用户名: 密码: 验证码:
基于体征信号分析的麻醉深度评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻醉是临床手术中不可或缺的关键环节,如何保证病人在手术过程中安全和无痛苦是麻醉工作的核心问题。在复杂多变的手术过程中,为了确保麻醉安全,麻醉医生必须长时间注意力高度集中地全面性地观察记录病患各种生理特征,并根据自身经验进行分析和判别病患术中的麻醉深度。然而,由医生的主观判断来评估麻醉深度,容易出现因为所获信息与个人经验的不足、身体的疲累与环境的干扰、潜在的因素和病患个体性差异而造成的误判。随着生物医学工程与现代信息处理技术的深入交互和发展,针对各种体征信号的测量和分析设备在很大程度上减轻了麻醉医生的工作负担。
     本文针对病患的各种生理体征信号在手术过程中麻醉和清醒状态下的差异性,将信号处理方法和传统医学方法相结合,提出了全身麻醉手术过程中的麻醉深度分析的新指标、新方法,并开发一个能够综合显示信息的实时术中全身麻醉深度分析系统,用于提高临床麻醉监测与评价的准确性,减少人为因素的诊断失误,促进麻醉监测与评价技术临床应用的发展,保障病患在手术过程中的麻醉安全和术后的快速良好恢复。本文的主要研究工作如下:
     (1)针对术中心电信号在手术过程中受到基线漂移、运动伪迹和工频噪声的干扰问题,通过对现有形态学滤波器数据进行改进以及以均方根误差作为选取形态学中结构元素长度的参数,提出了一种基于形态学的约束适应QRS波群滤波算法。同时提出了一种基于EMD和形态学的心电信号滤波算法。将EMD所得固有模式函数经形态学滤波并进行最小均方根误差对应长度的特征提取,该算法能有效地去除心电信号中基线漂移、运动伪迹和减弱工频干扰。
     (2)针对术中脑电信号在手术准备阶段受到眼动的干扰问题,提出了基于MEMD和样本熵的眼电干扰滤波算法。算法通过分析对低频眼电信号高度敏感的样本熵值,得出包含眼电干扰的脑电信号样本熵值均小于0.5。在此基础上,比较分析EMD、EEMD、CEEMD和MEMD在分解信号固有模式函数上的性能。
     (3)针对心率变异性在特定条件下麻醉深度诊断中失效的问题,提出了基于HHT的血流变异性麻醉深度评价指标。血流变异性是在检测手段和分析处理方面都优于心率变异性的一项生理变化参数。当心率变异性在受到特定麻醉药物作用以及手术电刀的影响下,血流变异性可作为术中病患麻醉深度和意识程度的评价指标。基于HHT的边际谱分析,通过比较血流变异性和心率变异性的副交感神经和交感神经频谱分布变化情况,经临床数据证明,血流变异性是一个能够在心率变异性受到干扰时替代其作为诊断病人的麻醉状态的生理指标。
     (4)针对脑电信号的非线性特点,提出了基于脑电信号分析的样本熵和多尺度熵作为麻醉深度评价指标。近似熵和样本熵均能通过实时分析脑电信号的复杂度来判断病患的麻醉深度和意识程度,但样本熵在性能和敏感度上要优于近似熵。脑电信号的多尺度熵是衡量在不同尺度上脑电信号的复杂度的指标,但是其在实时分析过程中受到信号采样频率和数据长度的限制。因此,提出了自适应多尺度重采样熵作为术中麻醉深度评价指标,它通过自适应地改变有限数量信号的采样率来有效地细化的信号分解尺度,从而建立脑电信号在不同尺度上复杂度分布与术中麻醉深度之间的关系。
     (5)针对麻醉过程中体征信号分析和麻醉深度评价指标研究,使用Borland C++Builder6.0开发了具有实时采集多个体征信号并用多种方法分析病患麻醉深度的系统平台。
Anaesthsia is an indispensable key factor in the clinical surgery, and the way how to ensure the safty of the patients during the surgeries without pain is the core issue in the anaesthetic works. In the process of complex operation, in order to protect the safty of patients, the anesthesiologist must observe the various recordings of physiological signals detected by patients undergoing surgeries. And at the same time, the jugement of depth of anaeshesia (DOA) is provided by the anesthesiologists'own experiences, which is prone to be mistake when the received information and doctor's experiences are not enough, and the influence of accumulated fatigure, environmental interferency, or ever the potential factors and the difference between patients all would make the decision mistake. However, following the deep interaction of biomedical engineering and modern information processing technology, the measurement and analysis device for kinds of physiological signals are helpful to decrease the workload of anesthesiologists.In this thesis, based on the difference of patient's physiological signs in state of anaesthesia and consciousness, the features of electrocardiogram (ECG) and electroencephalogram (EEG) are processed respectively, and some new index and methods for analyzing the DOA are presented for monitoring the state of patients during the surgeries with the combination of signal processing and traditional medicine. And a system for analyzing the DOA in general anaesthesia at real time based on multiple physiological signals and multiple methods is developed and tested in clinical surgeries. The purpose of it is to enhance the accuracy of monitoring DOA in clinical surgeries, to reduce the diagnostic errors caused by human factors, to promote the clinical application to DOA monitoring and improve the technical development, to ensure the safety of patients during surgeries and rapid and good recovery after surgeries.The main contents of this thesis are as follows:
     (1) In order to overcome the interference of baseline drift, movement artifacts and power line interference in the ECG signals, algorithms for detecting QRS waves and filtering are proposed in this thesis. Based on the improvement on the current morphological filter in the problem of missing data in computation, a conditionally adaptive QRS waves dectection algorithm based on the improved morphological filter is presented, which utilizes the root mean square error (RMSE) as the parameter to detect the length of QRS waves in the ECG signals. This algorithm can provide the QRS waves from the ECG signals disturbed by baseline drift. And then a filtering algorithm for power line noise based on the empirical mode decomposition (EMD) and improved morphological filter is able to filter the base line drift, movement artifacts and decrease the power line interference effectively, according to the minimum of RMSE in each intrinsic mode function (IMF) decomposed by EMD.
     (2) In order to resolve the disturbance of electrooculography (EOG) mixed in the EEG signals, a filtering algorithm based on multiple empirical mode decomposition (MEMD) and sample entropy is presented. With respect to the high sensitivity of sample entropy value to the EOG with low frequency, the sample entropy is less than0.5if EEG signals involve the EOG. After comparison of the performance in decompose the intrinsic mode from original signals among the EMD, ensemble EMD, complementary ensemble EMD and MEMD, the MEMD with the sample entropy as the threshold is capable of reconstructing the EEG and EOG from original EEG signals.
     (3) According to heart rate variability (HRV) is affected in some particular conditions, a new biomarker blood flow variability (BFV) is presented as an estimate for monitoring the DOA based on the analysis of Hilbert-Huang transform (HHT). BFV is a better biomarker than HRV in aspects of means of detection and analytical processing. And its distribution of power spectrum in specific frequency band can reflect the function of human cardiovascular system and autonomic system indirectly. While the HRV is disable to monitoring the DOA, which causes by the influence of anesthetic drugs and diathermy effect, the ratio of sum of sympathetic division and sum of parasympathetic division in spectrum of BFV is a index for evaluate the state of patients and level of their consciousness. Proven by the clinical experiment, BFV is a good biomarker to replace the HRV in monitoring the DOA while useless of HRV.
     (4) Based on the entropy theory in nonlinear analysis, the index for monitoring DOA based on the analysis of EEG through approximate entropy(ApEn), sample entropy(SampEn) and multiscale entropy(MSE) is proposed. According to the characteristics of ApEn, SampEn and MSE, there are differences in analysis of EEG through them. In analysis of EEG at real time during the surgeries, SampEn is more sensitive and effective than ApEn in monitoring DOA, even though both of two methods are adaptive to analyze the complexity of EEG signals. Analysis of EEG by MSE can reveal the complexity of EEG in different scales, however, the limitation of number of data and sampling rate is the main problem we meet in monitoring DOA through MSE at realtime. Thus, the multiscale entropy based on the adaptive resampling is presented to estimate the complexity of EEG in more detailed small scales through changing the sampling rate in limited data, so as to establish the relationship between distribution of complexity of EEG in different scales and the DOA.
     (5) With the analysis of physiological signals of patients during surgeries and study on the estimate of DOA, a system for analyzing the DOA in general anaesthesia at real time based on multiple physiological signals and multiple methods is developed based on the Borland C++Builder6.0and tested in clinical surgeries.
引文
[1]Prys-Roberts C. Anaesthesia:a practical or impractical construct? Br J Anaesth 1987,59: 1341-5.
    [2]Alkire MT, Hudetz AG and Tononi G. Consciousness and anesthesia. Science 2008,322: 876-80
    [3]Klonowski W. From conformons to human brains:an informal overview of nonlinear dynamics and its applications in biomedicine[J].Nonlinear Biomed Phys,2007,1(1):5.
    [4]Ghoneim MM (2001). Awareness during anesthesia. Butterworth-Heinemann, Oxford: 1-22.
    [5]Griffith H and Johnsson E. The use of curare in general anesthesia. Anesthesiology,1942,3: 418-20,.
    [6]Hutchinson R. Awareness during surgery. Br J Anaesth,1960,33:463-9
    [7]Brice DD, Hetherington RR and Utting JE. A simple study of awareness and dreaming during anaesthesia. Br J Anaesth 1970,42:535-42.
    [8]Sandin RH, Enlund G, Samuelsson P and Lennmarken C. Awareness during anaesthesia:a prospective case study. Lancet 2000,355:707-11.
    [9]Myles PS, Leslie K, McNeil J, Forbes A and Chan MT. Bispectral index monitoring to prevent awareness during anaesthesia:the B-Aware randomised controlled trial. Lancet 2004,363:1757-63
    [10]Sebel PS, Bowdle TA, Ghoneim MM, Rampil IJ, Padilla RE, Gan TJ and Domino KB. The incidence of awareness during anesthesia:a multicenter United States study. Anesth Analg, 2004,99:833-9
    [11]Ghoneim MM, Block RI, Haffarnan M and Mathews MJ. Awareness during anesthesia:risk factors, causes and sequelae:a review of reported cases in the literature. Anesth Analg,2009, 108:527-35.
    [12]Davidson AJ, Huang GH, Czarnecki C, Gibson MA, Stewart SA, Jamsen K and Stargatt R. Awareness during anesthesia in children:a prospective cohort study. Anesth Analg,2005, 100:653-61, a.
    [13]Lopez U, Habre W, Laurencon M, Haller G, Van der Linden M and Iselin-Chaves IA. Intraoperative awareness in children:the value of an interview adapted to their cognitive abilities. Anaesthesia,2007,62:778-89,.
    [14]Ghoneim MM and Block RI. Learning and consciousness during general anesthesia. Anesthesiology,1992,76:279-305.
    [15]Ghoneim MM, Block RI, Haffarnan M and Mathews MJ. Awareness during anesthesia:risk factors, causes and sequelae:a review of reported cases in the literature. Anesth Analg, 2009,108:527-35.
    [16]Gan TJ, Glass PS, Sigl J, Sebel P, Payne F, Rosow C and Embree P. Women emerge from general anesthesia with propofol/alfentanil/nitrous oxide faster than men. Anesthesiology, 1999,90:1283-7.
    [17]Ekman A, Lindholm ML, Lennmarken C and Sandin R. Reduction in the incidence of awareness using BIS monitoring. Acta Anaesthesiol Scand,2004,48:20-6.
    [18]Myles PS, Leslie K, McNeil J, Forbes A and Chan MT. Bispectral index monitoring to prevent awareness during anaesthesia:the B-Aware randomised controlled trial. Lancet, 2004,363:1757-63.
    [19]Buchanan FF, Myles PS, Leslie K, Forbes A and Cicuttini F. Gender and recovery after general anesthesia combined with neuromuscular blocking drugs. Anesth Analg,2006,102: 291-7.
    [20]Lennmarken C, Bildfors K, Enlund G, Samuelsson P and Sandin R. Victims of awareness. Acta Anaesthesiol Scand,2002,46:229-31.
    [21]Samuelsson P, Brudin L and Sandin RH. Late psychological symptoms after awareness among consecutively included surgical patients. Anesthesiology,2007,106:26-32.
    [22]Blacher RS. Awareness during surgery. Anesthesiology,1984,61:1-2.
    [23]Morimoto Y, Hagihira S, Koizumi Y, et al. The relationship between bispectral index and electroencephalographic parameters during isoflurane anesthesia. Anesth Analg,2004, 98(5):1336-1340.
    [24]Dressier O, Schneider G, Stockmanns G and Kochs EF, "Awareness and the EEG power spectrum:analysis offrequencies.", British Journal of Anaesthesia,2004,93:806-809.
    [25]S. Kumar, A. Kumar, S. Anand, and A. Krishnan, "Cumulative power spectrum of EEG-a predictor of awake and sleep state, " International Journal on Emerging Technologies,2010, 1(1):27-30
    [26]Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL:A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther 1997,61:45-58
    [27]宦飞,郑崇勋,张继武,黄远桂.基于改进的伪Wigner分布检测癫痫EEG棘波的方法[J].中国生物医学工程学报.2001,20:121-126.
