阻断Toll样受体-2活性改善阿霉素及缺血诱导的心功能障碍及心肌重塑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
充血性或慢性心力衰竭,简称心衰,是各种原因所引起的心脏疾病的终末阶段,心脏收缩及(或)舒张功能明显降低,以致心脏排血量不能满足机体代谢所需。它的病因很多,主要包括冠心病、高血压、心肌病、心脏毒素、瓣膜疾病和先心病等。随着我国进入老年化社会,慢性心衰的发病率仍在增加。尽管抗心衰的药物、介入疗法和外科手术已取得了长足的进展,但这些治疗方法只能改善慢性心衰患者的症状和体征、提高其生活质量及延缓病情的进展,对重度心衰除了心脏移植外尚没有更有效的办法。
     以心肌细胞丢失、心肌肥厚和组织纤维化为特征的心脏组织异常重构是各种慢性心脏病的核心病理改变。近些年的研究发现免疫炎症反应在心脏组织重构过程中发挥了重要作用。细胞损伤释放的内源性损伤相关分子模式(DAMPs)激活模式识别受体(如Toll样受体)、活化免疫炎症反应并引起组织损伤,参与心衰的发生发展。文献报道Toll样受体-2(TLR2)缺失可以减轻阿霉素诱导的心功能障碍、降低局部炎症反应、抑制心肌细胞凋亡及提高动物生存率,表明TLR2介导了阿霉素诱导的心功能失调。本实验想观察在小鼠形成慢性心衰以后再阻断TLR2能否有治疗作用。我们的研究发现,用TLR2中和性抗体(TLR2Ab)治疗性阻断TLR2活性能明显减轻阿霉素引起的心功能障碍和心肌异常重构,抑制心肌局部炎症反应。接下来,我们检测了几种与TLR2密切相关的DAMPs的表达,发现阿霉素可以明显上调高迁移率族蛋白-1(HMGB1), Hsp70, S100A2和S100A8的表达,而阻断TLR2能抑制HMGB1和Hsp70的表达,尤其对HMGB1的抑制作用更为明显。而且,免疫共沉淀和激光共聚焦显微镜结果显示TLR2Ab明显抑制了HMGB1与TLR2的相互作用。因此,我们推测阿霉素诱导组织细胞死亡释放大量HMGB1,后者通过激活TLR2参与心衰的发生发展。为了验证这个假说,我们通过使用甘草甜素抑制细胞外HMGB1的功能,观察能否发挥改善作用。结果显示,预防性给予甘草甜素能明显改善阿霉素诱导的心功能障碍和心肌重构,并抑制HMGB1与TLR2的相互作用。因此,我们的结果证实TLR2Ab明显抑制HMGB1的表达及HMGB1与TLR2的相互作用,从而改善阿霉素引发的心衰。为了进一步证实阻断TLR2活性改善心衰的普遍作用,我们使用了冠脉结扎诱导的小鼠心肌缺血模型。同样发现,阻断TLR2活性明显改善缺血诱导的心功能障碍、减轻炎症、氧化应激、心肌纤维化及心肌细胞凋亡,其机制可能与上调AMPK通路活性密切相关。我们的研究结果不仅有助于深入理解免疫系统尤其是TLR2在心肌损伤和心脏重塑过程中的作用,同时也为开发抗慢性心衰和心梗药物提供了研究线索和潜在靶点。
Congestive or chronic heart failure (HF) is a common terminal phase of heart diseases induced by a variety of injury. Cardiac output of failing hearts fails to meet the need of body metabolism because of impairment of myocardial systolic and (or) diastolic function. Etiologies of HF include coronary heart diseases, hypertension, cardiomyopathy, cardiotoxins, valvular diseases, congenital heart diseases, and so on. As China enters the aging society, the incidence rate of HF is gradually increasing. Though significant progress in therapy of HF including drugs, intervention as well as surgery, these treatments only ameliorate symptoms and signs of patient with HF, improve their quality of life and delay the disease progression. Except for heart transplantation, there is no effective therapy for advanced HF.
