization of hypertrophied ventricular myocytes from the spontaneously hypertensive rat. J Hypertens 1993; 11: 611-622.
    
    42.Xu X, Best PM. Dcreased transient outward K~+ current in ventricular myocytes from acromegalic rats. Am J Physiol 1991; 260: H935-H942.
    
    43. Benitah JP, Gomez AM, Bailly P,da Ponte JP, Berson G, Delgado C, Lorente P.Heterogeneity of the early outward current in ventricular cells isolated from normal and hypertrophied rat hearts. J Physiol (Lond) 1993; 469: 111-138.
    
    44. Rozanski GJ, Zhang K, Xu Z, Kaushik PP. Altered K~+ current of ventricular myocytes in rats with chronic myocardial infarction. Am J Physiol 1998; 274: H259-H265.
    
    45. Kaprielian R, Wickenden AD, Kassiri Z, Parker TG, Liu PP, Backx PH. Relationship between K~+ channel dowm-regulation and [Ca~(2+)]j in rat ventricular myocytes following myocardial infarction. J Physiol (Lond) 1999; 517.1: 229-245.
    
    46. Le Grand B, Hatem S, Deroubaix E, Couetil J_P, Coraboeuf E. Depressed transient outward and calcium currents in dilated human atrial. Cardiovasc Res. 1994; 28:548-556.
    
    47. Kaab S, Dixon J, Duc J, Ashen D, NabauerM, Steinbeck G, McKinnon D. Molecular basis of transient outward potassium current dowenregulation in human heart failure: a decrease in K_(V4.3) mRNA correlates with a reduction in current density. Circulation 1998; 98: 1383-1393.
    
    48. Bally P, Benitah JP, Mouchoniere M, Vassort G, Lorente P. Regional alteration of the transient outward current in human left ventricular septum during compensated hypertrophy. Circulation 1997, 1266-1274.
    
    49. Takimoto K, Li D, Hershman KM, Li P, Jackson EK, Levitan ES. Decreased expression of K_(V4.2) and novel K_(v4.3) K~+ channel subunit mRNA in ventricles of renovascular hypertensive rats. Circ Res 1997; 81: 533-539.
    
    50. Gomez AM, Benitah JP, Henzel D, Vinet A, Lorente P, Delgado C. Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle. Am J Physiol 1997;272:H1078-H1086.
    
    51. Merot J, Probst V, Debailleul M, et al. Electropharmacological characterization of cardiac repolarization in German shepherd dogs with an inherited syndrome of sudden death: abnormal response to potassium channel blockers. J Am Coll Cardiol 2000;36(3):939-947.
    
    52. Weidmann S. Rectifier properties of Purkinje fibers. Am J Physiol 1955; 183: 671.
    
    53. M. Nagashima, N. Tohse, Kimura Y, Yamada N, Fujii, H Yabu. Alteration of inwardly rectifying background K~+ channel during development of rat fetal cardiomyocytes. J Mol Cell Cardiol 2001; 33: 533-543.
    
    54. Xu H, Dixon JE, Barry DM, Trimmer JS, Merlie JP, McKinnon D, Nerbonne JM.Developmental analysis reveals mismatches in the expression of K~+ channel alpha subunits and voltage-gated K~+ channel currents in rat ventricular myocytes. J Gen Physiol 1996; 108:405-419.
    
    55. Barry DM, Nerbonne JM. Myocardial potassium channels: electrophysiological and molecular diversity. Ann Rev Physiol 1996; 58: 363-394.
    
    56. Yeola SW, Snyders DJ. Electrophysiological and pharmacological correspondence between Kv4.2 current and rat cardiac transient outward current. Cardiovasc Res 1997;33:540-547.
    
    57. Tseng-Crank J, Tseng G-N, Schwartz A, Tanouye MA. Molecular cloning and functional expression of apotassium channel cDNA isolated from a rat cardiac library.FEBS Letters 1990; 268: 63-68.
    
    58. Tamkun MM,Knoth KM, Walbridge JA, Kroener H, Roden DM. Molecular cloning and characterization of two voltage-gated K~+ channel cDNAs from human ventricle.FASEBJ 1991; 5:331-337.
    
    59. Barry DM, Xu H, Schuessler RB, Nerbonne JM. Functional knockout of the transient outward current, Long-QT Syndrome, and cardiac remodeling in mice expressing a domint-negative Kv4 D subunit. Circ Res 1998; 83:560-567.
    
    60. Wang Z, Feng J, Shi H, Pond A, Nerbonne JM, Nattel S. Potential molecular basis of different physiological properties of the transient outward K~+ current in rabbit and human atrial myocytes. Circ Res 1999; 84: 551-561.
    
    61. Brahmajothi MV, Campbell DL, Rasmusson RL, Morales MJ, Trimmer JS, Strauss HC.Distinct transient outward potassium current (I_(to)) phenotypes and distribution of fast-inactivating potassium channel alpha subunits in ferrent left ventricular myocytes.J Gen Physiol 1999; 113: 581-600.
    
    62. Barry DM, Trimmer JS, Merlie JP, Nerbonne JM. Differential expression of voltage-gated K~+ channel subunits in adult rat heart: relation to functional K~+ channels?Circ Res 1995; 77:361-369.
    