    [28]韩伟等.脑电节律提取的小波变换方法[J].中国医疗器械杂志,2005,30(1):19-21.
    [29]王巧兰等.基于小波变换的脑电噪声消除方法[J].重庆大学学报(自然科学版),2005,28(7):15-17.
    [30]张志琴,张佃中.脑电Lempel-Ziv复杂度分析的预处理.中国医学物理学杂志.2009,26(5):1422-1428.
    [31]Shannon CE. A mathematical theory of communication [J]. Bell SystemTechn,1948, 27(379-423):623-656.
    [32]Inouye T, Shinosaki K, SakamotoH. Quantification of EEG irregularity by use of the entropy of the power spec[J]. Electroencephalography and clinical Neurophysiology, 1991,79:204-210.
    [33]SR Hameroff, MJ Navabi, RC Watt, et al. Smart Alarms In Anesthesia Heart Rate And ECG Monitoring And Event Recognition Using Neural Network And Algorithmic Methods, in International Conference of the IEEE Engineering in Medical and Biological Society,1990,pp.2000-2001.
    [34]M.Elkfafi, J.S. Shieh, D.A. Linkens, et al.Intelligent signal processing of evoked potentials for anaesthesia monitoring and control [J].Control Theory and Applications, IEEE Proceedings,1997,144:354-360.
    [35]E.M.Koski, T.Sukuvaara, A.Makivirta, et al. A knowledge-based alarm system for monitoring cardiac operated patients-assessment of clinical performance[J].International Journal of Clinical Monitoring and Computing,1994,11:79-83.
    [36]Glva C, Pimentel IR, Andrade A. Correlation dimension maps of EEG from epileptic absences, Brain Topogr,1999, 11(3):201.
    [37]Widman G, Lehnertz K, Urbaeh H, et al. Spatial distribution of neuronal complexity loss in lesional epilepsies. Epilepsia,2000,41(7):811.
    [38]Avidan, MS; Zhang, L; Burnside, BA; Finkel, KJ; Searleman, AC; Selvidge, JA; Saager, L; Turner, MS et al, "Anesthesia Awareness and the Bispectral Index". New England Journal of Medicine,2008,358 (11):1097-108.
    [39]Glass PS, Bloom M, Kearse L, et al. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane and alfentanil in healthy volunteers. Anesthesiology,1997,86:836.
    [40]Leslie K,Seeder DI,Smith WD,et al.Prediction of movement during propofol/nitrous oxide anesthesia[J].Anesthesiology,1996,84:53-58
    [41]Beverley A, Orser C. Awareness during anesthesia. CMAJ,2008,178:185-188.
    [42]黄焕森,郑志远,高崇荣等。脑电双频谱指数指数反馈调控丙泊酚靶控输注在频脑手术麻醉的应用研究[J].广东医学,2005,26:749-751.
    [43]H. Viertio-Oja, V. Maja and M. Sarkela, et al., "Description of the EntropyTM algorithm as applied in the Datex-Ohmeda S/5 TM Entropy Module," Acta Anaesthesiol Scand,2004,48: 154-161.
    [44]王春林,陈弘,陆康生,等.熵指数和脑电双频指数用于丙泊酚-芬太尼麻醉深度监测的比较[J].临床麻醉学杂志,2008,24(11):980-982.
    [45]贾树山,刘强,张勇,等.熵指数和脑电双频指数与麻醉镇静深度38例临床观察[J].中国现代药物应用,2008,2(22):24-26.
    [46]王苹,陈雪华.熵指数监测在胆囊手术中的应用[J].山西医药杂志,2008,37(12):1068-1070.
    [47]Dierckens M, A honen J, Jokela R, et al. Response entropy is not more sensitive than state entropy in distinguishing the use of esmolol instead of remifentanil in patients undergoing gynaecological laparoscopy[J].Acta Anaesthesiol Scand,2006,50(1):32-39.
    [48]Andradel J, Deeprose C, Barker I. Awareness and memory function during paediatric anaesthesia. British Journal of Anaesthesia,2008,100:389-96.
    [49]Gajraj IU, Do iM, Mantzaridis H, et al. Analysis of the EEG bispectrum, auditory evoked potentials and the EEG power spectrum during repeated transitions from conseiousness to uneonseiousness[J].Br J Anaesth,1998,80(1):46-52.
    [50]米卫东,刘靖,曹江北.脑电双频指数与听觉诱发电位指数监测诱导期麻醉深度的比较[J].临床麻醉学杂志,2004(09):515-517.
    [51]Blusse van Oud-Alblas HJ, Peters JW, de Leeuw TG, et al. Comparison of bispectral index and composite auditory evoked potential index for monitoring depth of hypnosis in children[J].Anesthesiology,2008,108(5):851-857.
    [52]李慧玲,佘守章,阎众.丙泊酚靶控输注复合雷米芬太尼麻醉期间右旋美托咪咙对麻醉深度的影响[J].浙江大学学报(医学版),2010(01):84-88.
    [53]S. Kreuer, W. Wilhelm. The Narcotrend monitor. Best Pract ResClinAnaesthesiol,2006, 20:111-119.
    [54]G. Schneider E. F. Kochs, B. Horn, M. Kreuzer, and M. Ningler, "Narcotrend(R) does not adequately detect the transition between awareness and unconsciousness in surgical patients," Anesthesiology,2004,101(5):1105-1111.
    [55]庄心良,曾因明,陈伯銮.现代麻醉学[M].北京:人民卫生出版社,2003:1893.
    [56]谭郁玲.临床脑电图及脑电地形图学.北京:人民卫生出版社,1999.
    [57]Nikolaus Weiskopf, Klaus Mathiak. Principles of a Brain-Computer Interface (BCI) Based on Real-Time Functional Magnetic Resnoance Imaging. IEEE Trans. Biomedical Engineering,2004,51(6):966-969.
    [58]Dave P. Burke, Simon P. Kelly, Philip de Chazal, Richard B. Relly and Ciaran Finucane. A parametric feature extraction and classification strategy for Brain-Computer Interfacing. IEEE Trans. Neural System and Rehabilitation Engineering,2005,13(1):12-17.
    [59]Pei Xiaomei, Zhang Chongxue, Xu Jin, et al. Adaboost for Improving Classification of Left and Right Hand Motor Imagery Tasks.2005 First International Conference on Neural Interface and Control Proceedings,2005:10-13
    [60]Rajeev Agarwal, Jean Gotman, Danny Flanagan, Bernard Rosenblatt. Automatic EEG analysis during long-term monitoring in the ICU. Elcetroencephalogaphy and clinical Neurophysiology,1998,10(107):44-58.
    [61]王保华.生物医学测量与仪器.上海:复旦大学出版社,2003:55-65
    [62]邹沐昌.动态心电图QRS波形检测算法的分析[J].燕山大学学报,2002;26(2):163-169..
    [63]于树君,王爱凤,刘玉爱.动态心电图干扰的原因分析及对策[J].实用心电学杂志,2007,16(1):24.
    [64]罗小刚;彭承琳;郑小林;郭兴明;基于小波变换与形态学运算的ECG综合检测算法的研究[J].医学工程学杂志,2004;21(5):788-790.
    [65]刘金江;王春光;孙即祥;小波包分析和形态学滤波相结合的心电图QRS波群定位[J].计算机工程与设计,2007;28(11):2726-2729.
    [66]崔屹.图像处理与分析—数学形态学方法及应用[M].北京:科学出版社,2000.
    [67]郑玲,叶大田.数学形态学及其在生物医学中的应用[J].国外医学:生物医学工程分册,1994,17:125-136.
    [68]Zhongguo Liu, ECG Signal Denoising Based on Morphological Flitering,5th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2011.
    [69]Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond.1998,454,903-995.
    [70]Z. H.Wu and N. E. Huang, "Ensemble empirical mode decomposition:A noise assisted data analysis method," Adv. Adaptive Data Anal,2009,1:1-41.
    [71]Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition:a novel noise enhanced data analysis method. Adv. Adaptive Data Anal. 2010,2,135-156.
    [72]Rehman N.; Mandic, D. P. Multivariate empirical mode decomposition. Proc. Roy. Soc. A. 2010,466,1291-1302.
    [73]P. Flandrin, G. Rilling. Empirical mode decomposition as a filter bank [J]. IEEE Sig. Proc. Lett.,2004.
    [74]N. E. Huang and S. S. P. Shen. Hilbert-Huang Transform and Its Applications[J].World Scientific, Singapore,2005
    [75]G. Rilling, P. Flandrin, P. Goncalves, and J. M. Lilly, "Bivariate empirical mode decomposition," IEEE Signal Process. Lett.,2007,14:936-939.
    [76]N. Rehman and D. P. Mandic, "Empirical mode decomposition for trivariate signals," IEEE Trans. Signal Process., vol.58, no.3, pp.1059-1068, Mar.2010.
    [77]Bruhn J., Lehmann L.E., et al. Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane, Anesthesiology,2001,95(1):30-35.
    [78]Zhao J.Y., Boerwinkl E.E., Xiong M.M. An entropy based statistic for genomewide association studies, American Journal Human Genet,2005,77(1):27-40.
    [79]S. M. Pincus, I. M. Gladstone, and R. A. Ehrenkranz, "A regularity statistic for medical data analysis," J. Clin. Monit.,1991,7:335-345.
    [80]S. M. Pincus, "Approximate entropy as a measure of system complexity,"in Proc. Nat. Acad. Sci. USA,1991,88:2297-2301.
    [81]S. M. Pincus, "Approximate entropy (ApEn) as complexity measure,"Chaos,1995,5(1): 110-117.
    [82]J. S. Richman and J. R. Moorman, "Physiological time-series analysis using approximate entropy and sample entropy," Am. J. Physiol, Heart Circ. Physiol.,2000,278:2039-2049.
    [83]M.Costa, A. L. Goldberger, C.-K. Peng, Multiscale entropy analysis of biological signals, Phys Rev E,71,2005,021906.
    [84]S.M. Pincus, and A. L. Goldberger, Physiological time-series analysis:what does regularity quantify?, Am J Physiol Heart Circ Physiol,266,1994,1643-1656.
    [85]Chavan,M.S, Agarwala, Ra. and Uplane, M.D. Design and implementation of digital FIR equiripple notch filter on ECG signal for removal of power line interference, WSEAS Transactions on Signal Processing,2008,4(4),221-230.
    [86]车琳琳,宋莉.基于小波包变换与自适应阈值的ECG信号滤波算法研究[J].中国医学物理学杂志.2011,28(1):2411-2417
    [87]R.Vullings, B. de Vries, and J. W. M.Bergmans. An adaptive Kalman filter for ECG signal enhancement. IEEE Trans. Biomed. Eng.,2011,28(4).
    [88]Flexer A,BauerH,Pripfl J,et al.Using ICA for removal of oc-ular artifacts in EEG recorded from blind subjects[J].Neural Networks,2005,18(7):998.
    [89]张小兵,马建仓,陈翠华等.基于最大信噪比的盲源分离算法[J].计算机仿真,2006,23(10):72-75.
    [90]刘少颖.基于数学形态学和小波分解的QRS波群检测算法[J].清华大学学报:自然科学版,2004,44(6):852-855.
    [91]郑唯琴,陈杭,叶树明.基于数学形态学的QRS波差位波峰提取方法[J].计算机工程与应用,2010,46(31):127-129.
    [92]van den Berg MP, Hassink RJ, Balje-Volkers C, et al. Role of the automatic nervous system in vagal atrial fibrillation. Br. J. Heart 2003,89:333-5.
    [93]Bilchick, K. C., and R. D. Berger. Heart rate variability. J Cardiovasc Electrophysiol,2006, 17:691-694.
    [94]Malliani, A., M. Pagani, F. Lombardi, and S. Cerutti. Cardiovascular neural regulation explored in the frequency domain. Circulation,1991,84:482-492.
    [95]Sehwartz PJ, Priori SG. Sympathetic nervous system and cardiac arrhythmias.In:Zipes DP, JalifeJ, eds. Cardiac Electrophysiology:From Cell to Bedside. PhiladelPhia. Pa:WB Saunders Co; 1990:330-343
    [96]Levy MN, Schwarz PJ,eds.Vagal Control of the heart:Experimental Basis and Clinical ImPlications.Armonk,NY;Futura:1994
    [97]Avidan MS, Zhang L, Burnside BA, Finkel KJ, Searleman AC, Selvidge J.A, Saager L, Turner MS, Rao S, Bottros M, Hantler C, Jacobsohn E and Evers AS. Anesthesia awareness and the bispectral index. N. Engl. J. Med.2008,358:1097-1108.
    [98]Russell IF. The Narcotrend 'depth of anaesthesia' monitor cannot reliably detect consciousness during general anaesthesia:an investigation using the isolated forearm technique. Br. J. Anaesth.2006,96:346-352.
    [99]Su CF, Kuo TB, Kuo JS, Lai HY and Chen HI. Sympathetic and parasympathetic activities evaluated by heart-rate variability in head injury of various severities. Clin. Neurophysiol. 2005,116:1273-1279.
    [100]Nakatsuka, I., R. Ochiai, and J. Takeda. Changes in heart rate variability in sevoflurane and nitrous oxide anesthesia:effects of respiration and depth of anesthesia. Journal of Clinical Anesthesia 2002; 14:196-200.
    [101]Task Force of the European Society of Cardiology and the North American Society Of Pacing and Electrophysiology. Heart rate variability:standards of measurement, physiological interpretation and clinical use. Circulation.1996;93(5):1043-1065
    [102]中华心血管病杂志编委会心率变异性对策专愚组.心率变异性检测临床应用的建议.中华心血管病杂志.1998;26(4):252-255.
    [103]张立潘.心率与血压的变异性:分析方法、生理意义及其应用.生理科学进展.1996,7(4):295-300.
    [104]Ng J, Sundaram S, Kadish AH and Goldberger JJ. Autonomic effects on the spectral analysis of heart rate variability after exercise. Am. J. Physiol Heart Circ. Physiol 2009; 297:H1421-8.
    [105]Ng, J., S. Sundaram, A. H. Kadish, and J. J. Goldberger. Autonomic effects on the spectral analysis of heart rate variability after exercise. Am J Physiol Heart Circ Physiol,2009,297: H1421-H1428.
    [106]Dawada, T., Y. Ikeda, M. sugimachi, T. Shishido, O. Kawaguchi, and T. Yamazaki, et al. Bidirectional augmentation of heart rate regulation by autonomic nervous system in rabbits. J Physiol Heart Circ Physiol,1996,271:H288.
    [107]Miller IF, Yeates DB and Wong LB. Heart rate variability analysis-Promise and fulfillment. Business Briefing:Global Healthcare-Advanced Medical Technologies 2004,1-4.
    [108]Colak OH. Preprocessing effects in time-frequency distributions and spectral analysis of heart rate variability. Digital Signal Processing:A Review Journal 2009,19:731-9.
    [109]程华春.心率、心率变异性与麻醉[J].国外医学麻醉学与复苏分册,2001,22(2):70.
    [110]李继昌,庄心良,李士通.脑功率谱和心率变异性联合用于麻醉深度监测的临床评价[J].临床麻醉学杂志,2000,16(4):167-168.
    [111]Iwasaki KI, Suzuki H, Saeki S, et al. Parasympathetic nervous activity after administration of atropine and neostigmine using heart rate spectral analysis. J. Anesth.1997,11:22-6.
    [112]Park WY, Bae CS, L SH, P WD. Autonomic nervous properties of atropine and glycopyrrolate on heart rate variability during anesthesia with ketamine-xylazine in dogs. J Vet Clin.,2009,26;212-219.
    [113]Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability standards of measureme, physiological interpretation and clinical use. Cireulation.1996,93(5):1043-1065.
    [114]中华心血管病杂志编委会心率变异性对策专题组.心率变异性检测临床应用的建议.中华心血管病杂志.1998,26(4):252-255.
    [115]Shoemaker JK. Blood flow dynamics in heart failure. Circulation 1999,99:3002.
    [116]Ahs F, Sollers JJ, Furmark T, et al. High-frequency heart rate variability during stress correlates with anterior cingulate regional cerebral blood flow in patients with social phobia. International Journal of Psychophysiology,2008,69:194.
    [117]Gonzales JU, Thompson BC, Thistlethewaite JR, et al. Role of retrograde flow in the shear stimulus associated with exercise blood flow Clinical physiology and functional imaging 2008,28:318-25.
    [118]Sacan O, White PF, Tufanogullari B and Klein K. Sugammadex reversal of rocuronium-induced neuromuscular blockade:a comparison with neostigmine-glycopyrrolate and edrophonium-atropine. Anesthesia and Analgesia,104, 2007:569-74.
    [119]B.R. Cahn, J. Polich,. "Meditation states and traits:EEG, ERP, and neuro-imaging studies". Psychological Bulletin,2006,132(2):180-211.
    [120]E. Kirmizialsan, Z. Bayraktaroglu, H. Gurvit, Y. Keskin, M. Emre, T. Demiralp, "Comparative analysis of event-related potentials during Go/NoGo and CPT: Decomposition of electrophysiological markers of response inhibition and sustained attention". Brain Research,2006,1104 (1):114-128.
    [121]E. P. Mortier and M. M. R. F. Struys, "Monitoring the depth of anaesthesia using bispectral analysis and closed-loop controlled administration of propofol," Best Practice Res. Clin. Anaesth.,2001,15(1):83-96.
    [122]P. F. White, J. Tang, G.F. Romero, et al., "A comparison of state and response entropy versus bispectral index values during the perioperative period," Anesthesia & Analgesia, 2006,102(1),160-167.
    [123]G. Schneider E. F. Kochs, B. Horn, M. Kreuzer, and M. Ningler, "Narcotrend(R) does not adequately detect the transition between awareness and unconsciousness in surgical patients," Anesthesiology,2004,101(5):1105-1111.
    [124]G. Barr, J. G. Jakobson, A. Owall, and R. E. Anderson, "Nitrous oxide does not alter bispectral index:Study with nitrous oxide as a sole agent and as an adjunct to i.v. anesthesia," Br. J. Anaesth.,1999,82(6):8227-8230.
    [125]J. W. Johansen and P. S. Sebel, "Development and clinical application of electroencephalographic bispectrum monitoring," Anesthesiology,2000,93(5):1336-1344.
    [126]http://www.biseducation.com/ViewAsset.aspx?aaid=96&lang=en-US
    [127]M. Koskinen, T. Seppanen, S. Tong, S. Mustola, and N. Thakor, "Monotonicity of approximate entropy during transition from awareness to unresponsiveness due to propofol anesthetic induction," IEEE Trans. Biomed. Eng.,2006,53:669-75.
    [128]J. Richman and J. Moorman, "Physiological time series analysis using approximate entropy and sample entropy." Am. J. Physiol.,2006,278:H2039-H2049.
    [129]D. Lake, J. Richman, M. Griffin, and J. Moorman, "Sample entropy analysis of neonatal heart rate variability," Am. J. Physiol.,2002,283:R789-R797.
    [130]C. Bandt and B. Pompe, "Permutation entropy:A natural complexity measure for time series," Phys. Rev. Lett.,2002,88:174102.
    [131]X. Li, S. Cui, and L. Voss, "Using permutation entropy to measure the electroencephalographic effects of sevoflurane," Anesthesiology,2008,109:448-456..
    [132]D. Jordan, G. Stockmanns, E. Kochs, S. Pilge, and G. Schneider,"Electroencephalographic order pattern analysis for the separation of consciousness and unconsciousness:an analysis of approximate entropy, permutation entropy, recurrence rate, and phase coupling of order recurrence plots," Anesthesiology,2008 109:1014-1022..
    [133]Kang, X., Jia, X., Geocadin, R. G., Thakor, N. V., and Maybhate, A., "Multiscale entropy analysis of EEG for assessment of post-cardiac arrest neurological recovery under hypothermia in rats," IEEE Transactions on Biomedical Engineering,2009,56(4): 1023-1030.
    [134]Guzman-Vargas, L., Ramirez-Rojas, A., and Angulo-Brown, F., "Multiscale entropy analysis of electroseismic time series," Natural Hazards and Earth System Sciences,2008,8: 855-860.
    [135]Q. Wei, D.W. Huang, J. W. Lu, Q. Liu, J.S. Shieh, "Intelligent real time data mining of depth of aneasthesia," The Thirteenth International Conference on Intelligent System and Control (IASTED 13th), July.11-13, Cambridge, United Kingdom,2011,35-40,.
    [136]S. Z. Fan, J. R. Yeh, B. C. Chen, J. S. Shieh, "Comparison of EEG approximate entropy and complexity measures of depth of anaesthesia during inhalational general anaesthesia," J. Med. Bio. Eng.,2010, in press.
    [137]V. V. Nikulin and T. Brismar, "Comment onmultiscale entropy analysis of complex physiologic time series," Phys. Rev. Lett.,2004,92:089803-1-089803-1,.
    [138]A. Oppenheim, R. Schafer, and J. Buck, "Discrete Time Signal Processing,2/E. Upper Saddle River, " NJ:Prentice-Hall,1989,179-184.
    [139]R. Crochiere and L.R. Rabiner, Multirate Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall,1983, ch.2-3.
    [140]M. Costa, Goldberger, A. L, Peng, C. K. Multiscale entropy analysis of biological signals. Phys. Rev. E.2005,71,021906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700