用户名: 密码: 验证码:
PFP结构类似物的化学合成和催眠活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
E)-dimethyl 5,5'-(but-1-ene-1,3-diyl)bis(4-methylnicotinate)(PFP),是本课题组从茉莉根中分离得到的一个新吡啶类生物碱。初步的催眠活性评价显示,该化合物能够显著延长戊巴比妥钠诱导的小鼠睡眠时间。但该化合物在茉莉根中含量很低,难于大量制备。为了进一步研究PFP结构类似物的生物活性,需要研究该化合物及其结构类似物的化学合成方法,以寻找有开发前景的先导化合物。
     对PFP进行全合成主要面临两个问题,其一是如何构建PFP分子中的3,4,5-三取代吡啶环。吡啶环上发生芳香亲电取代反应时,通常需要苛刻的反应条件且产率很低,并且吡啶环上不能发生傅克反应。吡啶环虽然较容易发生亲核取代反应,但反应主要发生在吡啶环的α或γ碳上。因而吡啶环形成后很难通过取代反应在适当的位置引入取代基。为此我们考虑先将不同的取代基引入到构建吡啶环所需的前体化合物中,然后再关环得到不同取代的吡啶环。以往报道的吡啶环合成方法中,一个较好的方法是以适当取代的乙酰乙酸乙酯衍生物与氰基乙酰胺缩合得到一个3,4,5位三取代的吡啶环,然后通过官能团转换,将3,4,5位的取代基转化成PFP分子中的取代基团。PFP合成中的另一个问题是,两个吡啶环之间有一个反式碳碳双键,需要考虑到合成方法对双键几何构型和位置的选择性。由于双键邻位有一个叔碳原子,如果采用卤代烃或醇的消除反应来制备该双键,反应将主要生成热力学更稳定的产物,双键会连接在叔碳上。所以我们选择Wittig-Horner反应来制备碳碳双键。一般认为Wittig-Horner试剂的位置选择性较好,且产物主要为E-构型。
     逆合成分析显示,PFP可拆分为Wittig-Horner反应的两个前体化合物,一部分为醛,即4-甲基-5-(1-甲酰基乙基)尼古丁腈(08);另一部分为膦酸酯,即4-甲基-5-氰基吡啶-3-甲基膦酸二乙酯(16)。为合成化合物08,我们进行了以下尝试:
     (1)将2-溴乙基甲基醚与乙酰乙酸乙酯缩合,得到α-(β-甲氧基乙基)-乙酰乙酸乙酯,再与氰基乙酰胺缩合得到了2,6-二羟基-3-氰基-5-(2-甲氧基乙基)-4-甲基吡啶(01)。原计划将化合物01经过酚羟基的氯代、还原脱氯、断裂醚键再经氧化反应转化为一个醛类化合物4-甲基-5-乙醛基尼古丁腈(07),化合物07的亚胺衍生物经甲基化即可得到关键中间体08。但实验中化合物01酚羟基的氯代反应在多种反应条件下均未能实现。
     (2)将α-乙酰-γ-丁内酯与氰基乙酰胺缩合得到4-甲基-5-(2-羟乙基)-2,6-二羟基尼古丁腈(03),氯代后得到4-甲基-5-(2-氯乙基)-2,6-二氯尼古丁腈(04),选择性脱去吡啶环上的氯原子得到4-甲基-5(- 2-氯乙基)尼古丁腈(05),将05与KI在丙酮中反应希望得到碘代产物4-甲基-5-(2-碘乙基)尼古丁腈(06),然后利用DMSO将06氧化为07并进一步转化为08。但化合物05的碘代反应未生成化合物06,而是定量地转变为4-甲基-5-乙烯基尼古丁腈(09)。
     (3)尝试将化合物05和甲酸钠反应成酯,再经水解、氧化得到化合物07,但是在与甲酸钠的反应中,化合物05同样定量的转变为化合物09。
     (4)化合物09经羟汞化-还原反应得到了4-甲基-5-(1-羟乙基)尼古丁腈(10),氧化得到4-甲基-5-乙酰基尼古丁腈(11),通过Wittig反应制成烯醇醚4-甲基-5-(1-甲基-2-甲氧基乙烯基)尼古丁腈(12),12经酸水解有可能得到中间体08。但是其中的羟汞化-还原反应在多种反应条件下产率都较低,仅少数时候能达到40%,并且该反应的重复性很差。
     (5)通过臭氧化反应将化合物09转化为4-甲基-5-甲酰基尼古丁腈(13),化合物13与甲基溴化镁反应制得化合物10,氧化得到化合物11,通过Wittig反应制成烯醇醚12,12经酸水解得到关键中间体08。
     在此基础上,以化合物13为原料,经过还原、氯代、膦酸酯化三步反应,成功制得了另一个关键中间体16。
     化合物08和16通过Wittig-Horner反应进行连接时,在各种常用的反应条件下,烯烃产物的产率均低于5%。当在反应体系中加入DMPU作为共溶剂时,反应产率提高到60%。在把产物中的氰基转化为酯基时,亦曾尝试了各种可能的途径,但是无论在酸性条件下还是碱性条件下,双键都会发生移位,主要得到热力学上更稳定的三取代双键产物,只有在碱性条件下才会生成极少量的目标产物PFP。上述结果显示,PFP的稳定性较差,由于其分子中与吡啶环相连的次甲基质子较活泼,其双键极易转移到叔碳上。
     采用增加小鼠戊巴比妥钠睡眠时间的方法对所得的六个PFP类似物进行活性评价,评价结果显示:5,5′- [(Z)-1-丁烯-1,3-二取代]双(4-甲基尼古丁腈)(18)和5,5′- [(E)-2-丁烯-1,3-二取代]双(4-甲基尼古丁腈)(19)具有明显的催眠活性。
(E)-dimethyl 5,5'-(but-1-ene-1,3-diyl)bis(4-methylnicotinate)(PFP) is a newpyridine alkaloid isolated from the root of Jasminum sambac (L.) Aiton by our group.Preliminary hypnotic evaluation showed that PFP significantly prolonged thepentobarbital sodium induced sleeping time in mice. However, preparation of thiscompound is difficult because of its low content in the original plant. Thus, it isnecessary to develop a synthetic method for preparation of PFP and its structuralanalogues in order to find potential lead compound.