     Cardiac remodeling, including loss of cardiomyocytes, myocardial hypertrophy and fibrosis, is a major pathological characteristic of multiple chronic heat diseases. Accumulating evidence demonstrated that immune-inflammatory responses played vital roles in adverse cardiac remodeling. Endogenous damage associated molecular patterns (DAMPs) released by damaged cells activated pattern recognition receptors (for example, toll like receptor) leading to inflammation and tissue injury, and were involved in the development and progression of HF. Research results showed that TLR2deficiency could mitigate doxorubicin (Dox) induced cardiac dysfunction, inflammation, cardiomyocytes apoptosis as well as improve survival rate, suggesting that TLR2mediated Dox triggered cardiac malfunction. However, we wonder whether inhibition of TLR2activity by anti-TLR2neutralizing antibody (TLR2Ab) would exert therapeutic efficiency against established cardiac remodeling and dysfunction triggered by chronic Dox administration. The findings indicated that therapeutic blocking TLR2activity markedly attenuated Dox induced cardiac dysfunction and remodeling as well as inflammatory responses in the heart. Then through detecting expressions of several important DAMPs strongly related to TLR2, we found Dox significantly upregulated levels of high mobility group box-1(HMGB1), Hsp70, S100A2and S00A8. However, blocking TLR2inhibited the upregulation of HMGB1and Hsp70, with more obvious suppression on HMGB1. Furthermore, TLR2Ab inhibited the interaction of HMGB1and TLR2as assessed by co-immunoprecipitation and confocal microscopy. Therefore, we speculated that Dox resulted in cardiac myocytes death and large mounts of HMGB1were released from these injured cells, and HMGB1participated in the development and progression of HF via engagement of TLR2. To validate the hypothesis, we wonder if administration of glycyrrhizin, functional antagonist of extracellular HMGB1, would exert protective action against injury induced by Dox, as TLR2Ab did. Our results demonstrated that prophylactic usage of glycyrrhizin significantly improved Dox induced myocardial dysfunction and remodeling, as well as repressed the interaction of HMGB1with TLR2. In conclusion, our findings validated that therapeutic blocking TLR2markedly ameliorated HF triggered by doxorubicin by suppressing the of HMGB1expression and the interaction between HMGB1and TLR2.
     To further confirm the universal role of targeting TLR2in improvement of HF, we utilized myocardial infarction model in mice prepared by surgical occlusion of left coronary artery. Similarly, blockage of TLR2mitigated functional impairment, cardiac inflammation, oxidative stress, cardiac fibrosis and cardiomyocytes apoptosis induced by ischemia, which were associated with activation of AMP-activated protein kinase (AMPK). Collectively, the results of our study not only contribute to understanding the roles of immune system (especially TLR2) in myocardial injury and remodeling, but also provide the research clues and potential targets for the development of new anti-HF and anti-myocardial infarction drugs.
引文
[1]Ashford T P, Porter K R. Cytoplasmic components in hepatic cell lysosomes [J]. J Cell Biol,1962,12(198-202.
    [2]Hotchkiss R S, Strasser A, Mcdunn J E, et al. Cell death [J]. N Engl J Med,2009, 361(16):1570-83.
    [3]Mizushima N, Levine B, Cuervo a M, et al. Autophagy fights disease through cellular self-digestion [J]. Nature,2008,451(7182):1069-75.
    [4]Cuervo a M. Autophagy:many paths to the same end [J]. Mol Cell Biochem, 2004,263(1-2):55-72.
    [5]Klionsky D J. The molecular machinery of autophagy:unanswered questions [J]. J Cell Sci,2005,118(Pt 1):7-18.
    [6]Lee S B, Kim S, Lee J, et al. ATG1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase [J]. EMBO Rep,2007,8(4):360-5.
    [7]Suzuki K, Kirisako T, Kamada Y, et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation [J]. EMBO J,2001,20(21):5971-81.
    [8]Furuya N, Yu J, Byfield M, et al. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function [J]. Autophagy,2005,1(1):46-52.
    [9]Levine B, Sinha S, Kroemer G. Bcl-2 family members:dual regulators of apoptosis and autophagy [J]. Autophagy,2008,4(5):600-6.
    [10]Wei Y, Pattingre S, Sinha S, et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy [J]. Mol Cell,2008,30(6):678-88.
    [11]Ohsumi Y. Molecular dissection of autophagy:two ubiquitin-like systems [J]. Nat Rev Mol Cell Biol,2001,2(3):211-6.
    [12]Mizushima N, Yamamoto A, Hatano M, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells [J]. J Cell Biol,2001, 152(4):657-68.
    [13]Kabeya Y, Mizushima N, Yamamoto A, et al. LC3, GABARAP and GATE 16 localize to autophagosomal membrane depending on form-II formation [J]. J Cell Sci,2004,117(Pt 13):2805-12.
    [14]Halapas A, Armakolas A, Koutsilieris M. Autophagy:a target for therapeutic interventions in myocardial pathophysiology [J]. Expert Opin Ther Targets,2008, 12(12):1509-22.
    [15]Young a R, Chan E Y, Hu X W, et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes [J]. J Cell Sci,2006,119(Pt 18):3888-900.
    [16]Gustafsson a B, Gottlieb R A. Autophagy in ischemic heart disease [J]. Circ Res, 2009,104(2):150-8.
    [17]Budanov a V, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling [J]. Cell,2008,134(3):451-60.
    [18]Cardenas M E, Cutler N S, Lorenz M C, et al. The TOR signaling cascade regulates gene expression in response to nutrients [J]. Genes Dev,1999,13(24): 3271-9.
    [19]Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis [J]. Cancer Cell, 2006,10(1):51-64.
    [20]Kamada Y, Funakoshi T, Shintani T, et al. Tor-mediated induction of autophagy via an Apgl protein kinase complex [J]. J Cell Biol,2000,150(6):1507-13.
    [21]Byfield M P, Murray J T, Backer J M. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase [J]. J Biol Chem,2005,280(38): 33076-82.
    [22]Pattingre S, Bauvy C, Codogno P. Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells [J]. J Biol Chem,2003,278(19): 16667-74.
    [23]Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem'fluorescent-tagged LC3 [J]. Autophagy,2007,3(5):452-60.
    [24]Dennis P B, Jaeschke A, Saitoh M, et al. Mammalian TOR:a homeostatic ATP sensor [J]. Science,2001,294(5544):1102-5.
    [25]Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion:roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy [J]. Circ Res,2007,100(6):914-22.
    [26]Inoki K, Corradetti M N, Guan K L. Dysregulation of the TSC-mTOR pathway in human disease [J]. Nat Genet,2005,37(1):19-24.
    [27]Mavrakis M, Lippincott-Schwartz J, Stratakis C A, et al. mTOR kinase and the regulatory subunit of protein kinase A (PRKAR1A) spatially and functionally interact during autophagosome maturation [J]. Autophagy,2007,3(2):151-3.
    [28]Corcelle E, Nebout M, Bekri S, et al. Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity [J]. Cancer Res,2006, 66(13):6861-70.
    [29]Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4 [J]. EMBO J,2007, 26(7):1749-60.
    [30]Hamacher-Brady A, Brady N R, Logue S E, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy [J]. Cell Death Differ, 2007,14(1):146-57.
    [31]Zhang H, Bosch-Marce M, Shimoda L A, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia [J]. J Biol Chem,2008, 283(16):10892-903.
    [32]Azad M B, Chen Y, Henson E S, et al. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3 [J]. Autophagy, 2008,4(2):195-204.
    [33]Papandreou I, Lim a L, Laderoute K, et al. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L [J]. Cell Death Differ,2008,15(10):1572-81.
    [34]Kanazawa T, Taneike I, Akaishi R, et al. Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes [J]. J Biol Chem,2004,279(9):8452-9.
    [35]Mizushima N. The pleiotropic role of autophagy:from protein metabolism to bactericide [J]. Cell Death Differ,2005,12 Suppl 2(1535-41.
    [36]Hoyer-Hansen M, Jaattela M. AMP-activated protein kinase:a universal regulator of autophagy? [J]. Autophagy,2007,3(4):381-3.
    [37]Brady N R, Hamacher-Brady A, Yuan H, et al. The autophagic response to nutrient deprivation in the hl-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic reticulum calcium stores [J]. FEBS J,2007,274(12):3184-97.
    [38]Hoyer-Hansen M, Bastholm L, Szyniarowski P, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2 [J]. Mol Cell, 2007,25(2):193-205.
    [39]Gao W, Ding W X, Stolz D B, et al. Induction of macroautophagy by exogenously introduced calcium [J]. Autophagy,2008,4(6):754-61.
    [40]Kim E H, Sohn S, Kwon H J, et al. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells [J]. Cancer Res,2007,67(13):6314-24.
    [41]Yu L, Wan F, Dutta S, et al. Autophagic programmed cell death by selective catalase degradation [J]. Proc Natl Acad Sci U S A,2006,103(13):4952-7.
    [42]Gomez-Santos C, Ferrer I, Santidrian a F, et al. Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells [J]. J Neurosci Res,2003,73(3):341-50.
    [43]Chen Y, Mcmillan-Ward E, Kong J, et al. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species [J]. J Cell Sci,2007,120(Pt 23):4155-66.
    [44]Barsoum M J, Yuan H, Gerencser a A, et al. Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons [J]. EMBO J,2006, 25(16):3900-11.
    [45]Rabkin S W. Nitric oxide-induced cell death in the heart:the role of autophagy [J]. Autophagy,2007,3(4):347-9.
    [46]Djavaheri-Mergny M, Amelotti M, Mathieu J, et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy [J]. J Biol Chem,2006, 281(41):30373-82.
    [47]Schmid D, Pypaert M, Munz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes [J]. Immunity,2007,26(1):79-92.
    [48]Harris J, De Haro S A, Master S S, et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis [J]. Immunity,2007,27(3): 505-17.
    [49]Demarchi F, Bertoli C, Copetti T, et al. Calpain is required for macroautophagy in mammalian cells [J]. J Cell Biol,2006,175(4):595-605.
    [50]Sarkar S, Floto R A, Berger Z, et al. Lithium induces autophagy by inhibiting inositol monophosphatase [J]. J Cell Biol,2005,170(7):1101-11.
    [51]Sanjuan M A, Dillon C P, Tait S W, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis [J]. Nature,2007, 450(7173):1253-7.
    [52]Delgado M A, Elmaoued R A, Davis a S, et al. Toll-like receptors control autophagy [J]. EMBO J,2008,27(7):1110-21.
    [53]Xu Y, Jagannath C, Liu X D, et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity [J]. Immunity,2007,27(1):135-44.
    [54]Bertin S, Pierrefite-Carle V. Autophagy and toll-like receptors:a new link in cancer cells [J]. Autophagy,2008,4(8):1086-9.
    [55]Lee H K, Lund J M, Ramanathan B, et al. Autophagy-dependent viral recognition by plasmacytoid dendritic cells [J]. Science,2007,315(5817):1398-401.
    [56]Golstein P, Kroemer G. Cell death by necrosis:towards a molecular definition [J]. Trends Biochem Sci,2007,32(1):37-43.
    [57]Liang X H, Kleeman L K, Jiang H H, et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein [J]. J Virol,1998,72(11): 8586-96.
    [58]Shimizu S, Kanaseki T, Mizushima N, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes [J]. Nat Cell Biol,2004,6(12):1221-8.
    [59]Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy [J]. Cell,2005,122(6):927-39.
    [60]Criollo A, Maiuri M C, Tasdemir E, et al. Regulation of autophagy by the inositol trisphosphate receptor [J]. Cell Death Differ,2007,14(5):1029-39.
    [61]Gonzalez-Polo R A, Boya P, Pauleau a L, et al. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death [J]. J Cell Sci,2005,118(Pt 14): 3091-102.
    [62]Yousefi S, Perozzo R, Schmid I, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis [J]. Nat Cell Biol,2006,8(10):1124-32.
    [63]Pyo J O, Jang M H, Kwon Y K, et al. Essential roles of Atg5 and FADD in autophagic cell death:dissection of autophagic cell death into vacuole formation and cell death [J]. J Biol Chem,2005,280(21):20722-9.
    [64]Liang X H, Yu J, Brown K, et al. Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function [J]. Cancer Res,2001,61(8):3443-9.
    [65]Sou Y S, Waguri S, Iwata J, et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice [J]. Mol Biol Cell,2008,19(11):4762-75.
    [66]Takano-Ohmuro H, Mukaida M, Kominami E, et al. Autophagy in embryonic erythroid cells:its role in maturation [J]. Eur J Cell Biol,2000,79(10):759-64.
    [67]Yuan J, Lipinski M, Degterev A. Diversity in the mechanisms of neuronal cell death [J]. Neuron,2003,40(2):401-13.
    [68]Terman A, Brunk U T. Myocyte aging and mitochondrial turnover [J]. Exp Gerontol,2004,39(5):701-5.
    [69]Kraft C, Deplazes A, Sohrmann M. et al. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease [J]. Nat Cell Biol,2008,10(5):602-10.
    [70]Schmid D, Munz C. Innate and adaptive immunity through autophagy [J]. Immunity,2007,27(1):11-21.
    [71]Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress [J]. Nat Med,2007, 13(5):619-24.
    [72]Tanaka Y, Guhde G, Suter A, et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice [J]. Nature,2000,406(6798):902-6.
    [73]Kuzman J A, O'connell T D, Gerdes a M. Rapamycin prevents thyroid hormone-induced cardiac hypertrophy [J]. Endocrinology,2007,148(7):3477-84.
    [74]Ha T, Li Y, Gao X, et al. Attenuation of cardiac hypertrophy by inhibiting both mTOR and NFkappaB activation in vivo [J]. Free Radic Biol Med,2005,39(12): 1570-80.
    [75]Mcmullen J R, Sherwood M C, Tarnavski O, et al. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload [J]. circulation,2004,109(24):3050-5.
    [76]Akazawa H, Komazaki S, Shimomura H, et al. Diphtheria toxin-induced autophagic cardiomyocyte death plays a pathogenic role in mouse model of heart failure [J]. J Biol Chem,2004,279(39):41095-103.
    [77]Porrello E R, D'amore A, Curl C L, et al. Angiotensin Ⅱ type 2 receptor antagonizes angiotensin II type 1 receptor-mediated cardiomyocyte autophagy [J]. Hypertension,2009,53(6):1032-40.
    [78]Sybers H D, Ingwall J, Deluca M. Autophagy in cardiac myocytes [J]. Recent Adv Stud Cardiac Struct Metab,1976,12(453-63.
    [79]Decker R S, Wildenthal K. Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes [J]. Am J Pathol,1980,98(2): 425-44.
    [80]Hamacher-Brady A, Brady N R, Gottlieb R A. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes [J]. J Biol Chem, 2006,281(40):29776-87.
    [81]Maiuri M C, Le Toumelin G, Criollo A, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1 [J]. EMBO J,2007,26(10): 2527-39.
    [82]Valentim L, Laurence K M, Townsend P A, et al. Urocortin inhibits Beclinl-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury [J]. J Mol Cell Cardiol,2006,40(6):846-52.
    [83]Yan L, Vatner D E, Kim S J, et al. Autophagy in chronically ischemic myocardium [J]. Proc Natl Acad Sci U S A,2005,102(39):13807-12.
    [84]Gurusamy N, Lekli I, Gorbunov N V, et al. Cardioprotection by adaptation to ischaemia augments autophagy in association with BAG-1 protein [J]. J Cell Mol Med,2009,13(2):373-87.
    [85]Khan S, Salloum F, Das A, et al. Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes [J]. J Mol Cell Cardiol,2006,41(2):256-64.
    [86]Hickson-Bick D L, Jones C, Buja L M. Stimulation of mitochondrial biogenesis and autophagy by lipopolysaccharide in the neonatal rat cardiomyocyte protects against programmed cell death [J]. J Mol Cell Cardiol,2008,44(2):411-8.
    [87]Zhu H, Tannous P, Johnstone J L, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress [J]. J Clin Invest,2007,117(7):1782-93.
    [88]Wang Z V, Rothermel B A, Hill J A. Autophagy in hypertensive heart disease [J]. JBiol Chem,2010,285(12):8509-14.
    [89]Liu J, Zheng H, Tang M, et al. A therapeutic dose of doxorubicin activates ubiquitin-proteasome system-mediated proteolysis by acting on both the ubiquitination apparatus and proteasome [J]. Am J Physiol Heart Circ Physiol, 2008,295(6):H2541-50.
    [90]Lu L, Wu W, Yan J, et al. Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure [J]. Int J Cardiol,2009, 134(1):82-90.
    [91]Takemura G, Miyata S, Kawase Y, et al. Autophagic degeneration and death of cardiomyocytes in heart failure [J]. Autophagy,2006,2(3):212-4.
    [92]Tannous P, Zhu H, Johnstone J L, et al. Autophagy is an adaptive response in desmin-related cardiomyopathy [J]. Proc Natl Acad Sci U S A,2008,105(28): 9745-50.
    [93]Omary M B, Coulombe P A, Mclean W H. Intermediate filament proteins and their associated diseases [J]. N Engl J Med,2004,351(20):2087-100.
    [94]Sanbe A, Osinska H, Saffitz J E, et al. Desmin-related cardiomyopathy in transgenic mice:a cardiac amyloidosis [J]. Proc Natl Acad Sci U S A,2004, 101(27):10132-6.
    [95]Maloyan A, Sayegh J, Osinska H, et al. Manipulation of Death Pathways in Desmin-Related Cardiomyopathy [J]. Circ Res,2010,
    [96]Nishino I, Fu J, Tanji K, et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease) [J]. Nature,2000, 406(6798):906-10.
    [97]Martinet W, Schrijvers D M, Timmermans J P, et al. Interactions between cell death induced by statins and 7-ketocholesterol in rabbit aorta smooth muscle cells [J]. Br J Pharmacol,2008,154(6):1236-46.
    [98]Brunk U T, Jones C B, Sohal R S. A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis [J]. Mutat Res,1992,275(3-6):395-403.
    [99]Lee F Y, Lee T S, Pan C C, et al. Colocalization of iron and ceroid in human atherosclerotic lesions [J]. Atherosclerosis,1998,138(2):281-8.
    [100]Kurz T, Terman A, Brunk U T. Autophagy, ageing and apoptosis:the role of oxidative stress and lysosomal iron [J]. Arch Biochem Biophys,2007,462(2): 220-30.
    [101]Levine B, Yuan J. Autophagy in cell death:an innocent convict? [J]. J Clin Invest, 2005,115(10):2679-88.
    [1]Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial [J]. Lancet,2006,367(9505):113-21.
    [2]Segers V F, Lee R T. Stem-cell therapy for cardiac disease [J]. Nature,2008, 451(7181):937-42.
    [3]Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement [J]. FASEB J,2006,20(6):661-9.
    [4]Gaetani R, Ledda M, Barile L, et al. Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields [J]. Cardiovasc Res,2009,82(3):411-20.
    [5]Kuhn B, Del Monte F, Hajjar R J, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair [J]. Nat Med,2007, 13(8):962-9.
    [6]Novoyatleva T, Diehl F, Van Amerongen M J, et al. TWEAK is a positive regulator of cardiomyocyte proliferation [J]. Cardiovasc Res,2010,85(4): 681-90.
    [7]Urbanek K, Cesselli D, Rota M, et al. Stem cell niches in the adult mouse heart [J]. Proc Natl Acad Sci U S A,2006,103(24):9226-31.
    [8]Barile L, Messina E, Giacomello A, et al. Endogenous cardiac stem cells [J]. Prog Cardiovasc Dis,2007,50(1):31-48.
    [9]Beltrami a P, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration [J]. Cell,2003,114(6):763-76.
    [10]Oh H, Bradfute S B, Gallardo T D, et al. Cardiac progenitor cells from adult myocardium:homing, differentiation, and fusion after infarction [J]. Proc Natl Acad Sci U S A,2003,100(21):12313-8.
    [11]Matsuura K, Nagai T, Nishigaki N, et al. Adult cardiac Sea-1-positive cells differentiate into beating cardiomyocytes [J]. J Biol Chem,2004,279(12): 11384-91.
    [12]Martin C M, Meeson a P, Robertson S M, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart [J]. Dev Biol,2004,265(1):262-75.
    [13]Laugwitz K L, Moretti A, Lam J, et al. Postnatal isll+ cardioblasts enter fully differentiated cardiomyocyte lineages [J]. Nature,2005,433(7026):647-53.
    [14]Moretti A, Caron L, Nakano A, et al. Multipotent embryonic isll+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification [J]. Cell, 2006,127(6):1151-65.
    [15]Wada a M, Smith T K, Osler M E, et al. Epicardial/Mesothelial cell line retains vasculogenic potential of embryonic epicardium [J]. Circ Res,2003,92(5): 525-31.
    [16]Anversa P, Kajstura J, Leri A, et al. Life and death of cardiac stem cells:a paradigm shift in cardiac biology [J]. circulation,2006,113(11):1451-63.
    [17]Urbanek K, Torella D, Sheikh F. et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure [J]. Proc Natl Acad Sci U SA,2005,102(24):8692-7.
    [18]Guo J, Jie W, Kuang D, et al. Ischaemia/reperfusion induced cardiac stem cell homing to the injured myocardium by stimulating stem cell factor expression via NF-kappaB pathway [J]. Int J Exp Pathol,2009,90(3):355-64.
    [19]De Angelis A, Piegari E, Cappetta D, et al. Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function [J]. circulation,2010.121(2):276-92.
    [20]Hsieh P C, Segers V F, Davis M E, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury [J]. Nat Med,2007,13(8):970-4.
    [21]Tang X L, Rokosh G, Sanganalmath S K, et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction [J]. circulation,2010,121(2):293-305.
    [22]Winter E M, Grauss R W, Hogers B, et al. Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart [J]. circulation,2007,116(8):917-27.
    [23]Smits a M, Van Laake L W, Den Ouden K, et al. Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium [J]. Cardiovasc Res,2009,83(3):527-35.
    [24]Askari a T, Unzek S. Popovic Z B, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy [J]. Lancet,2003,362(9385):697-703.
    [25]Adams G B, Martin R P, Alley I R, et al. Therapeutic targeting of a stem cell niche [J]. Nat Biotechnol,2007,25(2):238-43.
    [26]Ball S G, Shuttleworth C A, Kielty C M. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors [J]. J Cell Biol,2007, 177(3):489-500.
    [27]Tang J, Wang J, Kong X, et al. Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway [J]. Exp Cell Res,2009, 315(20):3521-31.
    [28]Padin-Iruegas M E, Misao Y, Davis M E, et al. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction [J]. circulation,2009,120(10): 876-87.
    [29]Rosenblatt-Velin N, Lepore M G, Cartoni C, et al. FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes [J]. J Clin Invest,2005,115(7):1724-33.
    [30]Ferreira-Martins J, Rondon-Clavo C, Tugal D, et al. Spontaneous calcium oscillations regulate human cardiac progenitor cell growth [J]. Circ Res,2009, 105(8):764-74.
    [I]Stewart S, Macintyre K, Capewell S, et al. Heart failure and the aging population: an increasing burden in the 21st century? [J]. Heart,2003,89(1):49-53.
    [2]Wynn T A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases [J]. J Clin Invest,2007,117(3):524-9.
    [3]Goldstein S. Heart failure therapy at the turn of the century [J]. Heart Fail Rev, 2001,6(1):7-14.
    [4]Mann D L. Inflammatory mediators and the failing heart:past, present, and the foreseeable future [J]. Circ Res,2002,91(11):988-98.
    [5]Valgimigli M, Curello S, Ceconi C, et al. Neurohormones, cytokines and programmed cell death in heart failure:a new paradigm for the remodeling heart [J]. Cardiovasc Drugs Ther,2001,15(6):529-37.
    [6]Sivasubramanian N, Coker M L, Kurrelmeyer K M, et al. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor [J]. circulation,2001,104(7):826-31.
    [7]Janssen S P, Gayan-Ramirez G, Van Den Bergh A, et al. Interleukin-6 causes myocardial failure and skeletal muscle atrophy in rats [J]. circulation,2005, 111(8):996-1005.
    [8]Deswal A, Petersen N J, Feldman a M, et al. Cytokines and cytokine receptors in advanced heart failure:an analysis of the cytokine database from the Vesnarinone trial (VEST) [J]. circulation,2001,103(16):2055-9.
    [9]Satoh M, Akatsu T, Ishikawa Y, et al. Association between toll-like receptor 8 expression and adverse clinical outcomes in patients with enterovirus-associated dilated cardiomyopathy [J]. Am Heart J,2007,154(3):581-8.
    [10]Equils O, Shapiro A, Madak Z, et al. Human immunodeficiency virus type 1 protease inhibitors block toll-like receptor 2 (TLR2)-and TLR4-Induced NF-kappaB activation [J]. Antimicrob Agents Chemother,2004,48(10):3905-11.
    [11]Frantz S, Kobzik L, Kim Y D, et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium [J]. J Clin Invest,1999,104(3):271-80.
    [12]Oyama J, Blais C, Jr., Liu X, et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice [J]. circulation,2004,109(6):784-9.
    [13]Riad A, Jager S, Sobirey M, et al. Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice [J]. J Immunol,2008,180(10):6954-61.
    [14]Shishido T, Nozaki N, Yamaguchi S, et al. Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction [J]. circulation,2003,108(23): 2905-10.
    [15]Nozaki N, Shishido T, Takeishi Y, et al. Modulation of doxorubicin-induced cardiac dysfunction in toll-like receptor-2-knockout mice [J]. circulation,2004, 110(18):2869-74.
    [16]Lotze M T, Zeh H J, Rubartelli A, et al. The grateful dead:damage-associated molecular pattern molecules and reduction/oxidation regulate immunity [J]. Immunol Rev,2007,220(60-81.
    [17]Foell D, Wittkowski H, Roth J. Mechanisms of disease:a 'DAMP' view of inflammatory arthritis [J]. Nat Clin Pract Rheumatol,2007,3(7):382-90.
    [18]Van Zoelen M A, Yang H, Florquin S, et al. Role of toll-like receptors 2 and 4, and the receptor for advanced glycation end products in high-mobility group box 1-induced inflammation in vivo [J]. Shock,2009,31(3):280-4.
    [19]Osterloh A, Breloer M. Heat shock proteins:linking danger and pathogen recognition [J]. Med Microbiol Immunol,2008,197(1):1-8.
    [20]Foell D, Wittkowski H, Vogl T, et al. S100 proteins expressed in phagocytes:a novel group of damage-associated molecular pattern molecules [J]. J Leukoc Biol, 2007,81(1):28-37.
    [21]Li W, Li J, Ashok M, et al. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1 [J]. J Immunol,2007,178(6):3856-64.
    [22]Li W, Sama a E, Wang H. