生物组织电学特性及其在电磁场曝露后的变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,环境电磁污染日益严重,引起了全球众多卫生机构的重视,如何确定环境中存在的电磁辐射对于人体健康的影响是各学者关注的主要问题之一,电磁场生物效应的发生与发展与电磁场本身的特性以及生物组织的电磁学性质密切相关,而生物组织的电磁学性质又随着电磁场频率的变化而变化,因此,很有必要对于不同电磁辐射作用下生物组织的电磁学特性进行研究,在这篇论文中,我们研究了静磁场、红外辐射、极低频电磁场照射作用前后大鼠不同组织的电学特性的变化,分析了以上不同类型电磁场对于生物体产生的一些具体的影响,对于不同类型的电磁场曝露作用的大鼠组织进行红外光谱测量,分析了不同电磁场曝露作用对于大鼠组织结构的改变进行了研究,并对于电磁辐射影响健康的机理及其防护策略进行了初步的研究。本论文的主要研究工作可概括为以下几部分:
     第一,主要对于15个大鼠活性组织在10kHz-10MHz的频率范围内的电学特性进行了测量,并利用εr10k/εr10M数值评价了不同组织的含水量的大小,同时还对于大鼠血液,睾丸和脑组织电学特性随离体后半小时内随时间的变化关系进行了测量。并对于上述诸测量结果进行了分析,研究了不同组织电学特性的差异及其原因。研究结果表明不同的生物组织具有不同的电学特性,不同组织电学特性的差异较大,一些组织的含水量较高,因此电导率偏高,含水量较高的组织的εr10k/εr10M数值也较大。大鼠电磁敏感组织电学特性随时间的变化的结果是离体后其介电常数在不同频段表现的变化趋势基本相同,即随着离体时间的增大,其相对介电常数变小,并且变化幅度随着时间增大而变小。电导率在不同频点的变化趋势也基本相同,大多数是随着离体时间的增大而减小。
     第二,在已经测得的生物活性组织电学特性的基础上,利用测量结果计算了外场在体内的耦合结果和不同频率电磁辐射热效应的发生规律,认为外场频率越低的电磁波穿透生物组织的能力就越强。
     第三,通过电磁场曝露作用对大鼠电磁敏感组织的电学特性的改变研究了电磁场与生物体的相互作用的特点,其中重点研究静磁场,工频电磁场以及红外线等场曝露作用前后大鼠电磁敏感组织的电学特性的改变情况。通过研究发现经过电磁场曝露一定时间作用以后,大鼠敏感组织的电学特性产生一定的变化,其中有部分频率点的变化较大,实验组与对照组相比具有显著差异。文章进一步结合电磁场理论分析了电磁场曝露作用导致大鼠组织电学特性变化的可能的机理。
     第四,通过红外光谱技术分析静磁场、工频电磁场和红外线辐射曝露对于大鼠敏感组织红外光谱特征的影响,研究各类电磁场曝露作用对于血液、神经、生殖系统的影响,分别测量了大鼠在接受一定时间的电磁场曝露后其血液,睾丸和脑组织的红外光谱数据,并分析了实验组和对照组在峰位、峰形以及二阶导数谱的区别及其可能产生的原因,以期能够明确电磁辐射的遗传损伤位点和效应机制,为电磁辐射危害的医学防护提供依据。
     第五,研究红外场曝露对于疾病模型大鼠的影响。主要利用红外场曝露高血糖大鼠考查红外场曝露对于高血糖大鼠血液组织电学特性以及红外光谱特性等方面的影响来探讨红外线曝露对于高血糖大鼠产生影响的机理,研究结果认为红外场曝露有助于高血糖大鼠的恢复,电学特性和红外光谱特性的测试结果表明红外场曝露有助于高血糖大鼠接近于正常大鼠。
Electromagnetic pollution becoming increasingly severe today, it attracts theattention of many health agencies. How to determine the effect of existenceelectromagnetic radiation in environment on human health is one of the major issuesstudied by many scholars. Occurrence and development of the biological effects ofelectromagnetic fields is closely related to the characteristics of the electromagneticfield itself, as well as the electromagnetic properties of biological tissues. The mainwork of this thesis is summarized as the following:
     First, electrical properties of15living tissues of rats are measured by HP4275AMulti Frequency LCR Meter between10kHz-10MHz, and the value of εr10k/εr10Misused to evaluate the water content of different tissues. Electric properties of rat blood,testis and brain are measured during in vitro within half an hour. Results of thesemeasurements are analyzed to study the reasons of the electrical properties in differenttissues. The results show that different tissues showing very different electricalproperties, high conductivity denotes high water content of tissues, so value ofεr10k/εr10Mis larger in these tissues. Electrical properties of electromagnetic sensitivetissues in rat change with time in vitro. Dielectric constant of those tissues basicallyshow same trend in different frequency bands, with the increase of time in vitro, therelative permittivity become smaller. Conductivity of those tissues in differentfrequency basically shows the same characteristic that is most of them decreased withtime in vitro.
     Second, coupling results of electromagnetic field in body are calculated byelectrical properties of the measurements. Occurrence regularity of thermal effectsunder different frequency of different frequency electromagnetic radiation is alsocalculated.
     Third, characteristics of the interaction of biological tissues and electromagneticfield are studied by changes of the electrical properties in sensitive tissues of the ratexposure to electromagnetic field. Especially the electrical properties of the sensitive tissue in rat after exposure to static magnetic fields, extremely low frequencyelectromagnetic fields and infrared field are measured. The experimental results showthat exposure of electromagnetic field for a certain time can produce certain changes inthe electrical properties of the sensitive tissue in rats. Exposure of electromagneticfield can cause significant difference between experimental group and control group atsome frequency points. Possible mechanisms of electromagnetic fields effect onbiological tissue are analyzed via electromagnetic field theory and the changes ofelectrical properties in rat tissue.
     Fourth, Fourier transform infrared spectroscopy (FTIR) analysis method is used toanalyze the biological effect of static magnetic fields, extremely low frequencyelectromagnetic fields and infrared radiation. Infrared spectral characteristics of thesensitive tissues of rat blood, brain and testis are studied to analysis effects of varioustypes of electromagnetic field exposure on blood, nerve, reproductive system. Than,the peak position, peak shape and the second derivative spectra of the biological tissuesare also studied between experimental and control groups to clear whetherelectromagnetic radiation could cause damage and the proper mechanisms.
     Fifth, effects of infrared field exposure to the disease rats are studied. Effects ofexposure of infrared field on hyperglycemic rats are examined by analyzing theirelectrical properties and infrared spectral characteristics. Testing results of electricalproperties and infrared spectral properties show that the infrared field exposurecontributes to promoting the hyperglycemic rats close to normal rats. The studyconcluded that the infrared field exposure would help the recovery of hyperglycemicrats.
引文
[1] E. Prodan, C. Prodan, J. H. Miller. The Dielectric Response of Spherical Live Cells inSuspension: An Analytic Solution. Biophysical Journal,2008,95(11):4174-4182
    [2]宋涛,霍小林,吴石增.生物电磁特性及其应用.北京:北京工业大学出版,2008
    [3]左红艳,王德文,彭瑞云,等.电磁辐射对原代培养海马神经元的损伤效应及其机制探讨,生物物理学报,2007,23(1):47-53
    [4] I. A. Solov'yov, D. E. Chandler, K. Schulten. Magnetic field effects in Arabidopsis thalianacryptochrome-1. Biophysical Journal,2007,92(8):2711-2726
    [5] A. D. Biasio, C. Cametti. Polarizability of spherical biological cells in the presence of localizedsurface charge distributions at the membrane interfaces. Physical Review E,2010,82(2):021917
    [6] S. Neven, T. H. Donald. FDTD simulation of exposure of biological material to electromagneticnanopulses. Phys. Med. Biol,2005,50(2):347-360
    [7] A. R. Hawkins, S. M. Schultz, T. E. Oliphant. Fast nonlinear image reconstruction for scanningimpedance imaging. IEEE Transactions on Biomedical Engineering,2008,55(3):970-977
    [8] T. Lange, A. F. Schilling, F. Peters, et al. Proinflammatory and osteoclastogenic effects ofbeta-tricalciumphosphate and hydroxyapatite particles on human mononuclear cells in vitro.Biomaterials,2009,30(29):5312-5318
    [9] M. Caterina, L. Micaela, A. Francesca, et al. A3-D Microdosimetric Study on Blood Cells: APermittivity Model of Cell Membrane and Stochastic Electromagnetic Analysis. IEEETransactions on Microwave Theory and Techniques,2010,58(3):691-698
    [10] A. D. Biasio, C. Cametti. Effect of shape on the dielectric properties of biological cellsuspensions. Bioelectrochemistry,2007,71(2):149-156
    [11] H. Sonja, E. Daniel, F. Jurg. Modeling effective dielectric properties of materials containingdiverse types of biological cells. Journal of Physics D: Applied Physics,2010,43(36):365405
    [12] A. M. Patrick, D. H. William, J. W. Thomas, et al. Effects of Frequency, Permittivity, andVoxel Size on Predicted Specific Absorption Rate Values in Biological Tissue duringElectromagnetic-Field Exposure. IEEE Transactions on Microwave Theory and Techniques,2000,48(11):2050-2058
    [13] J. P. Grant, R. N. Clarke, G. T. Symm, et al. In vivo dielectric properties of human skin from50MHz to2.0GHz. Physics in Medicine and Biology,1988,33(5):607-612
    [14] T. Tamura, M. Tenhunen, T. Lahtinen, et al, Modelling of the dielectric properties of normaland irradiated skin. Physics in Medicine and Biology,1994,39(6):927-936
    [15] M. R. Tofighi. FDTD Modeling of Biological Tissues Cole-Cole Dispersion for0.5-30GHzUsing Relaxation Time Distribution Samples. IEEE Transactions on Microwave Theory andTechniques,2009,57(10):2588-2596
    [16] K. Asami. Effects of membrane disruption on dielectric properties of biological cells. Journalof Physics D: Applied Physics,2006,39(21):4656-4663
    [17] A. P. Rourke, M. Lazebnik. Dielectric properties of human normal, malignant and cirrhoticliver tissue: in vivo and ex vivo measurements from0.5to20GHz using a precisionopen-ended coaxial probe. Physics in Medicine and Biology,2007,52(15):4707-4719
    [18] T. Sunaga, H. Ikehira, S. Furukawa, et al. Measurement of the electrical properties of humanskin and the variation among subjects with certain skin conditions. Physics in Medicine andBiology,2002,47(1): N11-N15
    [19] D. S. Rosa, M. Blanca. Study of the Interaction between Biological Cells of Different Shapesand Sizes and Electromagnetic Fields Produced by Natural Phenomena. Natural Hazards,2004,31(1):143-156
    [20] K. Tutku, C. Robert, T. Erdem. Electrical Properties of Rat Skin and Design of ImplantableAntennas for Medical Wireless Telemetry. IEEE Transactions on Antennas and Propagation,2009,57(9):2806-2812
    [21] D. Haemmerich, S. T. Staelin, J. Z. Tsai, et al. In vivo electrical conductivity of hepatictumours. Physiological measurement,2003,24(2):251-260
    [22] L. Mariya, P. Dijana, M. C. Leah, et al. A large-scale study of the ultrawideband microwavedielectric properties of normal, benign and malignant breast tissues obtained from cancersurgeries. Physics in Medicine and Biology,2007,52(20):6093-6115
    [23] S. Hashimoto, T. Oda, K. Yamada, et al. The measurement of small magnetic signals frommagnetic nanoparticles attached to the cell surface and surrounding living cells using ageneral-purpose SQUID magnetometer. Physics in Medicine and Biology,2009,54(8):2571-2583
    [24] L. E. Udrea, N. J. Strachan, V. Badescu, et al.An in vitro study of magnetic particle targeting insmall blood vessels. Physics in Medicine and Biology,2006,51(19):4869-4881
    [25] M. Pannetier, C. Fermon, G. L. Goff, et al. Femtotesla magnetic field measurement withmagnetoresistive sensors. Science,2004,304(5677):1648-1650
    [26] L. Zhao, D. Wu, L. F. Wu, et al. A simple and accurate method for quantification ofmagnetosomes in magnetotactic bacteria by common spectrophotometer. Journal ofBiochemical and Biophysical Methods,2007,70(3):377-383
    [27] T. Ritz, P. Thalau, J. B. Phillips. Resonance effects indicate a radical-pair mechanism for avianmagnetic compass. Nature,2004,13(429):177-180
    [28] G. Guhr, H. Schmidt, M. Weihnacht. A new tool to assess mechanical and dielectric propertiesof tissues.31st Annual International Conference of the IEEE EMBSM,2009:729-731
    [29] P. Patel, G. H. Markx. Dielectric measurement of cell death. Enzyme and MicrobialTechnology,2008,43(7):463-470
    [30] T. S. England. Dielectric Properties of the Human Body for Wavelengths in the1-10cm range.Nature,1950,166(4220):480-481
    [31] B. Bodakian, F. X. Hart. The dielectric properties of meat. IEEE Transactions on Dielectricsand Electrical Insulation,1994,1(2):181-187
    [32] E. C. Burdette, F. L. Cain, J. Seals. In vivo probe measurement technique for determiningdielectric properties at VHF through Microwave frequencies. IEEE Transactions onMicrowave Theory and Techniques,1980, MTT28(4):414-427
    [33] L. A. Geddes, L. E. Barker. The specific resistance of biological material. Medical andBiological Engineering,1967,5(3):271-293
    [34] K. R. Foster, H. P. Schwan. Dielectric properties of tissues and biological materials: A criticalreview. Critical Reviews in Biomedical Engineering,1989,17(1):25-104
    [35] S. Gabriel, R. W. Lau, C. Gabriel. The Dielectric Properties of Biological Tissues: II.Measurements in the frequency range10Hz to20GHz. Physics in Medicine and Biology,1995,41(11):2251-2269
    [36] S. Gabriel, R. W. Lau, C. Gabriel. The Dielectric Properties of Biological Tissues: III. Modelsfor the frequency dependence. Physics in Medicine and Biology,1995,41(11):2271-2293
    [37] H. P. Schwan, K. R. Foster. Microwave dielectric properties of tissue. Some comments on therotational mobility of tissue water. Biophysical Journal,1977,17(2):193-197
    [38] H. P. Schwan. Electrical characteristics of tissues: A survey. Biophysik,1963,1(3):198-208.
    [39] D.V. Land, A. M. Campbell. A quick accurate method for measuring the microwave dielectricproperties of small tissue samples. Physics in Medicine and Biology,1992,37(1):183-192
    [40] H. Pfutzner. Dielectric analysis of blood by means of a raster-electrode technique. Medical andBiological Engineering and Computing,1984,22(2):142-146
    [41] D. Xu, L. Liu, Z. Jiang. Measurement of the Dielectric Properties of Biological SubstancesUsing an Improved Open-ended Coaxial Line Resonator method. IEEE Transactions onMicrowave Theory and Techniques,1987, MTT35(12):1424-1428
    [42] R. Pethig, D. B. Kell. The passive electrical properties of biological systems. Physics inMedicine and Biology,1987,32(8):933-970
    [43] J. S. Hiuk. Terahertz electromagnetic interactions with biological matter and their applications.Journal of Applied Physics,2009,105(10):102033
    [44] G. Nevzat, E. A. Can. Sensitivity of EEG and MEG measurements to tissue conductivity.Physics in Medicine and Biology,2004,49(5):701-717
    [45] P. Gaj, D. H. William, J. M. Ziriax. Parametric dependence of SAR on permittivity values in aman model. IEEE Transactions on Biomedical Engineering,2001,48(10):1169-1177
    [46] G. Schmid, R. Uberbacher, T. Samaras. The dielectric properties of human pineal gland tissueand RF absorption due to wireless communication devices in the frequency range400–1850MHz. Physics in Medicine and Biology,2007,52(17):5457-5468
    [47] A. Christ, M. C. Gosselin, M. Christopoulou, et al. Age-dependent tissue-specific exposure ofcell phone users. Physics in Medicine and Biology,2010,55(7):1767-1783
    [48] W. T. Joines, R. L. Jirtle, M. D. Rafal, et al. Microwave power absorption differences betweennormal and malignant tissue. Radiation Oncology in Biology Physics,1980,6(6):681-687
    [49] W. T. Joines, Y. Zhang, C. Li, et al. The measured electrical properties of normal andmalignant human tissues from50to900MHz. Medical Physics,1994,21(4):547-550
    [50] X. F. Pang, B. Deng. Investigation of changes in properties of water under the action of amagnetic field. Science in China Series G,2008,51(11):1621-1632
    [51] R. B. Kumar hushan, M. Preeti, L. Fangbing, et al. Detection of Breast CancerMicrocalcifications Using a Dual-modality SPECT/NIR Fluorescent Probe. Journal of theAmerican Chemical Society,2008,130(52):17648–17649
    [52]翟玮,相玉红,代荫梅,等.基于近红外光谱和支持向量机的子宫内膜癌早期诊断研究.光谱学与光谱分析,2011,31(4):932-936
    [53] V. Kondepati, T. Oszinda, H. M. Heise, et a1. CH-overtone regions as diagnostic markers fornear-infrared spectroscopic diagnosis of primary cancers in human pancreas and colorectaltissue. Analytical and Bioanalytical Chemistry,2007,387(5):1633-1641
    [54]杨仁杰,刘蓉,徐可欣.基于中红外光谱检测牛奶中掺杂的尿素.光谱学与光谱分析,2011,31(9):2383-2385
    [55] L.Wang, F. S. C. Lee, X. R. Wang, et al. Feasibility study of quantifying and discriminatingsoybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber opticdiffuse reflectance NIR. Food Chemistry,2006,95(3):529-536
    [56]唐文婷,刘晓,房敏峰,等.傅里叶变换红外光谱法分析紫外线-B(UV-B)辐射对黄芩不同部位化学成分的影响.光谱学与光谱分析,2011,31(5):1220-1224
    [57]佘子超,胡星.用傅里叶变换红外光谱技术研究超强静磁场作用对细菌的影响.红外,2009,30(6):44-48
    [58]宋占军,周游,于水,等.应用显微傅里叶变换红外光谱技术研究大鼠视网膜HPM损伤的分子机制.光谱仪器与分析,2006,(1-3):137-141
    [59]张安英,袁平,周玉荣,等.极低频电磁场对实验大鼠睾丸组织红外谱影响的研究.生物医学工程学杂志,2009,26(2):248-251.
    [60]张安英,张文燕,袁平,等.低频电磁场对大鼠肺组织红外谱影响研究.电子科技大学学报,2006,35(3):415-418
    [61] R. A. Eleanor, C. P. Ronald. Biological Effects of RF/Microwave Radiation. IEEETransactions on Microwave Theory and Techniques,2002,50(3):953-962
    [62] H. Akimasa, K. Masami, K. Hiroki, et al. Acute Dosimetry and Estimation ofThreshold-Inducing Behavioral Signs of Thermal Stress in Rabbits at2.45-GHz MicrowaveExposure. IEEE Transactions on Biomedical Engineering,2010,57(5):1234-1237
    [63]庞小峰.生物电磁学.北京:国防工业出版社.2007:10-199
    [64] Y. Yibo, Y. Ke, W. Wei, et al. Effects of exposure to1.8GHz radiofrequency field on theexpression of Hsps and phosphorylation of MAPKs in human lens epithelial cells. CellResearch,2008,18(12):1233-1235
    [65] D. V. Giovanna, G. Alessandro, F. Mercedes, et al. Effect of radiofrequency electromagneticfield exposure on in vitro models of neurodegenerative disease. Bioelectromagnetics,2008,29(3):177-184
    [66] S. A. Curley, P. Cherukuri, K. Briggs, et al. Noninvasive radiofrequency field-inducedhyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles.Journal of Experimental Therapeutics and Oncology,2008,7(4):313-326
    [67]贺青华.中国电磁辐射现状与管理.第二届电磁辐射与健康国际研讨会暨第七次全国生物电磁学学术会议论文集,2002,1-3
    [68]林新.生物组织阻抗频谱测量技术及特性的基础研究:[博士学位论文].西安:第四军医大学,2005
    [69]许正平.中国电磁场生物学效应的体外系统研究现状.第三届电磁辐射与健康国际研讨会述学会议论文集.2003,30-35
    [70] J. Kyber, H. Hangsen, F. Piquett. Dielectric properties of biological tissue at low temperaturesdemonstrated on fatty tissue. Physics in Medicine and Biology,1992,37(8):1675-1688
    [71] H. Cook. A comparison of the dielectric behaviour of pure water and human blood atmicrowave frequencies. British Journal of Applied Physics,1952,3(8):249-255
    [72] J. M. Alison, R. J. Sheppard. Dielectric properties of human blood at microwave frequencies.Physics in Medicine and Biology,1993,38(7):971-978
    [73]王力,陈林,马青.家兔全血细胞电阻抗频率特性.浙江大学学报(医学版),2009,38(4):57-60
    [74] K. K. Kesari, J. Behari. Microwave exposure affecting reproductive system in male rats. ApplBiochem Biotechnol,2010,162(2):416-428
    [75] M. Ozguner, A. Koyu, G. Cesur, et al. Biological and morphological effects on thereproductive organ of rats after exposure to electromagnetic field. Saudi Medical Journal,2005,26(3):405-410
    [76]陈浩宇,王水明,彭瑞云,等.微波长期辐射对雄性生殖的影响研究.中华男科学杂志,2011,17(3):214-218
    [77] A. Wdowiak, L. Wdowiak, H. Wiktor. Evaluation of the effect of using mobile phones on malefertility. Annals of Agricultural and Environmental Medicine,2007,14(1):169-172
    [78] G. H lmer, B.Tronier. Lipid binding in mitochondria from testes of normal and essential fattyacid deficient rats. Lipids,1972,7(8):534-543
    [79]尧德中.脑功能探测的电学理论与方法.北京:科学出版社,2003
    [80] M. Thurai, M. C. Steel, R. J. Sheppard, et al. Dielectric properties of developing rabbit brain at37°C. Bioelectromagnetics,1985,6(3):235-242
    [81] E. C. Burdette, P. G. Friederich, R. L. Seaman, et al. In situ Permittivity of Canine Brain:Regional Variations and Postmortem Changes. IEEE Transactions on Microwave Theory andTechniques,1986, MTT34(1):38-49
    [82] J. Edrich, P. C. Hardee. Complex permittivity and penetration depth of muscle and fat tissuesbetween40and90GHz. IEEE Transactions on Microwave Theory and Techniques,1976,24(5):273-275
    [83] J. C. Astbury, M. H. Goldschmidt, S. M, et al. Evans. The dielectric properties of caninenormal and neoplastic splenic tissues. Proceedings of14th Northeast BioengineeringConference, Durham, NH, March,1988:107-108
    [84] B. R. Epstein, K. R. Foster. Anisotropy in the dielecric properties of skeletal muscle. Medicaland Biological Engineering and Computing,1983,21(1):51-55
    [85] F. L. H. Gielen. Electrical conductivity of skeletal muscle tissue: Experimental results fromdifferent muscles in vivo. Medical and Biological Engineering,1984,22(6):569-577
    [86] F. X. Hart, W. R. Dunfee. In vivo measurement of the low-frequency dielectric spectra of frogskeletal muscle. Physics in Medicine and Biology,1993,38(8):1099-1112
    [87] B. R. Epstein, K. R. Foster. Anisotropy in the dielectric properties of skeletal muscle. Medicaland Biological Engineering and Computing,1983,21(1):51-55
    [88] H. Zhuang, S. O. Nelson. Dielectric properties of uncooked chicken breast muscles from ten toone thousand eight hundred megahertz. Poultry Science,2007,86(11):2433-2440
    [89] C. Gabriel, R. J. Sheppard, E. H. Grant. Dielectric properties of ocular tissues at37degrees C.Physics in Medicine and Biology,1983,28(1):43-49
    [90] H. Pauly, H. P. Schwan. The Dielectric Properties of the Bovine Eye Lens. IEEE Transactionson Biomedical Engineering,1964, BME-11(3):103-108
    [91] T. Yamamoto, Y. Yamamoto. Non-linear electrical properties of skin in the low frequencyrange. Medical and Biological Engineering and Computing,1981,19(3):302-310
    [92] P. Zakharov, F. Dewarrat, A. Caduff, et,al. The effect of blood content on the optical anddielectric skin properties. Physiological Measurement,2011,32(1):131-149
    [93] K. Akio, H. Akimasa, W. Soichi, et al. Effects of dielectric permittivities on skin heating due tomillimeter wave exposure. BioMedical Engineering OnLine,2009,8(1):20-28
    [94] Y. Feldman, A. Puzenko. The electromagnetic response of human skin in the millimetre andsubmillimetre wave range. Physics in Medicine and Biology,2009,54(11):3341-3363
    [95] T. Sandu, D. Vrinceanu, E. Gheorghiu. Linear dielectric response of clustered living cells.Physical Review E,2010,81(2):021913
    [96]黄卡玛,李颖,刘宁等.近年来弱电磁场生物效应机理研究的进展.中国医学物理学杂志,2000,17(1):36-40
    [97] D. S. Alastair, L. Edward, J. T. Kristofer, et al. Dielectric properties of free-radicalpolymerizations: molecularly symmetrical initiators during thermal decomposition. Industrialand Engineering Chemistry Research,2010,49(4):1703-1710
    [98] S. J. Webb, A. D. Booth. Absorption of Microwave by Microorganisms. Nature,1969,222(21):1199-1200
    [99] C. Gabrie, A. Peyman, E. H. Grant. Electrical conductivity of tissue at frequencies below1MHz. Physics in Medicine and Biology,2009,54(16):4863-4878
    [100]王海彬,牛中奇.人体对电磁脉冲吸收剂量的仿真研究.电波科学学报,2006,21(2):259-264
    [101]牛中奇,侯建强,周永军,等.生物电磁剂量学及人体吸收电磁剂量的数值分析.中国生物医学工程学报,2006,25(6):580-584
    [102] X. F. Pang.The conductivity properties of protons in ice and mechanism of magnetization ofliquid water. The European Physical Journal B,2006,(49):5-10
    [103]习岗,宋清,杨初平.异常环境电磁场对生物影响的研究进展.应用与环境生物学报,2003,9(2):203-206
    [104]刘文魁,庞东.电磁辐射的污染及防护与治理.北京:科技出版社,2003:381-389
    [105]吴惠,王德文,王水明,等.不同波段电磁辐射致大鼠睾丸支持细胞的损伤效应.生物物理学报,2011,27(1):38-46
    [106] K. F. Dobiszewski, M. R. Shaker, M. P. Deek, et al. Design and implementation of a novelsuperfusion system for ex vivo characterization of neural tissue by dielectric spectroscopy(DS). Physiological Measurement,2011,32(2):195-205
    [107] A. Kraszewski, S. S. Stuchly, M. A. Stuchly, et al. In vivo and in vitro dielectric properties onanimal tissues at radio frequencies. Bioelectromagnetics,1982,3(4):421-432.
    [108] J. C. Lin. Health Effects of Cell-Phone Research Outcomes and Source of Funding. IEEEAntennas and Propagation Magazine,2007,49(2):154-155
    [109] Y. Hayashi, I. Oshige, Y. Katsumoto. Temporal variation of dielectric properties of preservedblood. Physics in Medicine and Biology,2008,53(1):295-304
    [110] T. Dai, A. Adler. In vivo blood characterization from bioimpedance spectroscopy of bloodpooling. IEEE Transactions on Instrumentation and Measurement,2009,58(11):3831-3838
    [111] D. A. Dean, T. Ramanathan, D. Machado, et al. Electrical Impedance Spectroscopy Study ofBiological Tissues. Journal of Electrostatics,2008,66(3-4):165-170
    [112] M. Astrom, J. J. Lemaire, K.Wardell. Influence of heterogeneous and anisotropic tissueconductivity on electric field distribution in deep brain stimulation. Medical and BiologicalEngineering and Computing,2011,50(1):23-32
    [113]庞小峰.生物电磁学.北京:国防工业出版社,2008:43-45
    [114] B. Tenuzzo, A. Chionna, E. Panzarini, et al. Biological effects of6mT static magnetic fields:a comparative study in different cell types. Bioelectromagnetics.2006,27(7):560-577
    [115]邓波,庞小峰.乙醇在静磁场作用下的傅里叶红外光谱研究.激光与红外,2008,38(2):141-144
    [116] K. T. Lim, C. S. Cho, Y. H. Choung. Influence of Static Magnetic Field Stimulation on Cellsfor Tissue Engineering. Tissue Engineering and Regenerative Medicine,2009,6(1):250-258
    [117] C. Emanuele, Salvatore C, Salvatore M, et al. Static and50Hz Electromagnetic FieldsEffects on Human Neuronal-Like Cells Vibration Bands in the Mid-Infrared Region. Journalof Electromagnetic Analysis and Applications,2011,3(2):69-78
    [118] H. Okada, N. Hirota, S. Matsumoto, et al. Simulation of fluid flow during protein crystalgrowth in magnetic fields. Journal of Applied Physics,2011,110(4):043903
    [119] A. H. Hashish, M. A. El-Missiry. Assessment of biological changes of continuous whole bodyexposure to static magnetic field and extremely low frequency electromagnetic fields in mice.Ecotoxicology and Environmental Safety,2008,71(3):895-902
    [120] S. Ueno. Biological Effects of Magnetic Fields. IEEE Translation Journal on Magnetics inJapan,1992,7(7):580-585
    [121] M. Sekino, H. Tatsuoka, S. Yamaguchi, et al. Effects of Strong Static Magnetic Fields onNerve Excitation. IEEE Transactions on Magnetics,2006,42(10):3584-3587
    [122] Y. Eguchi, S. Ueno, H. Tatsuoka. Nerve excitation and recovery processes under strong staticmagnetic fields. Journal of Applied Physics,2003,93(10):6742–6744
    [123] G. Duyan. Effects of Electromagnetic Field of UHV Transmission Lines Exposure on TestisTissue in Mice. IEEE Transactions on Magnetics,2009,45(10):4853-4586
    [124]曾群力.极低频电磁场.中华预防医学杂志,2004,38(l):32-33
    [125] World Health Organization. Electromagnetic fields and public health. Fact sheet N°322,2007
    [126]张彦文,张广斌,田伟等.都市环境电磁辐射对青少年心电图和外周血细胞的影响.卫生研究.2005,34(1):43-45
    [127]莫琴友,卢启冰,唐国汉,等.输变电作业设备射频辐射及其对工人心电图影响的调查.中国职业医学,2004,31(3):30-32
    [128]许正平.对确定中国电磁场暴露限值依据的探讨.中华预防医学杂志,2004,38(1):58-61
    [129] J. A. Heredia-Rojas, D. E. Caballero-Hernandez, A. O. Rodriguez-de,et al. Lack of alterationson meiotic chromosomes and morphological characteristics of male germcells in miceexposed to a60Hz and2.0mT magnetic field. Bioelectromagnetics,2004,25(1):63-68
    [130] J. S. Lee, S. S. Ahn, K. C. Jung,et al. Effects of60Hz electromagnetic field exposure ontesticular germ cell apoptosis in mice. Asian Journal of Andrology,2004,6(1):29-34.
    [131]丁国莲,黄荷凤.极低频电磁场对生殖细胞的影响及其机制研究的进展.国外医学(计划生育/生殖健康分册),2007,26(1):11-13
    [132] J. G. James, J. S. William, J. M. Mullins, et al. Delineation of electric and magnetic fieldeffects of extremely low frequency electromagnetic radiation on transcription. Biochemicaland Biophysical Research Communications,1991,174(2):742-749
    [133] M. Does, G. Scélo, C. Metayer, et al. Exposure to Electrical Contact Currents and the Risk ofChildhood Leukemia. Radiation Research,2011,175(3):390-396
    [134] K. Kajiwara. Method of determining an analyte concentration in a sample from an absorptionspectrum. Medical Progress through Technology,1992,18(3):181-189
    [135] P. C. Upadhya, Y. C. Shen, A. G. Davies, et al. Terahertz Time-Domain Spectroscopy ofGlucose and Uric Acid. Journal of Biological Physics,2003,29(2-3):117-121
    [136] D. Vallejo. Effects of Extremely Low Frequency Magnetic Fields on Blood Coagulation inMice: An Initial Study. Electromagnetic Biology and Medicine,2003,22(2-3):133-147
    [137]潘庆华,万伟庆,贾桂军,等.傅里叶变换红外光谱法检测脑肿瘤.高等学校化学学报,2010,31(9):1717-1720
    [138]洪蓉,张燕,刘赟,等.极低频电磁场对小鼠睾丸细胞DNA以及精子染色质结构的影响.中华劳动卫生职业病杂志,2005,23(6):19-22
    [139] Y. W. Kim, H. S. Kim, J. S. Lee, et al. Effects of60Hz14microT magnetic field on theapoptosis of testicular germ cell in mice. Bioelectromagnetics.2009,30(1):66-72
    [140]何建川,王建华,文宗河,等.傅里叶红外光谱法在肿瘤分析中的应用.重庆大学学报(自然科学版),2004,27(12):127-130
    [141] C. E. Minder, D. H. Pfluger. Invited Commentary: Electromagnetic Fields and Cancer inRailway Workers. American Journal of Epidemiology,2001,153(9):825-835
    [142]苏海峰,包家立,李鹏.电磁场暴露海马神经元自由基和胞内Ca2+的变化.生物化学与生物物理进展,2010,37(3):313-318
