生命体征信号的穿戴式采集传输与智能处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
穿戴式医学检测技术是远程医疗及面向社区家庭的医疗服务系统中的重要基础,涉及生命体征信息获取、无线数据传输、医学信号处理、微机电系统MEMS及服务软件设计等多项关键技术。本文在深入分析无约束医疗监护的特点和技术要求的基础上,重点对生命体征信号检测模块的微型化、低功耗设计,基于ZigBee的无线信号传输网构建以及消除信号运动伪迹干扰的智能信号处理方法等关键技术进行了研究。
     基于硬件软件化的设计思想,将传统电路的高阶滤波、脉冲激励等部分由单片机甚至上位机来完成,体积缩小到传统模块的十分之一,解决了生命体征采集模块的微型化问题;分离检测模块与无线模块,实现了无线模块的互换性和通用性;设计电源管理电路解决无线传输与检测模块中大能耗电路的竞争问题,同时减少数字部分对模拟部分电路的干扰,提高信号质量。
     采用ZigBee技术构建躯域传感网,实现生理信号高可靠、低功耗的无线传输;设计缓冲技术以及数据请求/应答的数据传输模式,解决低速率下的高吞吐量数据传输的实时性和时间同步;测试网络在蓝牙环境及GSM环境下的抗干扰性,提出在医院病区病房中安全使用躯域传感网群体的措施。
     以统一过程的迭代开发理论为指导,以设计原则和设计模式为基础,用统一建模语言描述了整个无线监护基站软件的分析设计过程。包括对无线监护业务的领域建模,对各种用例的需求分析,进而设计出具有可靠性、可维护性、可复用性的软件系统。实现了信息管理、数据采集、信号处理、异常报警、数据管理、信号回放、网络通信等功能。
     最后,针对移动环境下生理信号的运动伪迹问题,提出同步采集心电和电极皮肤接触阻抗信号作自适应滤波消除运动伪迹噪声的方法。实验效果显示,采用120Hz的25μA激励电流,经过三阶RLS算法对心电信号进行实时修正,能够有效消除90%的基线漂移。另外,在分析各种临床心电波形的基础上,提出了严重心率异常报警算法,对MIT/BIH数据库中严重异常心电片断的检出率达到99.991%,能够有效预警临床各类短暂性且具有生命危险的心律失常。
     研究成果表明,穿戴式生命体征无线监护技术在实验环境下切实可行,有效提高了诊疗水平和病人的生活质量,将具有广泛的应用前景。
Wearable vital signs monitoring is a key technology which can improve the efficiency of diagnosis and treatment for the convalescent and solve the headache of expensive medicine. Its core technology relates to the collection of vital signs, the wireless transmission of signals, the design of system software, and the intelligent processing of bio-signals. The aim of our project is to provide the patients with unconstrained and comfortable monitoring services and to provide the medical staffs with the efficient clinical information of patients at all times and places. The main content of this paper is to develop a wearable vital signs monitoring system and to study the key posers and their solutions in the development process. Analyzed on the principal of wearable vital signs monitoring technology and the feasibility of system design scheme, the paper presents the targets, the solutions and architecture of the system.
     Based on the Soft Hardware, many functions in traditional circuit, such as high order filter and pulse driver, are carried out by the Micro Controller Unit, or even the computer. Thus, the size of miniature module is reduced to one tenth of the traditional module. The separation between detection module and wireless transmission module improves the interchangeability and interoperability of the wireless module. Furthermore, the power management circuit copes with the power competition between the wireless module and the large energy consumption circuit in detection module.
     The body sensor networks, constructed via ZigBee, are responsible for the high reliability and low power combustion wireless transmission of physiological signals. Buffer technology and Data Request / Acknowledge mechanism are designed to realize the real-time high throughput data transmission and the time synchronization in low rate. The paper also shows the result of immunity of networks coexisting with Bluetooth or GSM and guides the safety usage of body sensor networks.
     Guided by the Iterative Development Theory in Unified Process and the design principles and design patterns, the paper describes the software design process of the entire wireless monitoring base station using the unified modeling language. Based on the business modeling of wireless monitoring and the requirement analysis of use case, a reliabe, maintainable, reusable software system is designed.
     At last, the paper focuses on the intelligent processing of bio-signals in ambulatory environment. On the one hand, the motion artifact of vital signs is cancelled by the methods for removing it from ECG signals via synchronously acquiring the elector/skin impedance as the reference signal of adaptive filter. The results demonstrated that 3rd order RLS adaptive filter can remove 90% of the baseline shift effectively with an exciting current of 120Hz and 25μA. On the other hand, to early warn the temporary life-threatening arrhythmia, an algorithm for alarming the seriously abnormal heart rate is presented. The detection rate of severely abnormal ECG segments is 99.991%.
     Above of all, the implementation of the system indicates that it is practicable and improves the diagnosis and treatment and patient quality of life with lower cost, which will have wide application.
引文
[1]中华人民共和国卫生部.第四次国家卫生服务调查主要结果[EB/OL]. http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohbgt/s3582/200902/39201.htm, 2009.2
    [2]中华人民共和国卫生部. 2009年我国卫生事业发展情况简报[EB/OL]. http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohwsbwstjxxzx/s8208/201001/45652.htm, 2010.2
    [3] C. Gopalsamy, S. Park, R. Rajamanickam. The wearable motherboard: The first generation of adaptive and responsive textile structures (ARTS) for medical applications [J]. Virtual Reality, 1999,4: 3
    [4] Joonyoung Jung, Jeonwoo Lee, Youngsung Kim. Wireless Network of Collaborative Physiological Signal Devices in a U-Healthcare System [J]. Advances in Communication and Networking, 2009, 27: 76–88
    [5] Tae Seon Kim, Chul Hong Min. ECG Based Patient Recognition Model for Smart Healthcare Systems [J]. Systems Modeling and Simulation: Theory and Applications, 2005, 3398: 159-166
    [6] Woosik Shin, Yong Dae Cha, Gilwon Yoon. ECG/PPG Integer Signal Processing for a Ubiquitous Health Monitoring System [J]. Journal of Medical Systems, 2009
    [7] Do-Un Jeong and Hsein-Ping Kew. Real-Time Monitoring of Ubiquitous Wearable ECG Sensor Node for Healthcare Application [J]. Computational Science and Its Applications, 2009, 5592: 868–884
    [8] Asada, H.H., Shaltis, P., Reisner, A. Mobile Monitoring with Wearable Photoplethysmographic Biosensors [J]. Engineering in Medicine and Biology Magazine, 2003, 22(3): 28 - 40
    [9] Wan-Young Chung, Young-Dong Lee, Sang-Joong Jung,. A Wireless Sensor Network Compatible Wearable U-healthcare Monitoring System Using Integrated ECG, Accelerometer and SpO2[C]. 30th Annual International Conference of the IEEE, 2008: 1529 - 1532
    [10] L. Wang, B. P. L. Lo, and G. Z. Yang. Multichannel reflective PPG ear-pieces sensor with passive motion cancellation [J]. IEEE Trans. Biomed. Circuits Syst., 2007, 1(4): 235-241
    [11] A. Y. Kadhim, M. A. M. Ali, E. Zahedi. Essential Design Considerations for Wireless Multi-Channel Photoplethysmography System [C]. 4th European Conference of the International Federation for Medical and Biological Engineering, 2008, 22: 1066–1069
    [12] Dan Wu, Lei Wang, Yuan-Ting Zhang. A Wearable Respiration Monitoring System Based on Digital Respiratory Inductive Plethysmography [C]. EMBC 2009. Annual International Conference of the IEEE, 2009: 4844 - 4847
    [13] S. Tanaka, Y. Matsumoto, K. Wakimoto. Unconstrained and Non-Invasive Respiration Monitoring for Obstructive Sleep Apnea Prevention [J]. Medical and Biological Engineering and Computing, 2002, 40(2): 246-253
    [14] Chiarugi, F., Karatzanis, I., Zacharioudakis, G.. Measurement of Heart Rate and Respiratory Rate Using a Textile-Based Wearable Device in Heart Failure Patients [J]. Computers in Cardiology, 2008: 901 - 904
    [15] Carmen C. Y. Poon, Yee Man Wong, Yuan-Ting Zhang. M-Health: The Development of Cuff-less andWearable Blood Pressure Meters for Use in Body Sensor Networks [J]. Life Science Systems and Applications Workshop, 2006: 1 - 2
    [16] Yan, I.R.F., Poon, C.C.Y., Zhang, Y.T.. A Protocol Design for Evaluation of Wearable Cuff-less Blood Pressure Measuring Devices [C]. EMBC 2009. Annual International Conference of the IEEE, 2009: 7045 - 7047
    [17] Ali Hasnain, Mudaser Awan, Muddassar Farooq. A Ubiquitous Real-Time Motion Artifact Rejection technique for Remote NIBP Monitoring of Hypertensive Patients [C]. World Congress on Medical Physics and Biomedical Engineering, 2009, 25(7): 913–916
    [18] Julien Pansiot, Danail Stoyanov, Douglas McIlwraith. Ambient and Wearable Sensor Fusion for Activity Recognition in Healthcare Monitoring Systems[C]. 4th International Workshop on Wearable and Implantable Body Sensor Networks, 2007, 13(5): 208-212
    [19] Tareq Hadidi, Norbert Noury. A Predictive Analysis of the Night-Day Activities Level of Older Patient in a Health Smart Home [J]. Ambient Assistive Health and Wellness Management in the Heart of the City, 2009, 5597: 290–293
    [20] Dong-Oh Kang, Kyuchang Kang, Hyung-Jik Lee. A Context Aware Framework for u-Healthcare in a Wearable System [C]. World Congress on Medical Physics and Biomedical Engineering. 2006, 14(28): 4026-4030
    [21] Myeongseon Choe, SiMyung Choi, KwanYoo Kim. A Context-Aware Intelligent System for Ubiquitous Computing Healthcare [C]. World Congress on Medical Physics and Biomedical Engineering, 2006, 14(28): 4004-4008
    [22] Jesper Kjeldskov, Mikael B. Skov. Exploring context-awareness for ubiquitous computing in the healthcare domain [J]. Personal and Ubiquitous Computing, 2007, 11(7):549–562
    [23] Charalampos Doukas, Ilias Maglogiannis. Intelligent Pervasive Healthcare Systems [J]. Advanced Computational Intelligence Paradigms in Healthcare, 2008, 107: 95–115
    [24] Upkar Varshney. Pervasive Healthcare and Wireless Health Monitoring [J]. Mobile Networks and Applications, 2007, 12(2-3) : 113–127
    [25]王保华.生物医学测量与仪器[M].上海:复旦大学出版社, 2009: 39-51
    [26]张攀登.基于脉搏波分析的亚健康测评方法及装置[D].华南理工大学硕士学位论文.广州:华南理工大学, 2008
    [27]赵莉.反射式血氧饱和度检测系统的研究[D].北京工业大学硕士学位论文.北京:北京工业大学, 2003
    [28] H. Harry Asada, Philip Shaltis. Mobile monitoring with wearable photoplethysmographic biosensors [J]. IEEE. Engineering in Medicine and Biology Magazine. 2003
    [29]郭兴明,张科,吴宝明.多生命参数监护仪用呼吸检测电路[J].电子技术应用. 2000(2): 35-36
    [30]吴玉亮.基于GSM移动远程监护系统的心电信号的采集与处理[D].重庆大学硕士学位论文.重庆:重庆大学, 2005
    [31]于巍,古庆恩,黄世安.脉搏血氧饱和度监测技术的研究进展[J].中国医学装备, 2008,5(4):56-58
    [32]曹细武,邓亲恺,罗丽辉.阻抗式呼吸监护系统的研制[J].中国医学物理学杂志, 2000,17(4):213-214
    [33]张南. "感知中国"高峰论坛召开中国移动:物联网是"万亿级"产业[J].通信世界A, 2009 (36)
    [34]滕晓菲,张元亭.移动医疗:穿戴式医疗仪器的发展趋势[J].中国医疗器械杂志, 2006, 30(5): 330-340
    [35] Wang, B., Wang, L., Lin, S.J.. A Body Sensor Networks Development Platform for Pervasive Healthcare[C]. Bioinformatics and Biomedical Engineering, 2009(11-13):1 - 4
    [36] Ottenbacher J., Romer S., Kunze C., et al. Integration of a Bluetooth Based ECG System into Clothing [C]. Proceedings of the Eighth International Symposium on Wearable Computers (ISWC’04), 2004:186-187
    [37]瞿雷,刘盛德,胡咸斌. ZigBee技术及应用[M].北京.北京航空航天大学出版社. 2007: 7-8
    [38]蒋挺,赵成林.紫蜂技术及其应用[M].北京.北京邮电大学出版社, 2006: 2-3
    [39] Ondrej S., Zdenek B., Petr F., et al. ZigBee Technology and Device Design[C]. Proceedings of the International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies, 2006: 1-10
    [40] Zigbee Alliance. ZigBee and Wireless Radio Frequency Coexistence [EB/OL]. http://www.zigbee.org, 2009.06
    [41]李艳强,吴超.手机电磁辐射安全评价[J].工业安全与环保, 2007(4):50-52
    [42] Sikora A., Groza V.F. Coexistence of IEEE 802.15.4 with other Systems in the 2.4 GHz-ISM-Band[C]. Instrumentation and Measurement Technology Conference, 2005: 1786-1791
    [43] Shuaib K., Boulmalf M., Sallabi F., et al. Co-existence of Zigbee and WLAN, A Performance Study[C]. Wireless Telecommunications Symposium, 2006:1-6
    [44] Craig Larman. UML和模式应用[M].北京:机械工业出版社, 2008: 18-19
    [45]何勇.医院信息系统设计与开发[D].重庆大学硕士学位论文.重庆:重庆大学, 2007: 16-17
    [46]李可.特药监控系统的设计与实现[D].山东大学硕士学位论文.山东:山东大学, 2007: 11
    [47]高志国.出入境检验检疫报检管理系统的设计与实现[D].山东大学硕士学位论文.山东:山东大学, 2007: 34-35
    [48] Robert C. Martin.敏捷软件开发:原则、模式与实践[M].北京:清华大学出版社, 2003: 79-80
    [49] Erich Gamma.设计模式:可复用面向对象软件的基础[M].北京:机械工业出版社, 2005: 16-18
    [50]汪家旺,吴玲燕,杨涛.几种去心电基线漂移算法的实现和比较[J].中国医疗器械信息, 2008, 14(6): 30-33
    [51]范能胜,陆尧胜.基于平滑滤波器的心电信号基线漂移的矫正[J].医疗卫生装备, 2006, 27(1): 31-32
    [52]田学隆,王天星,朱冰莲.基于小波变换和似然无偏估计的运动心电信号伪差消除法.[J].生物医学工程学杂志, 2005, 22(1): 137-142
    [53] LEE SM, KIM KK, SUK PK. Wavelet approach to artifact noise removal from Capacitive coupled Electrocardiograph [C]. Engineering in Medicine and Biology Society, USA, 2008: 2944 - 2947
    [54] LUO S, TOMPKINS WJ. Experimental study: brachial motion artifact reduction in the ECG [J]. Computers in Cardiology, 1995; 9: 33-36
    [55] HAMILTON PS, CURLEY MG. Adaptive removal of motion artifact ECG recordings [C]. Engineering in Medicine and Biology Society, USA, 1997; 1: 297 - 299
    [56] TONG DA, BARTELS KA, HONEYAGER KS. Adaptive reduction of motion artifact in the electrocardiogram [C]. Engineering in Medicine and Biology Society, USA, 2002; 2: 1403 - 1404
    [57] LIU Y, PECHT MG. Reduction of skin stretch induced motion artifacts in electrocardiogram monitoring using adaptive filtering [C]. Engineering in Medicine and Biology Society, USA, 2006; 6045 - 6048
    [58] PAULO SRD. Adaptive filtering: Algorithms and practical implementation [M]. Second editon. USA: Kluwer Academic Pubishers, 2004;1-2
    [59]陆恩祥,项明慧.心电图临床实习图谱[M].辽宁:辽宁科学技术出版社, 2005: 10-30
    [60] Stein, E..心律失常快速分析[M].天津:天津科技翻译出版公司, 2004: 15
    [61]张开滋.实用心电监测[M].北京:科技文献出版社, 2007: 46-52
    [62] American National Standard for Ambulatory Electrocardiographs, publication ANSI = AAMI EC3821994[S] , Association for t he Advancement of Medical Inst rumentation, 1994.
    [63]陈文菊,潘敏,赵治栋.基于小波分析和Hilbert变换的R波检测算法[J].传感技术学报, 2006, 19(1): 248-252
    [64]胡鹏,张永红,张菊鹏.基于小波变换的心律失常判别算法[J].北京生物医学工程, 2003, 22(1): 23-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700