    63. Wickenden AD, Kaprielian R, Parker TG, Jones OT, Backx PH. Effects of development and thyroid hormone on K~+ K~+ currents and K~+ channel gene expression in rat ventricle. J Physiol 1997; 504:271-286.
    
    64. Wickenden AD, Jegla TJ, Kaprielian R, Backx PH, Regional contributions of Kv1.4,Kv4.2, and Kv4.3 to transient outward K~+ current in rat ventricle. Am J Physiol 1999;276:H1599-H1607.
    
    65. Nichols CG, Makhina EN, Pearson WL, Sha Q, Lopatin AN. Inward rectification and implications for cardiac excitability. Circ Res 1996; 78:1-7.
    
    66. Ishii K, Yamagishi T, Taira N. Cloning and functional expression of a cardiac inward rectifiet K~+ channel. FEBS Letter 1994; 338: 107-111.
    67. Takahashi N, Morishige K, Arshad J, Yamada M, Findlay I, Koyama H, Kurachi Y.Molecular cloning and functional expression of cDNA encoding a second class of inward rectifier potassium channels in the mouse brain. J Biol Chem 1994; 269:23274-23279.
    
    68. Perier F, Radeke CM, Vandenberg CA, Primary structure and characterization of a small-conductance inwardly rectifying potassium channel from human hippocampus.Proc natl Acad Sci USA 1994;91:6240-6244.
    
    69. Masato Nagashima, Nortsugu Tohse, Kouichi Kimura, Yoichi Yamada, Nobuhiro Fujii,Hideyo Yabu. Alternation of inwardly rectifying backgroud K~+ channel during development of rat fetal cardiomyocytes. J Mol Cell Cardiol 2001; 33: 533-543.
    
    70. Nakamura TY, Artmen M, Rudy B, Coetzee wa. Inhibition of rat ventricular Ik1 with antisense oligonucleotides targeted to Kir2.1 mRNA. Am J Physiol 1998; 274:H892-H900.
    
    71. Nakamura TY, Karen L, Artman M, Bernardo R, Coetzee WA. The role of Kir2.1 in the genesis of native cardiac inward-rectifier K~+ currents during pre- and postnatal development. Ann N Y Acad Sci 1999; 868: 434-437.
    
    72. Peter M, Liming ZH, Alvin S, Nattel S. Differential distribution of Kir2.1 and Kir2.3 subunits in canine atrium and ventricle. Am J Physiol 2002; 283: H1123-H1133.
    
    73. Kamath MV, Upton AR, Talalla A. Effect of vagal nerve elect stimulation on the power spectrum of heart rate variability in man. J PACE. 1992;15: 235.
    
    74. Kinezle MG, Fergnson DW, Birkett CL. Clinical hemodynamic and sympathetic neural correlate of heart rate variability in congestive heart failure. Am J Cardiol. 1992;59:261.
    1.Blood Institute(Volume 2):Patient oriented Research-Fundamental and Applied,sudden Cardiac Death.DHEW,NIH Publication No.82-2305,Washionton,DC:US Government Printing Office,1981,pp.114-122
    2.Myerburg RJ,Castellanos A.Cardiac arrest and sudden cardiac death,in Braunwald E(ed).Heart Disease:A Textbook of Cardiovascular Medicine.ed4.Philadelphia,W.B.Saunders,1992:756-789
    3.Schwartz PJ,Stone HL.The role of the autonomic nervous system in sudden coronary death.Ann N Y Acad Sci,1982,382:162-80
    4.Vracko R,Thoming D,Frederickson RF.Fate of nerve f Report of the Working Group of Arteriosclerosis of the National Heart,Lung,and ibers in necrotic,healing,and healed rat myocardium.Lab Invest,1990,63:490-501
    5.Vracko R,Thoming D,Frederickson RG.Nerve fibers in human myocardial scars.Hum Pathol,1991,22:138-46
    6.Yanowitz F,Preston JB,Abildskov JA:Functional distribution of right and left stellate innervation to the ventricles.Production of neurogenic electrocardiographic changes by unilateral alteration of sympathetic tone.Circ Res 1966;18:416-428
    7.Schwartz PJ,Motolese M,Pollavini G,Lotto A,Ruberti U,Trazzi R,Bartorelli C,Zanchetti A,Italian Sudden Death Prevention Group:Prevention of sudden cardiac death after a first myocardial infarction by pharmacologic or surgical antiadrenergic interventions.J Cardiovasc Electrophysiol 1992;3:2-16
    8.Schwartz PJ:The rationale and the role of left stellectomy for the prevention of malignant arrhythmias. Ann N Y Acad Sci 1984;427:199-221
    
    9. Zhou S, Cao JM, Tebb Z, Ohara T, Huang HL, Omichi C, Lee MH, KenKnight BH,Chen LS, Fishbein MC, Karagueuzian HS, Chen PS. Modulation of QT interval by cardiac sympathetic nerve sprouting and the mechanisms of ventricular arrhythmia in a canine model of sudden cardiac death. J Cardiovasc Electrophysiol.2001;12(9):1068-73.
    
    10. Vracko R, Thorning D, Frederickson RG: Nerve fibers in human myocardial scars.Hum Pathol 1991;22:138-146
    
    11. Vracko R, Thorning D, Frederickson RG: Fate of nerve fibers in necrotic, healing, and healed rat myocardium. Lab Invest 1990;63:490-501
    
    12. Lai AC, Wallner K, Cao JM, Chen LS, Karagueuzian HS, Fishbein MC, Chen PS,Sharifi BG. Colocalization of tenascin and sympathetic nerves in a canine model of nerve sprouting and cardiac death. J Cardiovasc Electrophysiol. 2000 Dec;11(12):1345-51.
    
    13. Zhou S, Chen LS, Miyauchi M, Kar S, Kangovari S, Fishbein MC, Sharifi B, Chen PS.Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res.2004 Jul9;95(1):76-83.
    
    14. Zhou S , Cao JM, Moshe S, Gomez IG, Chang CM, Kai chien, Yauchi YM, Katherine J. FU, Johnny YI, Asotra K, Hrayr S K, Fishbein MC, Chen PS, Chen LS. Low-affinity nerve growth factor receptor p75NTR immunoreactivity in the myocardium with sympathetic hyperinnervation. J Cardiovasc Electrophysiol. 2004 Apr; 15(4):430-7
    
    15. Liu YB, Wu CC, Lu LS, Su MJ, Lin CW, Lin SF, Chen LS, Fishbein MC, Chen PS,Lee YT. Sympathetic nerve sprouting, electrical remodeling, and increased vulnerability to ventricular fibrillation in hypercholesterolemic rabbits. Circ Res. 2003 May 30;92(10):1145-52
    
    16. Chang CM, Wu TJ, Zhou S, Doshi RN, Lee MH, Ohara T, Fishbein MC, Karagueuzian HS, Chen PS, Chen LS. Nerve sprouting and sympathethic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing. Circulation. 2001 Jan 2;103(1):22-5.
    
    17. Hamabe A, Chang CM, Zhou S, Chou CC, Yi J, Miyauchi Y, Okuyama Y, Fishbein MC, Karagueuzian HS, Chen LS, Chen PS. Induction of atrial fibrillation and nerve sprouting by prolonged left atrial pacing in dogs. Pacing Clin Electrophysiol. 2003 Dec;26(12):2247-52.
    
    18. Chen PS, Chen LS, Cao JM, Charifi B, Karagueuzian HS, Fishbein MC. Sympathetic nerve sprouting, electrical remodeling and the mechanism of sudden cardiac death.Cardiovasc Res. 2001 May; 50(2):409-16.
    
    19. Kim Dt, Luthringer DJ, Lai AC, Suh G, Czea L, Chen LS, Chen PS, Fishbein MC.Sympathetic nerve sprouting after orthotopic heart transplantation. J Heart Lung Transplant. 2004 Dec;23(12):1349-58.
    
    20. Ji-Min Cao, Lan S. Chen, Jai H. Han, et al. Regional cardiac hyperinnervation in patients with ventricular tachyarrhythmia. Circulation, 2000, 101:1060-69
    
    21. Chen P-S, Chen LS, Cao J-M, et al.Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res, 2001, 50:409-16
    
    22. Ji-Min Cao, Lan S. Chen, Bruce H. KenKnight, et al. Nerve sprouting and sudden cardiac death. Circ Res, 2000, 86:816-21
    
    23. Gilmour RF, Moise NS. Triggered activity as a mechanism for inherited ventricular arrhythmias in German shepherd Dogs. J Am Coll Cardiol, 1996, 27:1526-33
    
    24. Stevens MJ, Raffel DM, Allman KC, et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation, 1998, 98:961-8
    1.Antzelevitch C,Sicouri S,Litovsky SH,Lukas A,Krishnan SC,Di Diego JM,Gintant GA,Liu DW.Heterogeneity within the ventricular wall.Electrophysiology and pharmacology of epicardial,endocardial,and M cells.Circ Res 1991;69:1427-1449.
    2.Barry DM,Nerbonne JM,Myocardial potassium channels:electrophysiological and molecular diversity.Annu Rev Physiol 1996;58:363-394.
    3. Snyders DJ. Structure and function of cardiac potassium channels. Cardiovasc Res 1999;42:377-390.
    
    4. Nerbonne JM, Molecular basis of functional voltage-gated K~+ channel diversity in the mammalian myocardium. J Physiol 2000;525 Pt2:285-298.
    
    5. Tristani-Firouzi M, Chen J, Mitcheson JS, Sanguinetti MC. Molecular biology of K~+ channels and their role in cardiac arrhythmias. Am J Med 2001;110:50-59.
    
    6. Coetzee WA, Amarillo Y, Chiu J,Chow A, Lau D, Mccormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz DE, Miera E, Rudy B.Molecular diversity of K~+ channels. Ann N Y Acad Sci 1999;868:233-285.
    
    7. Jan LY, Jan YN. Structural elements involved in specific K~+ channel functions. Annu Rev Physiol 1992;54:537-555.
    
    8. Xu J, Yu W, Jan YN, Jan LY, Li M. Assemble of voltage-gated potassium channels.Conserve hydrophilic motifs determine subfamily-specific interactions between the alpha-subunits. J Biol Chem 1995;270:24761-24768.
    
    9. Li M, Jan YN, Jan LY. Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 1992;257:1225-1230.
    
    10. Pongs O, structural basis of voltage-gated K~+ channel pharmacology. Trends Pharmacol Sci 1992;13:359-365.
    
    11. Doyle DA, Morais Cabral J, Peuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chatt BT,Mackinnon R. The structure of the potassium channel: molecular basis of K~+ conduction and selectivity. Science 1998;280:69-77.
    
    12. Kalman K, Nguyen A, Tseng-Crank J, Dukes ID, Chandy G, Hustad CM, Copeland NG, Jenkins NA, Mohrenweiser H, Brandriff B, Cahalan M, Gutman GA, Chandy KG. Genomic organization, chromosomal localization, tissue distribution, and biophysical characterization of a noval mammalian Shaker-related voltage-gated potassium channel, K_(v1.7). J Biol Chem 1998;273:5851-5857.
    
    13. Kong W, Po S, Yamagishi T, Ashen MD,Steten G, Tomaselli GF. Isolation and characterization of the human gene encoding Ito: further diversity by alternative mRNA splicing. Am J Physiol 1998;275:H1963-H1970.
    
    14. Ohya S, Tanaka M, Oku T, Asai Y, Watanabe M, Giles WR, Imaizumi Y. Molecular cloning and tissue distribution of an alternatively spliced variant of an A-type K~+ channel alpha-subunit, K_(v4.3) in the rat. FEBS Lett 1997;420:47-53.
    
    15. Juang G, Kong W, Po S, Zheng MQ, Wu R, Tomaselli GF. Alteration of potassium channel expression in heart failure. Circulation 1999;100?Suppl.):2236A.
    
    16. Nagaya N, Papazian DM, Potassium channel alpha and beta subunits assemble in the endoplasmic reticulum. J Biol Chem 1997;272:3022-3027.
    
    17. Takeuchi S, Takagishi Y, Yasui K, Murata Y, Toyama J, Kodama I. Voltage-gated K~+ channel, K_(V4.2), localizes predominantly to the transverse-axial tubular system of the rat myocyte. J Mol Cell Cardiol 2000;32:1361-1369.
    
    18. Ponce A, Vega-Saenz DE, Miera E, Kentros C, Moreno H, Thornhll B, Rudy B. K~+ channel subunit isforms with divergent carboxy-terminal sequences carry distinct membrane targeting signals. J Membr Biol 1997;159:149-159.
    
    19. Li D, Takimoto K, Levitan ES. Surface expression of K_(V1) channels is governed by a C-terminal motif. J Biol Chem 2000;275:11597-11602.
    
    20. England SK, Uebele VN, Shear H, Kodali J, Bennett PB, Tamkun MM.Characterization of a voltage-gated K~+ channel beta subunit expressed in human heart. Proc Natl Acad Sci USA 1995;92:6309-6313.
    
    21. England SK, Uebele VN, Kodali J, Bennett PB, Tamkun MM. A novel K~+ channel beta-subunit (hKv beta 1.3) is produced via alternative mRNAsplicing. J Biol Chem 1995;270:28531-28534.
    
    22. Morales MJ, Castellino RC, Crews AL, Rasmusson HC. A novel beta subunit increases rate of inactivation of specific voltage-gated potassium channel alpha subunits. J Biol Chem 1995;270:6272-6277.
    
    23. Shi G, Nakahira K, Hammond S, Rhodes KJ, Schechter LE, Trimmer JS, Beta subunits promote K~+ channel surface expression through effects early in biosynthesis. Neuron 1996; 16:843-852.
    
    24. Pongs O, Leicher T, Berger M, Roeper J, Bahring D, giese KP, Silva AJ, Storm JF.Functional and molecular aspects of voltage-gated K~+ channel beta subunits. Ann N Y Sci 1999;868:344-355.
    
    25. Martens JR, Kwak Y, Tamkun MM, Modulation of Kv channel alpha/beta subunit interactions. Trends Cardiovasc Med 1999;9:253-258.
    
    26. Deal KK< England SK, Tamkun MM, Murray KT, Fahrig SA, Po SS, Hu NN, Snyders DJ, Bennett PB, Lovinger DM, Felipe A. Molecular physiology of cardiac potassium channels. Physiol Rev 1996;76:49-67.
    
    27. Gulbis JM, Mann S, Mackinnon R. Structure of a voltage-dependent K~+ channel beta subunit. Cell 1999;97:943-952.
    
    28. Majumder K, De Biasi M, Wang Z, Wible BA. Molecular cloning and functional expression of a novel potassium channel beta-subunit from human atrium. FEBS Lett 1995;361:13-16.
    29. Rsttig J. Heinemann SH, Wunder F, Lorra C,Dolly JO, Pongs O. Inactivation properties of voltage-gated K~+ channels altered by presence of beta-subunit. Nature 1994;369:289-294.
    
    30. Yang EK, Alvira MR, Levitan ES, Takimoto K, Kvbeta subunits increase expression of K_(V4.3) channels by interacting with their C-termini. J Biol Chem 2001;276(7):4839-4844.
    
    31. Leicher T, Bahring R, Isbrandt D, Pongs 0. Co-expression of the KCNA3B gene product with K_(v1.5) leads to a novel A-type potassium channel. J Biol Chem 1998;273:35095-35101.
    
    32. Uebele VN, England SK, Chaudhary A, Tamkun MM, Snyders DJ. Functional differences in K_(v1.5) currents expressed in mammalian cell lines are due to the presence of endogenous K_v beta 2.1 subunits. J Biol Chem 1996;271:2406-2412.
    
    33. Peri R, Wible BA, Brown AM. Mutations in the Kvbeta 2 binding site for NADPH and their effects on K_(v1.4). J Biol Chem 2001;276:738-741.
    
    34. Wible BA, Yang Q, Kuryshev YA, Accili EA, Brown AM. Cloning and expression of a novel K~+ channel regulatory protein, KchAP. J Biol Chem 1998;273:11745-11751.
    
    35. Kuryshev YA, Gudz TI, Brown Am, Wible BA. KchAP as a chaperone for specific K~+ channels. Am J Physiol Cell Physiol 2000;278:C931-C941.
    
    36. Abriel H, Motoike H, Kass RS. KchAP: a novel chaperone for specific K~+ channels key to repolarization of the cardiac action potential. Focus on KchAP as a chaperone for specific K~+ channels. Am J Physiol 2000;278:C863-C864.
    
    37. An WE, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI,Strassle BW, Trimmer JS, Rhodes KJ. Modulation of A-type potassium channels by a family of calcium sensors. Nature 2000;403: 553-556.
    38. Nakamura TY, Nadal MS, Rudy B, Artman M, Coetzee WA. Frequenin. A Ca~(2+)-binding protein ,is expressed in heart and is a novel regulatorof K_(V4) currents.Circulation 2000; 102 (suppl.): 432.
    
    39. Shimoni Y, Ewart HS, Severson D. Insulin stimulation of rat ventricular K~+ currents depends on the integrity of the cytoskeleton. J Physiol (Land) 1999; 514: 735-745.
    
    40. Rasmusson RL, Morales MJ, Wang S, Liu S, Campbell DL, Brahmajothi MV, Strauss HC. Inactivation of voltage-gated cardiac K~+ channels. Circ Res 1998 ; 82:739-750.
    
    41. Jerng HH, Shahidullah M, Covarrubias M. Inactivation gating of K_(V4) potassium channels: molecular interactions involving the inner vestibule of the pore. J Gen Physiol 1999; 113: 641-660.
    
    42. Beck EJ, Sorensen RG, Slater SJ, Covarrubias M. Interactions between multiple phosphorylation sites in the inactivation particle of a K~+ channel. Insights into the molecular mechanism of protein kinase C action. J Gen Physiol 1998; 112: 71-84.
    
    43. Tseng-Crank J, Yao JA, Berman MF, Tseng GN. Functional role of the NH_2-terminal cytoplasmic domain of a mammalian A-type K channel. J Gen Physiol 1993; 102:1057-1083.
    
    44. Comer Mb, Campbell DL, Rasmusson RL, Lamson DR, Morales MJ, Zhang Y,Strauss HC. Cloning and characterization of an I_(to)-like potassium channel from ferret ventricle. Am J Physiol 1994; 267: H1383-H1395.
    
    45. Hoshi T, Zagotta WN, Aldrich RW. BIOphysical and molecular mechanisms of Shaker potassium channel inactivation. Science 1990; 250: 533-538.
    
    46. Zagotta WN, Aldrich RW. Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J Gen Physiol 1990; 95: 29-60.
    47. Ogielska EM, Zagotta WN, Hoshi T, Heinemann SH, Haab J, Aldrich RW.Cooperative subunit interactions in C-type inactivation of K channels. Biophys J 1995;69: 2449-2457.
    
    48. Liu Y, Jurman ME, Yellen G. Dynamic rearrangement of the outer mouth of a K~+ channel during gating. Neuron 1996; 16: 859-867.
    
    49. Rasmusson RL, Morales MJ, Castellino RC, Zhang Y, Campbell DL, Strauss HC.C-type inactivation controls recovery in a fast inactivating cardiac K~+ channel (K_(v1.4)) expressed in Xenopus oocytes. J Physiol 1995; 489: 709-721.
    
    50. Jerng HH, Covarrubias M. K~+ channel inactivation mediated by the concerted action of the cytoplasmic N- and C-terminal domains. Biophys J 1997;72: 163-174.
    
    51. Roeper J, Lorra C, Pongs O. Frequency-dependent inactivation of mammalian A-type K~+ channel K_(v1.4) regulated by Ca~(2+)/calmodulin-dependent protein jinase. J Neurosci 1997; 17: 3379-3391.
    
    52. Tessier S, Karczewski P, Krause EG, Pansard Y, Acar C, Lang-Lazdunski M,Mercadier JJ, Hatem SN. Regulation of the transient outward K~+ current by Ca~(2+)/calmodulin-dependent protein kinases □ in human atrial myocytes. Circ Res 1999; 85: 810-819.
    
    53. Brahmajothi MV, Campbell DL, Rasmusson RL, Morales MJ, Trimmer JS, Strauss HC.Distinct transient outward potassium current (I_(to)) phenotypes and distribution of fast-inactivating potassium channel alpha subunits in ferrent left ventricular myocytes.J Gen Physiol 1999; 113: 581-600.
    
    54. Himmel HM, Wetter E, Li Q, Ravens U. Four different components contribute to outward current in rat ventricular myocytes. Am J Physiol 1999; 277: H107-H118.
    
    55. Diochot S, Drici MD, Moinier D, Fink M,Lazdunski M. Effects OF phrixotoxins on the K_(v1.4) family of potassium channels and implications for the role of I_(tol) in cardiac electrogenesis. Br J Pharmacal 1999; 126: 251-263.
    
    56. Yeola SW, Snyders DJ. Electrophysiological and pharmacological correspondence between K_(V4.2) current and rat cardiac transient outward current. Cardiovasc Res 1997;33: 540-547.
    
    57. Wang Z, Feng J, Shi H, Pond A, Nerbonne JM, Nattel S. Potential molecular basis of different physiological properties of the transient outward K~+ current in rabbit and human atrial myocytes. Circ Res 1999; 84: 551-561.
    
    58. McKinnon D. Molecular identity of I_(to): K_(v1.4) redux. Circ Res 1999; 84: 620-622.
    
    59. Kilborn MJ, Fedida D. A study of the developmental changes in outward currents of rat ventricular myocytes. J Physiol 1990; 430: 37-60.
    
    60. Pacioretty LM, Ghmour RE. Developmental changes of action potential configuration and I_(to) in canine epicardium. Am J Physiol 1995; 268: H2513-H2521.
    
    61. Jeck CD, Boyden PA. Age-related appearance of outward currents may contribute to developmental differences in ventricular repolarization. Circ Res 1992; 71:1390-1403.
    
    62. Wickenden AD, Kaprielian R, Parker TG, Jones OT, Backx PH. Effects of developmental and thyroid hormone on K~+ currents and channel gene expression in rat ventricle. J Physiol (Lond) 1997; 504: 271-286.
    
    63. Nichols CG, Makhina EN, Pearson WL, Sha Q, Lopatin AN. Inward rectification and implications for cardiac excitability. Circ Res 1996; 78:1-7.
    
    64. Peter Melnyk, Liming Zhang, Alvin Sherier, Stanley Nattel. Differential distribution of Kir2.1 and Kir2.3 subunits in canine atrium and ventricle.Am J physiol 2002; 283: H1123-H1133.
    
    65. Masato Nagashima, Nortsugu Tohse, Kouichi Kimura, Yoichi Yamada, Nobuhiro Fujii, Hideyo Yabu. Alternation of inwardly rectifying backgroud K~+ channel during development of rat fetal cardiomyocytes. J Mol Cell Cardiol 2001; 33: 533-543.
    
    66. Apkon M, Nerbonne JM. Alpha 1-adrenergic agonists selectively suppress voltage-dependent K~+ current in rat ventricular myocytes. Proc Natl Acad Sci USA 1988;85: 8756-8760.
    
    67. Tohse N, Nakaya H, Hattori Y, Endou M, Kanno M. Inhibitory effect mediated by alpha 1-adrenoceptors on transient outward current in isolated rat ventricular cells.Pflugers Arch 1990; 415:575-581.
    
    68. Fedida D, Bouchard RA. Mechanisms for the positive inotropic effect of alpha 1-adrenoceptor stimulation in rat cardiac myocytes. Circ Res 1992; 71: 673-688.
    
    69. Braun AP, Fedida D, Clark RB, Giles WR. Intracellular mechanisms for alpha 1-adrenergic regulation of the transient outward current in rabbit atrial myocytes. J Physiol (Land) 1990; 431:689-712.
    
    70. Fedida D, Shimoni Y, Giles WR. Alpha-adrenergic modulation of the transient outward current in rabbit atrial myocytes. J Physiol 1990; 423:257-277.
    
    71. Fedida D, Braun AP, Giles WR. Alpha 1-adrenoceptors reduce background K~+ current in rabbit ventricular myocytes. J Physiol 1991 ;441: 673-684.
    
    72. Robinson RB, Liu QY, Rosen MR. Ionic basis for action potential prolongation by phenylephrine in canine epicardial myocytes. J Cardiovasc Electrophysiol 2000;11:70-76.
    
    73. Murray KT, Fahrig SA, Deal KK, Po SS, Hu NN, Snyders DJ, Tamkun MM, Bennett PB. Modulation of an inactivating human cardiac K~+ channel by protein kinase C.Circ Res 1994; 75: 999-1005.
    
    74. Gaughan JP, Heener CA, Houser SR. Electrophysiological properties of neonatal rat ventricular myocytes with alphal-adrenergic-induced hypertrophy. Am J Physiol 1998;275: H577-H590.
    
    75. Guo W, Kamiya K, Hojo M, Kodama I, Toyama J. Regulation of K_(v4.2) and K_(v1.4) K~+ channel expression by myocardial hypertrophic factors in cultured newborn rat ventricular cells. J Mol Cell Cardiol 1998; 30:1449-1455.
    
    76. Damron DS, Van Wagoner DR, Moravec CS, Bond M. Arachidonic acid and endothelin potentiate Ca~(2+) transients in rat cardiac myocytes via inhibition of distinct K~+ channels. J Biol Chem 1993; 268: 27335-27344.
    
    77. Nakamura TY, Coetzee WA, Vega-Saenz De Miera E, Artman M, Rudy B. Modulation of K_(V4) channels, key components of rat ventricular transient outward K~+ current, by PKC. Am J physiol 1997; 273: H1775-h1786.
    
    78. Shimoni Y, Severson DL. Thyroid status and potassium currents in rat ventricular myocytes. Am J Physiol 1995; 268:H576-H583.
    
    79. Yu H, Gao J, Wang H, Wymore R, Steinberg S, McKinnon D, Rosen MR, Cohen IS.Effects of the rennin-angiotensin system on the current I_(to) in epicardial and endocardial ventricular myocytes from the canine heart. Circ Res 2000;86:1062-1068.
    
    80. Nishiyama A, Kambe F, Kamiya K, Seo H, Toyama J. Effects of thyroid on expression of voltage-gated potassium channels in rat left ventricle. Cardiovasc Res 1998;40:343-351.
    
    81. Shimoni Y, Fiset C, Clark RB, Dixon JE, McKinnon D,Giles WR. Thyroid hormone regulates postnatal expression of transient K~+ channel isoforms in rat ventricle. J Physiol 1997; 500:65-73.
    
    82. Nishiyama A, Kambe F, Kamiya K, Yamaguchi S, Murata Y, Seo H, Toyama J.Effects of thyroid and glucocorticoid hormones on K_(v1.5) potassium channel gene expression in the rat left ventricle. Biochem Biophys Res Commun 1997; 237:521-526.
    
    83. Mchowat J, Yamada KA, Wu J, Yan GX, Corr PB. Recent insights pertaining to sarcolemmal phospholipid alterations underlying arrhythmogenesis in the ischemic heart. J Cardiovasc Electrophysiol 1993; 4:288-310.
    
    84. Mchowat J, Creer MH, Hicks KK, Jones JH, Mccrory R, Kennedy RH. Induction of Ca-independent PLA(2) and conservation of plasmalogen polyunsaturated fatty acids in diabetic heart. Am J Physiol Endocrinol Metab 2000; 279:E25-E32.
    
    85. Bogdanov KY, Spurgeon HA, Vinogradova TM. Modulation of the transient outward current in adult rat ventricular myocytes by polyunsaturated fatty acids. Am J Physiol 1998;274:H571-H579.
    
    86. Xu Z, Rozanski GJ. K~+ current inhibition by amphiphilic fatty acid metabolites in rat ventricular myocytes. Am J Physiol 1998;275:C1660-C1667.
    
    87. Singleton CB, Valenzuela SM, Walkeb BD, Tie H, Wyse KR, Bursill JA, Qiu MR,Brett SN, Campbell. Blockade by N-3 polyunsaturated fatty acid of the K_(v4.3) current stably expressed in Chinses hamster ovary cells. Br J Pharmacol 1999;127:941-948.
    
    88. Wang L, Feng ZP, Duff HJ. Glucocorticoid regulation of cardiac K~+ currents and L-type Ca~(2+) current in neonatal mice. Circ Res 1999; 85: 168-173.
    
    89. Claydon TW, Boyett MR, Sivaprasadarao A, Ishii K, Owen JM, Obeirne HA, Leach R,Komukai K, Orchard Ch. Inhibition of the K~+ channel K_(v1.4) by acidosis: protonation of an extracellular histidine slows the recovery from N-type inactivation. J Physiol 2000; 526: Pt2: 253-264.
    
    90. Greenstein JL, Wu R, Po S, Tomaselli GF, Winslow RL. Role of the calcium-independent transient outward current I_(tol) in shaping action potential morphology and duration. Circ Res 2000; 87: 1026-1033.
    
    91. Courtemanche M, Ramirez RJ, Nattle S. Ionic targets for drug therapy and atrial fibrillation remodeling: insights from a mathematical model. Cardiovasc Res 1999; 42:477-489.
    
    92. Barry DM, Trimmer JS, Merlie JP, Nerbonne JM. Differential expression of voltage-gated K~+ channel subunits in adult rat heart. Relation to functional K~+ channels? Circ Res 1995; 77: 461-473.
    
    93. Wickenden AD, Lee P, Sah R, Huang Q, Fishman GI, Backx PH. Targeted expression of a dominant-negative K_(V4.2) K~+ channel subunit in the mouse heart. Circ Res 1999;85:1067-1076.
    
    94. Sah R, Ramirez RJ, Kaprielian R, Backx PH. Alterations in action potential profile enhance excitation-contraction coupling in rat cardiac myocytes. J Physiol 2001; In Press(?)
    
    95. Bouchard RA, Clark RB, Giles WR. Effects of action potential duration on excitation-contraction coupling in rat ventricular myocytes. Action potential voltage-clamp measurements. Circ Res 1995; 76: 790-801.
    
    96. Kaprielian R, Wickenden AD, Kassiri Z, Parker TG, Liu PP, Backx PH. Relationship between K~+ channel down-regulation and [Ca~(2+)]_I in rat ventricular myocytes following myocardial infarction. J Physiol (Lond) 1999; 517: 229-245.
    
    97. Clark RB, Bouchard RA, Giles WR. Action potential duration modulates calcium influx. Na~+-Ca~(2+) exchange , and intracellular calcium release in rat ventricular myocytes. Am N Y Acad Sci 1996; 779: 417-429.
    
    98. Tsuji Y, Opthof T, Kamiya K, Liu W, Lu Z, Kodama I. Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res 2000; 48:300-309.
    
    99. Lttwin SE, Bridge JH. Enhanced Na~+-Ca~(2+) exchange in the infracted heart. Implications for excitation-contraction coupling. Circ Res 1997; 81:1083-1093.
    
    100. Orourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure.I:experimental studies. Circ Res 1999; 84:562-570.
    
    101.Winslow RL, Rice J, Jafri S, Marban E, Orourke B. Mechansiams of altered excitation-contraction coupling in canine tachycardia-induced heart failure, (?): model studies. Circ Res 1999; 84: 571-586.
    
    102. Ramirez RJ, Nattel S, Courtemanche M. Mathematical analysis of canine atrial action potential: rate, regional factors, and electrical remodeling. Am J Physiol Heart Circ Physiol 2000; 279:H1767-H1785.
    
    103. Courtemanche M, Ramirez RJ, Nattel S. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol 1998;275:H301-H321.
    
    104. Nabauer M, Beuckelmann DJ, Uberfuhr P, Steinbeck G. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 1996;93: 168-177.
    
    105. Takimoto K, Li D, Hershman KM, Li P, Jackson EK, Levitan ES. Decreased expression of K_(V4.2) and novel K_(V4.3) K~+ channel subunit mRNA in ventricles of renovascular hypertensive rats. Circ Res 1997; 81: 533-539.
    
    106. Bailly P, Benitah JP, Mouchoniere M, Vassort G, Lorente P. Regional alteration of the transient outward current in human left ventricular septum during compensated hypertrophy. Circulation 1997; 96:1266-1274.
    
    107.Nabauer M, Beuckelmann DJ, Erdmann E. Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circ Res 1993; 73: 386-394.
    
    108. Kaab S, Dixon J, Duc J, Ashen D, NabauerM, Steinbeck G, McKinnon D. Molecular basis of transient outward potassium current dowenregulation in human heart failure:a decrease in K_(v4.3) mRNA correlates with a reduction in current density. Circulation 1998; 98: 1383-1393.
    
    109. Roger Kaprielian, Rajan Sah, Tin Nguyen, Alan D.Wickenden, Peter H. Backx.Myocardial infarction in rat eliminates regional heterogeneity of AP profiles, I_(to) K~+ currents, and [Ca~(2+)]_I transients. Am J Physiol Heart Circ Physiol 283; H1157-H1168.
    
    110. Yao JA, Jiang M, Fan JS, Zhou YY, Tseng GN. Heterogeneous changes in K currents in rat ventricles three days after myocardial infarction. Cardiovasc Res 1999; 44:132-145.
    
    111. Aimond F, Alvarez JL, Rauzier JM, Lorente P, Vassort G. Ionic basis of ventricular arrhythmias in remodeled rat heart during long-term myocardial infarction.Cardiovasc Res 1999; 42: 402-415.
    
    112. Cerbal E, Crucitti A, Sartiani L, De Paoli P, Pino R, Rodriguez ML, Gensini G,Mugelli A. Longterm treatment of spontaneously hypertensive rats with losartan and electrophysiological remodeling of cardiac myocytes. Cardiovasc Res 2000; 45:388-396.
    
    113. Bryant SM, Shipsey SJ, Hart G, Normal regional distribution of membrane current density in rat left ventricle is altered in catecholamine-induced hypertrophy.Cardiovasc Res 1999; 42: 391-401.
    
    114. Pinto JM, Boyden PA. Electrical remodeling in ischemia and infarction. Cardiovasc Res 1999; 42: 284-297.
    
    115. Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattle S. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 1997; 81: 512-525.
    
    116. Barlucchi L, Leri A, Dostal DE, Fiordaliso F, Tada H, Hintze TH, Kajstura J,Nadal-Ginard B, Anversa P. Canineventricular myocytes possess a rennin-angiotensin systerm that is upregulated with heart failure. Circ Res 2001; 88: 298-304.
    
    117. Flather MD, Yusuf S, Kober L, Pfeffer M, Hall A, Murray G, Torp-Pedersen C, Ball S,Pogue J, Moye L, Braunwald E. Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. ACE-Inhibitor Myocardial Infarction Collaborative Group. Lancet 2000; 355:1575-1581.
    
    118. Pitt B, Poole-Wilson PA, Segal R, Martinez FA, Dickstein K, Camm AJ, Konstam MA, Riegger G, Klinger GH, Neaton J,Sharma D, Thiyagarajan B. Effects of losartan compared with catopril on mortality in patients with symptomatic heart failure:randomized trail-the Losartan Heart Failure Survival Study ELITE (?) Lancet 2000;355:1582-1587.
    
    119. Jalife J, Anumonwo JM, Berenfeld O. Toward an understanding of the molecular mechanisms of ventricular fibrillation. J Interv Card Electrophysiol. 2003 Oct; 9(2):119-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700