    [143] A. Jelenkovi, B. Jana, V. Pe i, et al. Effects of extremely low-frequency magnetic field inthe brain of rats. Brain Research Bulletin,2006,68(5):355-360
    [144] N. Henrietta. Radiofrequency and extremely low-frequency electromagnetic field effects onthe blood-brain barrier. Electromagnetic Biology and Medicine,2008,27(2):103-109
    [145] N. Wertheimer, E. Leeper. Electrical wiring configurations and childhood cancer. AmericanJournal of Epidemiology,1979,109(3):273-284
    [146] C. Emanuele, C. Salvatore, M. Salvatore, et al. Static and50Hz Electromagnetic FieldsEffects on Human Neuronal-Like Cells Vibration Bands in the Mid-Infrared Region. Journalof Electromagnetic Analysis and Applications,2011,3(2):69-78
    [147] S. Kim, W. Im. Static magnetic fields inhibit proliferation and disperse subcellularlocalization of gamma complex protein3in cultured C2C12myoblast cells. Cell Biochemistryand Biophysics,2010,57(1):1-8
    [148] B. Tenuzzo, A. Chionna, E. Panzarini, et al. Biological effects of6mT static magnetic fields:a comparative study in different cell types. Bioelectromagnetics,2006,27(7):560-577
    [149]郑建斌,霍小林.经颅磁刺激中大鼠真实头模型感应电场分布的研究.北京生物医学工程,2006,25(5):490-492
    [150]李刚,李丹丹,李媛媛,等.不同强度工频磁场对皮层神经元瞬时外向钾离子通道的影响.生物化学与生物物理进展,2011,38(11):1036-1042
    [151] H. Lai, N. P. Singh. Magnetic-field-induced DNA strand breaks in brain cells of the rat.Environ Health Perspect,2004,112(6):687-694
    [152]张丽,刘学成.极低频电磁场的遗传生殖效应.职业与健康,2009,25(19):2091-2092
    [153]李缉熙,牛中奇.生物电磁学概论.西安:西安电子科技大学出版社.1990:12-20
    [154]韩毓旺,马胜灿,赵树立,等.极低频弱磁场非热生物效应的机理研究进展.航天医学与医学工程,2010,23(6):465-468
    [155]訾军,常秀丽,何永华,等.工频电磁场暴露限值的确立依据及有关争议.环境与职业医学,2010,27(10):607-609
    [156]刘亚宁.电磁生物效应.北京:北京邮电大学出版社.2002:2-10
    [157] G. Vincze, A. Szasz, A. R. Liboff. New theoretical treatment of ion resonance phenomena.Bioelectromagnetics,2008,29(5):380-386
    [158] H. G. Journée-de, E. Midena, A. D. Singh. Infrared thermotherapy: from laboratory to clinic.Ophthalmology Clinics of North America,2005,18(1):99-110
    [159] J. T. Leith, R. C. Miller, E. W. Gerner, et al. Hyperthermic potentiation. Biological aspectsand applications to radiation therapy. Cancer,1977,39(2supp):766-779
    [160]王乐新.血液的红外吸收光谱分析及应用研究.光谱学与光谱分析,2002,22(6):980-982
    [161]姚红兵,叶霞,赵志敏.高胆固醇血样的红外吸收光谱研究.光谱学与光谱分析,2007,27(6):1090-1092
    [162] M. N. Rylander, Y. Feng, Y. Zhang, et al. Optimizing heat shock protein expression inducedby prostate cancer laser therapy through predictive computational models. Journal ofBiomedical Optics,2006,11(4):041113
    [163] J. G. Kiang, G. C. Tsokos. Heat shock protein70kDa: molecular biology, biochemistry, andphysiology. Pharmacology,1998,80(2):183–201
    [164] L. R. Hirsch. Nanoshellmediated near-infrared thermal therapy of tumors under magneticresonance guidance. Proceedings of the National Academy of Sciences,2003,100(23),13549
    [165] J. Hu, H. J. Choo, S. X. Ma. Infrared heat treatment reduces food intake and modifiesexpressions of TRPV3-POMC in the dorsal medulla of obesity prone rats. InternationalJournal of Hyperthermia,2011,27(7):708-716
    [166] J. P. Yung, J. D. Hazle, R. J. Stafford. Quantitative comparison of thermal dose models innormal canine brain. Medical Physics,2010,37(10),5313-5322
    [167]何晓玲,田艳云,李华.红外生物效应治疗仪治疗复发性外阴阴道假丝酵母菌病的疗效观察与护理.海军总医院学报,2011,24(2):85-87
    [168]严小芳.红外线照射联合龙血竭治疗压疮的疗效观察.激光杂志.2009,30(6):76-77
    [169]石键,张建民.红外热像测温在胶质瘤模型热疗研究中的应用.中华物理医学与康复杂志.2007,29(2):88-89
    [170]庞小峰.生命体吸收的红外光的非热生物效应的研究.物理,2001,30(9):525-534
    [171]陈罘杲,刘旗,丁国斯,等.远红外生物效应及其保健功能鞋的研究.西部皮革,2008,30(1):56-58
    [172]吴本玠.红外技术与生物医学.中国医疗器械信息,2001,7(2):33-35
    [173]鲍秉乾.红外电磁波医疗仪器领域的奇葩——MF-多源治疗仪.中国电子学会,红外与物理医学专业委员会编著.兴运多源治疗技术(基础研究与临床应用).2002年5月.104-105
    [174]彭子京. MF-多源治疗仪治疗保健机理及其临床应用.中国电子学会,红外与物理医学专业委员会编著.兴运多源治疗技术(基础研究与临床应用).2002年5月.107-108
    [175] M. D. Zhang, D. C. Marquina, D. C. Oxinos. Effect of laser acupoint treatment on bloodpressure and body weight-a pilot study. Journal of Chiropractic Medicine,2008,7(4):134-139
    [176]王海燕.弱激光对小鼠血液流变学指标的影响.激光杂志,2003,24(3):94-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700