     There are two major issues in the total synthesis of PFP. The first is how to formthe 3,4,5-trisubstituted pyridine ring. Pyridine ring occur aromatic electrophilicsubstitution on very harsh reaction conditions and with low yields. Furthermore,pyridine ring can’t occur Friedel-Crafts reaction. Pyridine ring is prone to occurnucleophilic substitution but mainly at theα- orγ-C of pyridine ring. So it is verydifficult to add substituting groups at proper site of the pyridine moiety by substitutionreactions. For this reason, it is better to prepare precursors which carry appropriatesubstituting groups and then create the pyridine ring by cyclization reaction. Accordingto the known synthetic methods for pyridine derivatives, a feasible approach is tocondense an appropriate substituted acetylacetic ester with cyanoacetamide to afford amultiple substituted pyridine derivative, which can be converted into the3,4,5-trisubstituted pyridine moiety in PFP by modifying the functional groups. Theother issue in the synthesis of PFP is that there is a trans carbon-carbon double bond inthe molecule, and adjacent to the double bond is a tertiary carbon. The double bond cannot be established by elimination reactions since it will shift to the tertiary carbon toform the thermodynamically more stable product. Therefore, Wittig-Horner reaction ischosen for creation of the double bond, since it is known to have relatively higher position and stereo selectivities, the products have the tendency to form E-configuration.
     Retrosynthetic analysis show that the structure of PFP can be divided into twoprecursors of Wittig-Horner reaction, one is an aldehyde, that is, 4-methy-5-(1-oxopropan-2-yl)-nicotinonitrile (08), and the other is a phosphonate ester, that is,diethyl- (5-cyano-4-methylpyridin-3-yl)-methylphosphonate (16). For the synthesis of08, following steps were carried out:
     (1) Reaction of 1-bromo-2-methoxyethane with ethyl acetoacetate to give ethylα-(β-methoxyethyl)-acetoacetate, then condense with cyanoacetamide to afford2,6-dihydroxy-3-cyano-5-(2-methoxyethyl)-4-methylpyriding (01). Chlorination of thephenolic hydroxyls of 01 followed by selective dechlorination, cleavage of the etherbond and oxidation of the aliphatic hydroxyl can afford 4-methy-5-(1-oxoethyl)nicotinonitrile (07). Methylation of an imine derivative of 07 would givethe key intermediate 08. However, chlorination of the phenol groups of 01 was failedeven if most of the common chlorination conditions have been tried.
     (2)α-Acetyl-γ-butyrolactone was reacted with cyanoacetamide to give2,6-dihydroxy-5-(2-hydroxyethyl)-4-methylnicotinonitrile (03). Chlorination of 03 give2,6-dichloro-5-(2-chloroethyl)-4-methylnicotinonitrile (04). Selective removal thechlorines on the pyridine ring afforded 5-(2-chloroethyl)-4-methylnicotinonitrile (05)which is subjected to KI in acetone in order to get5-(2-iodoethyl)-4-methylnicotinonitrile (06). It was planed to oxidize 06 with DMSO toform 07, and then transform it into 08. But the iodination of 05 have not given theaimed compound 06 but 4-methyl-5-vinylnicotinonitrile (09) in nearly quantitativeyield.
     (3) Compound 05 was let to react with sodium formate to form a formate ester,which would be transformed into compound 07 by hydrolyzation and oxydation. But thereaction of 05 with sodium formate also led to compound 09 quantitatively.
     (4) Compound 09 was converted into 5-(1-hydroxyethyl)-4-methylnicotinonitrile(10) by hydroxy mercury-reduction reaction and then oxidized to 5-acetyl-4-methylnicotinonitrile (11). Compound 11 was converted to the enol ether(E)-5-(1-methoxyprop-1-en-2-yl)-4-methylnicotinonitrile (12) by wittig reaction.Compound 12 was hydrolyzed to the key intermediate 08. In this course, the yield of thehydroxyl mercury-reduction reaction was very low and hard to reduplicate even if thereaction condition was carefully controlled.
     (5) Compound 09 was converted to 5-formyl-4-methylnicotinonitrile (13) throughozonation. The reaction of 13 with methylmagnesium bromide gave 10 which was thenoxidized to 11. Compound 11 was converted to the enol ether 12 by Wittig reaction andthen hydrolyzed to the key intermediate 08 in excellent yield.
     Started from compound 13, the other key intermediate 16 was obtained viareduction, chlorination and Arbuzov rearrangement reaction.
     To connect the key intermediates 08 and 16 by Wittig-Horner reaction, most of thecommon conditions of Wittig-Horner reaction have been tested, but the yield of olefinproducts was less than 5%. The yield of olefin products increased to 60% only whenDMPU was added to the reaction system as a co-solvent. In the process of transformingthe cyano group into an ester group, the olefin bond translocated to the tertiary carbon,forming predominant products with a thermodynamicly more stable trisubstituteddouble bond, whether under acidic or alkaline conditions. Only alkaline conditionsafforded a very small amount of target product PFP. This result revealed that PFP isquite unstable. Because the proton of the methine group connecting with the pyridinering is relatively active, the double bond is very easy to shift to the tertiary carbon.
     The hypnotic activity of six PFP analogues have been evaluated by thepentobarbital sodium induced sleeping time test in mice. Compound 18 and 19 showedsignificant hypnotic activity, comparable to that of PFP.
引文
[1] Richards C. When counting sheep does not help: the growing incidence of sleep disorders.Drug Discovery Today, 2005, 10, 611-614.
    [2] Wagner J, Wagner M L, Hening W A. Beyond benzodiazepines: alternative pharmocologicagents for the treatment of insomnia[J]. Ann Pharmacother, 1998, 32(6), 680-691.
    [3] Mendelson W B, Jain B. An assessment of short-acting hypnotics[J]. Drug Saf, 1995, 13(4),257-270.
    [4] Maczaj M. Pharmacological treatment of insomnia[J]. Drugs, 1993, 45(1), 44-55.
    [5] Sanger D J. The pharmacology and mechanisms of action of new generation,non-benzodiazepine hypnotic agents. CNS Drugs, 2004, 18-suppl.1, 9-15.
    [6] Hesse L M, von Moltke L I, Greenbaltt D J. Clinically important drug interactions withzopiclone and zaleplin. CNS Drugs, 2003, 17, 513-532.
    [7] Mohler H, Rudolph U. Selective GABAA circuits for novel CNS drugs. Drug DiscoveryToday: Therapeutic Strategies, 2004, 1, 117-123.
    [8] Sieghart W, Ernst M. Heterogeneity of GABAA receptors: revived interest in the developmentof subtype-selective drugs. Curr. Med. Chem. CNS Agents, 2005, 5, 217-242.
    [9]吴国泰,任远,马骏,等.安眠灵镇静催眠作用的实验研究.甘肃中医院学报,2003,20(3):9
    [10]李贵海,邵陆.安神补心胶囊药效学实验观察.中成药,1997,19(6):31
    [11]卢方浩,杜智敏,张波,等.安神胶囊镇静催眠作用的研究.哈尔滨医科大学学报,2003,37(2):125
    [12]闵小芬,李前进,尹艳艳,等.定眩颗粒镇静催眠及镇吐作用的实验研究.安徽医科大学学报,2004,39(5):356
    [13]谢伟,赵自强,韩生银,等.眠得安煎剂的药理作用研究.宁夏医学院学报,1996,18(3):7
    [14]李玉娟,刘雯,杨静玉,等.酸枣仁汤的镇静催眠作用.沈阳药科大学学报,2002,19(2):115
    [15]明亮,李卫平,张艳,等.脑乐静口服液的药理研究.安徽医科大学学报,1997,32(5):532
    [16]俞丽霞,梁波.“心瘾散”对中枢神经系统作用的实验研究.浙江中医学院学报,2000,24(1):66
    [17]江涛,李娟好,伍爱禅,等.金锁匙口服液药效学及毒性研究.广东药学院学报,1996,12(4):245
    [18]王英杰,李玉琴.六香清窍安神散镇静催眠作用研究.山东医药工业,1997,16(1):40
    [19]徐庆荣,李娜,许勇,等.牛黄千金散对中枢的抑制作用.中国临床药理学与治疗学杂志,1994,4(2):119
    [20]张玉芝,孟庆梅,孙蓉.寝可宁胶囊的药效学研究.中药药理与临床,2001,17(3):24
    [21]曹永孝,孟新芳,肖珍,等.入梦香胶囊的镇静催眠等中枢抑制作用.西北药学杂志,1996,11(增刊):41
    [22]邓谦,郑凯,廖志航,等.神安颗粒对戊巴比妥钠催眠作用影响的实验研究.成都中医药大学学报,2001,24(1):48
    [23]李廷利,朱维莉,齐凤琴,等.四逆散催眠作用的实验研究.中医药信息,2004,21(1):封三
    [24]马伯艳,吴晓丹,张福利,等.温胆汤镇静催眠作用的实验研究.中医药信息,2004,21(6):30
    [25]钟恒亮,王荔萍,陈力.益智仁口服液镇静催眠作用实验研究.贵阳医学院学报,2002,27(2):132
    [26]蔡德生,黄玫,于榕,等.珍合灵浸膏对小鼠中枢抑制作用和抗缺氧作用.中国临床药理学与治疗学,2003,8(6):635
    [27]刘海燕,方泰惠,许惠琴.珍枣胶囊对小鼠自发活动及睡眠的影响研究.现代中西医结合杂志,2004,13(12):1568
    [28]俞晶华,赵智强,陆跃鸣,等.镇肝熄风汤与建瓴汤的镇静及催眠作用的实验研究.中医药信息,1999(4):44
    [29]徐小平,胡锐,席志芳,等.复方酸枣仁汤的药效学研究.西北药学杂志,2002,17(5): 210
    [30]胡世莲,陈礼明,刘圣,等.安神颗粒的主要药效学实验.华西药学杂志,1999,14(5~6):343
    [31]丁伯平,杨解人,陈国祥,等.益脑胶囊的药效学研究.中成药,2000,22(4):282
    [32]向绍杰,李显华,张宏,等.茸血补脑液药效学研究.中成药,1999,21(11):591
    [33]覃文才,洪庚辛,饶芳.甘麦大枣汤的中枢抑制作用.中药药理与临床,1994(5):9
    [34]赖飞,曾靖,黄贤华,等.淫羊藿水提取液中枢抑制作用的研究.赣南医学院学报,2003,23(3):268
    [35]曾靖,李坊贞,叶和杨,等.夜来香正丁醇提取物的中枢抑制作用.赣南医学院学报,2003,23(3):237
    [36]陶涛,朱全红等.缬草醇提物的镇静催眠作用研究.中药材,2004,27(3):208
    [37]赵秋贤,王清莲,黄建华,等.酸枣仁油对小鼠中枢神经系统的影响.西安医科大学学报,1995,16(4):432
    [38]刘建新,周青,连其深.石仙桃对中枢神经系统抑制作用.赣南医学院学报,2004,24(2):119
    [39]马越鸣,程能能.蛇莓对小鼠中枢神经系统抑制作用.赣南医学院学报,1996,15(4):293
    [40]曾靖,黄志华,叶和杨,等.拳参正丁醇提取物中枢抑制作用的研究.赣南医学院学报,2003,23(4):359
    [41]胡锦官,顾健,王志旺.石菖蒲及其有效成分对中枢神经系统作用的实验研究.中药药理与临床,1999,15(3):19
    [42]李红,兰凤英,闰大勇,等.茉莉根醇浸膏戒毒作用的前期研究.白求恩医科大学学报,2001,27(3):249
    [43]王厄舟,潘胜利,张淑芳.卡瓦胡椒化学成分及药理活性研究进展.中草药,2001,32(9):855
    [44]霍长虹,郝存书,李作平,等.合欢皮水煎剂催眠作用的药理实验研究.河北医科大学学报,2002,23(4):216
    [45]许爱荣,胡秀杰,张桂贤,等.东北冬虫夏草药效学实验研究.中国林副特产,2001(2):4
    [46]刘建新,叶和杨,连其深,等.臭牡丹根提取液的镇静和催眠作用.赣南医学院学报,2001,21(3):241
    [47]刘洁,杨旭,陈正,等.蚕蛹虫草镇静及激素样作用的研究.白求恩医科大学学报,1994,20(1):14
    [48]Morales Cifuentes C., Gomez-Serranillos M. P., Iglesias I., et al. Neuropharmacologicalprofile of ethnomedicinal plants of Guatemala. J of Ethnopharmacol. 2001, 76:223
    [49]Perez G. R.M., Perez L. J.A., Garcia D. L.M., et al. Neuropharmacological activity ofSolanum nigrum fruit. J of Ethnopharmacol. 1998, 62: 43
    [50]Adzu B., Amos S., Dzarma S., et al. Effect of Zizyphus spina-christi Willd aqueous extract onthe central nervous system in mice. J of Ethnopharmacol. 2002, 79:13
    [51]Liao Jyh-Fei, Huang Sung-Yen , Jan Yiing-Ming, et al. Central inhibitory effects of waterextract of Acori graminei rhizoma in mice. J of Ethnopharmacol. 1998, 61:185
    [52]Amos Samson, Akah Peter A., Enwerem Nkechi, et al. Behavioural effect of Pavetta crassipesextract on rodents. Pharmacology, Biochemistry and Behavior. 2004, 77:751
    [53]嵇扬,张癸荣,姜春来,等.枳椇正丁醇提取物镇静催眠作用的实验研究.中医药学刊,2004,22(4):656
    [54]曹斌,洪庚辛.蜘蛛香的中枢抑制作用.中国中药杂志,1994,19(1):40
    [55]陈磊,郑清明,郑汉臣,等.蜘蛛香的研究进展.中国野生植物资源,2002,21(1):8
    [56]陈敬民,李友娣,洪庚辛,等.蛹虫草的镇静催眠作用.中药药理与临床,1997,13(6):44
    [57]Zhao Xin, Cui Xiang-Yu, Chen Bao-Qiong, et al. Tetrandrine, a bisbenzylisoquinolinealkaloid from Chinese herb Radix,augmented the hypnotic effect of pentobarbital throughserotonergic system. European Journal of Pharmacology. 2004, 506:101
    [58]Sousa F.C.F., Melo C.T.V., Monteiro A.P., et al. Antianxiety and antidepressant effects ofriparin III from Aniba riparia (Nees) Mez (Lauraceae) in mice. Pharmacology, Biochemistryand Behavior. 2004, 78:27
    [59]韩万水,李文华.东莨菪碱对失眠的疗效.临床荟萃,1995,10(5):239
    [60]陈淑清,陈淑杰,刘卫建,等.不同产地黄连的体外抑菌活性与镇静作用.华西药学杂志,1990,5(3):168
    [61]裴印权,岳微,崔景荣,等.胡椒碱衍生物的中枢药理作用研究.药学学报,1980,15(4):198
    [62]Morais L.C.S.L., Barbosa-Filho J.M., Almeida R.N. Central depressant effects of reticulineextracted from Ocoteaduke in rats and mice. J of Ethnopharmacol. 1998, 62: 57
    [63]冯冰虹,孟青,郭晓玲,等.绞股蓝皂甙SH-6对脑内单胺递质及其代谢产物的影响.中药新药与临床药理,1998,9(2):87
    [64]邝荔香,李涛,刘国卿,等.九子参总皂甙药理研究.时珍国医国药,1999,10(7):492
    [65]黄胜英,谢世荣,黄彩云,等.酸枣仁皂甙的镇静作用研究.大连大学学报,2002,23(4):90
    [66]孙文基,绳金房主编.天然活性成分简明手册.北京:中国医药科技出版社,1998,280
    [67]连其深,胡晓,上官珠,等.蛇床子素镇静作用的研究.中药新药与临床药理,2002,11(4):244
    [68]Kang T.H., Jeong S.J., Kim N.Y., et al. Sedative activity of two flavonol glycosides isolatedfrom the flowers of Albizzia julibrissin Durazz. J of Ethnopharmacol. 2000, 71:321
    [69]陈春霞.羧甲基茯苓多糖的保肝与催眠作用.食用菌,2003,增刊: 46
    [70]李欣燕,韩国柱,张书文,等.乌苏里藜芦碱对血小板聚集及凝血与出血时间的影响.中草药,2004,35(11):1269
    [71]戴淑芳,高广猷.乌苏里黎芦碱对中枢神经系统的抑制作用.大连医科大学学报,1997,19(1):11
    [72]余建强,蒋袁絮,彭建中.氧化槐定碱对小鼠中枢的抑制作用.华西药学杂志,2001,16(4):277
    [73]余建强,蒋袁絮,彭建中.氧化苦参碱对小鼠的中枢抑制作用.宁夏医学院学报,2000,22(3):157
    [74]王振学,王惕,胡凌歌,等.中药茉莉根戒毒效果前期研究.中国药物滥用防治杂志,2002,42(2): 41-42
    [75]宁侠,周绍华.茉莉根口服液治疗失眠症100例.中国中西医结合杂志,2004,24(5): 476
    [76]徐淑云,卞如濂,陈修主编.药理实验方法学.北京:人民卫生出版社,2001,第三版,804-807
    [77]Henecka H. Zur kenntnis derβ-dicarbonyl-verbindungen,ⅴ. Mitteil.; uber die kondensationvon aceton-oxalester und o-athylaceton-oxalester mit cyanacetamid. Chem. Ber. 1949, 82,36-41.
    [78]Mariella R P. 3-Cyano-6-methyl-2(1)-pyridone. Org. Synth. Coll. Vol. 1963, 4, 210.
    [79]Bohlmann F, Rahtz D. Uber eine neue pyridinsynthese. Chem. Ber. 1957, 90, 2265-2272.
    [80]Morin M D, Rychnovsky S D. Reductive spiroannulation of nitriles with secondaryelectrophiles. Org. Lett. 2005, 7(10), 2051-2053.
    [81]Sparks S M, Chow C P, Zhu L, etc. Type 2 intramolecular N-acylnitroso diels?alder reaction:scope and application to the synthesis of medium ring lactams. J. Org. Chem. 2004, 69(9),3025-3035.
    [82]Paterson I, Steven A, Luckhurst C A. Phorboxazole B synthetic studies: construction ofC(1-32) and C(33-46) subtargets. Org. Biomol. Chem. 2004, 2, 3026-3038.
    [83]Clarke H. T., Gurin S. Studies of crystalline vitamin B1. XII. The sulfur-containing moiety. J.Am. Chem. Soc. 1935, 57(10), 1876-1881.
    [84]Stevens J. R., Beutel R. H., Chamberlin E. 3,4-Substituted pyridines. I. Synthesis of3-vinyl-4-methylpyridine. J. Am. Chem. Soc. 1942, 64(5), 1093-1095.
    [85]唐恢同,程淑鑫,张滂. 1,3-二烷氧基-乙酰丙酮和-丙酮的[1.3]σ键迁移重排. ActaChimica Sinica, 1985, 43, 72-78.
    [86]Harris S. A., Stiller E. T., Folkers K. Structure of vitamin B6.Ⅱ. J. Am. Chem. Soc. 1939,61(5), 1242-1244
    [87]Iyer R., Mamdapur V. R., Chadha M. S. Convenient synthesis of4-acetyl-2-methoxy-5-methyltriacontane and 23-hydroxytriacontan-2-one, the constituents ofCurculigo orchioides. J. Indian Chem. Soc. 1985, 887-890.
    [88]Bobbitt J. M., Scola D. A. Synthesis of isoquinoline alkaloids.Ⅱ. The synthesis and reactionsof 4-methyl-3-pyridinecarboxaldehyde and other 4-methyl-3-substituted pyridines[J]. J. Org.Chem. 1960, 25(4), 560-564.
    [89]Ritchie E. The tautomerism of 6-hydroxy-4-methyldihydrofuro(2',3',2,3)pyridine[J]. Aust. J.Chem. 1956, 9, 244-251.
    [90]Kametani T., Takeshita M., Ihara M., et al. Studies on the syntheses of heterocycliccompounds. 657. Total synthesis of Angustine, Nauclefine, and Gentianine[J]. J. Org. Chem.,1976, 41(15), 2542-2545.
    [91]Jahangir, Wang J., Smith R. W., et al. Oxidation products of5-ethenyl-4-methyl-3-pyridinecarbonitrile and 2- and 4-methylpyridines[J]. Can. J. Chem.,1990, 68(4), 587-591.
    [92]Callighan R. H., Wilt M. H. Ozonolysis of vinylpyridines. J. Org. Chem. 1961, 26(12),4912-4914.
    [93]Pappas J. J., Keaveney W. P., Gancher E., et al. A new convenient method for convertingolefins to aldehydes. Tetrahedron Lett. 1966, 36, 4273-4278.
    [94]Orsini P., Menichincheri M., Vanotti E., et al. Highly efficient synthesis of5-benzyl-3-aminoindazoles. Tetrahedron Lett. 2009, 50, 3098-3100.
    [95]Mancuso A. J., Huang S. L., Swern D. Oxidation of long-chain and related alcohols tocarbonyls by dimethyl sulfoxide“activated”by oxalyl chloride. J. Org. Chem. 1978, 43(12),2480-2482.
    [96]Novak J., Salemink C. A. Cannabis XXII. Synthesis of spiro-compounds. TetrahedronLett.1981, vol22, 1063-1064.
    [97]Bodendiek S. B., Mahieux C., Hansel W., et al. 4-Phenoxybutoxy-substituted heterocycles– Astructure–activity relationship study of blockers of the lymphocyte potassium channel Kv1.3.European J. Med. Chem. 2009, 44(5), 1838-1852.
    [98]Yamazaki M., Shibasaki M., Ikegami S. A novel synthetic route to the key intermediate forhirsutic acid. J. Org. Chem. 1983, 48(23), 4402-4404.
    [99]Danishefsky S., Nagaswa K., Wang N. Conversion of androstenolone to pregnenolone. J. Org.Chem. 1975, 40(13), 1989-1990.
    [100]Yamauchi S., Uno H. Synthesis of the stereoisomers of neolignans morinol C and D. Org.Biomol. Chem. 2003, 1, 1323-1329.
    [101]Kohler E. P., Chadwell H. M. Benzalacetophenone. Org. Synth. Coll. Vol. 1941, 1, 78.
    [102]Maduskuie T. P., Jr., McNamara K. J., et al. Rational design and synthesis of novel, potentbis-phenylamidine carboxylate factor xa inhibitors. J. Med. Chem. 1998, 41, 53-62.
    [103]Maiti A., Cuendet M., Croy V. L., et al. Synthesis and biological evaluation of(±)-abyssinone II and its analogues as aromatase inhibitors for chemoprevention of breastcancer. J. Med. Chem. 2007, 50(12), 2799-2806.
    [104]Eggen M., Mossman C. J., Buck S. B., et al. Total synthesis of cryptophycin-24(arenastatinA)amenable to structural modifications in the C16 side chain. J. Org. Chem. 2000, 65,7792-7799.
    [105]Wadsworth W. S., Jr., Emmons W. D. The utility of phosphonates in olefin synthesis. J. Am.Chem. Soc. 1961, 83, 1733-1738.
    [106]Bodalski R., Malkiewicz A., Michalski J. Alkyl- and alkenyl-pyridines. X. General route to3-alkenylpyridines from o,o-diethyl 3-pyridylmethylphosphonate. Bulletin de l’academiepolonaise des sciences serie des sciences chimiques. 1965, VolXIII, no.3, 139-142.
    [107]Frere P., Raimundo J. M., Blanchard P. Effect of local molecular structure on thechain-length dependence of the electronic properties of thiophene-basedπ-conjugated systems.J. Org. Chem. 2003, 68, 7254-7265.
    [108]Lounasmaa M. On the preparation of dimethyl 4-methylpyridine-3,5-dicarboxylate.Acta.Chem.Scand.1971, 25, 1151-1152.
    [109]Anelli P. L., Brocchetta M., Palano D. Mild conversion of primary carboxamides intocarboxylic esters. Tetrahedron Lett. 1997, 38, 2367-2368.
    1. Anderson T. [J] Ann. 1846, 60, 86.
    2. Anderson T. [J] Trans. Roy. Soc. Edinburgh. 1849, 16, 123.
    3. Gaskell D. Drugs against drugs. Chem. Brit. 1998(December), 27.
    4. Chem. Abstr. 1960, 54, 12131i.
    5. Chem. Abstr. 1957, 51, 8708e.
    6. Chem. Abstr. 1965, 63, 584a.
    7. Chem. Abstr. 1964, 61, 13288h.
    8. Chem. Abstr. 1968, 68, 95693u.
    9. Chem. Abstr. 1961, 55, 15516c.
    10. Chem. Abstr. 1963, 58, 11333g.
    11. Chem. Abstr. 1961, 55, 18778g.
    12. Chem. Abstr. 1966, 64, 17551h.
    13. Chem. Abstr. 1964, 61, 639d.
    14. Chem. Abstr. 1964, 60, 14465f.
    15. Butler J D, Dodsworth J H, Groom A T. Synthesis of 3-picoline and 3-ethylpyridine[J]. Chem.Commun. 1966, 2, 54-55.
    16. Chem. Abstr. 1957, 51, 2881a.
    17. Chem. Abstr. 1958, 52, 1260c
    18. Chem. Abstr. 1968, 69, 2761x.
    19. Chem. Abstr. 1962, 56, 11574g.
    20. Chem. Abstr. 1960, 54, 21083i.
    21. Chem. Abstr. 1961, 55, 19917i.
    22. Chem. Abstr. 1961, 55, 27306d.
    23. Chem. Abstr. 1960, 54, 11015b.
    24. Chem. Abstr. 1962, 57, 16535b.
    25. Williams H, Kaufmann P, Mosher H S. The rearrangement of acylfurans to3-hydroxypyridines[J]. J. Org. Chem. 1955, 20, 1139-1145.
    26. Gruber W. Die synthese vonω-[3- und 5-oxy-pyridyl-(2)]-fettsauren[J]. Chem. Ber. 1955, 88,178-186.
    27. Chem. Abstr. 1966, 64, 716b.
    28. Chem. Abstr. 1968, 68, 105005n.
    29. Chem. Abstr. 1965, 62, 4003c.
    30. Chem. Abstr. 1964, 61, 16050e.
    31. Chem. Abstr. 1965, 63, 2961b.
    32. Chem. Abstr. 1968, 69, 59100k.
    33. Chem. Abstr. 1968, 69, 19027k.
    34. Chem. Abstr. 1966, 64, 3496f.
    35. Chem. Abstr. 1968, 68, 87183n.
    36. Chem. Abstr. 1962, 56, 10090f.
    37. Chem. Abstr. 1966, 65, 3829c.
    38. Chumakov Yu I, Sherstyuk V P. The synthesis of fusarinic acid, its isomers andhomologues[J]. Tetrahedron Lett. 1965, 6, 129-135.
    39. Chem. Abstr. 1968, 69, 10331x.
    40. Boyer J H, Schoen W. 2,3-ψ-Dinitrosopyridines[J]. J. Am. Chem. Soc. 1956, 78, 423-425.
    41. Borsche W, Bonacker I. Uber die aufspaltung desγ-pyrons durch anilin und uberN-phenyl-γ-pyridon[J]. Ber. 1921, 54, 2678-2686.
    42. Balaban A T, Nenitaescu C D. Pyrylium salts obtained by diacylation of olefins. Part II. Thetwo pyrylium salts formed in diacetylation of 2-methylbut-2-ene[J]. J. Chem. Soc. 1961,3553-3561.
    43. Praill P F G, Whitear A L. Pyrylium salts and related compounds. Part I. The reaction betweenolefins and acylium perchlorates[J]. J. Chem. Soc. 1961, 3573-3579.
    44. Jones R L, Rees C W. Mechanism of heterocyclic ring expansions. Part III. Reaction ofpyrroles with dichlorocarbene[J]. J. Chem. Soc. C, 1969, 18, 2249-2251.
    45. Jones R L, Rees C W. Mechanism of heterocyclic ring expansions. Part V. Base-catalysedrearrangement of 2-dichloromethyl-2,5-dimethyl-2H-pyrrole and related compounds[J]. J.Chem. Soc. C, 1969, 18, 2255-2259.
    46. Chem. Abstr. 1962, 57, 15067a.
    47. Chem. Abstr. 1966, 65, 3828a.
    48. Prelog V, Komzak A, Moor E. Uber eine umlagerung bei dehydrierungen in derpyridinreihe[J]. Helv. Chim. Acta 1942, 25, 1654-1664.
    49. Schmidle C J, Mansfield R C. The aminomethylation of olefins. V. A new synthesis of4-phenylpyridine and related compounds[J]. J. Am. Chem. Soc. 1956, 78, 1702-1705.
    50. Chem. Abstr. 1965, 63, 8323g.
    51. Chem. Abstr. 1959, 53, 21931d.
    52. Chem. Abstr. 1959, 53, 5544g.
    53. Chem. Abstr. 1957, 51, 2877g.
    54. Chem. Abstr. 1966, 64, 5052b.
    55. Chem. Abstr. 1966, 64, 19568h.
    56. Oakes V, Rydon H N. Polyazanaphthalenes. Part IV. Further derivatives of 1 : 3 : 5- and 1 : 3 :8-triazanaphthalene[J]. J. Chem. Soc. 1956, 4433-4438.
    57. Miyadera T, Kishida Y. The mechanisms of the reductions of quinolizinium ion with lithiumaluminium hydride and sodium borohydride[J]. Tetrahedron Lett. 1965, 6, 905-912.
    58. Chem. Abstr. 1962, 56, 14229e.
    59. Chem. Abstr. 1962, 56, 14229h.
    60. Chem. Abstr. 1962, 57, 15064i.
    61. Chem. Abstr. 1968, 69, 10366n.
    62. Chem. Abstr. 1968, 69, 27198g.
    63. Chem. Abstr. 1965, 63, 4263b.
    64. Chem. Abstr. 1964, 60, 11991g.
    65. Chem. Abstr. 1965, 63, 11488h.
    66. Chem. Abstr. 1965, 63, 11489c.
    67. Chem. Abstr. 1965, 63, 11489g.
    68. Chem. Abstr. 1966, 65, 16949g.
    69. Chem. Abstr. 1966, 64, 8149h.
    70. Chem. Abstr. 1965, 63, 9922d.
    71. Cavill G W K, Ford D L, Solomon D H. A synthesis of alkylpyridines[J]. Aust. J. Chem. 1960,13, 469-472.
    72. Chem. Abstr. 1968, 68, 87171g.
    73. Chem. Abstr. 1966, 65, 7153f.
    74. Chem. Abstr. 1968, 68, 87189u.
    75. Chem. Abstr. 1968, 69, 27266c.
    76. Chem. Abstr. 1965, 63, 11492b.
    77. Chem. Abstr. 1961, 55, 2115g.
    78. Chem. Abstr. 1957, 51, 408a.
    79. Hellmann H, Seegmuller K. Pyridin-ringschlu? von methylen-bis-cyanessigest--ern[J]. Chem. Ber. 1958, 91, 2420-2426.
    80. Bohlmann F, Rahtz D. Uber eine pyridinsynthese[J]. Chem. Ber. 1957, 90, 2265-2272.
    81. Ritchie E. The tautomerism of 6-hydroxy-4-methyldihydrofuro(2',3',2,3)pyridine[J]. Aust. J.Chem. 1956, 9, 244-251.
    82. Chem. Abstr. 1965, 62, 1629.
    83. Chem. Abstr. 1930, 24, 4785.
    84. Chem. Abstr. 1965, 63, 584.
    85. Chem. Abstr. 1965, 63, 13224.
    86. Farley C P, Eliel E L. Chichibabin reactions with phenylacetaldehyde. II[J].J. Am. Chem. Soc.1956, 78, 3477-3484.
    87. Chem. Abstr. 1965, 63, 14804.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700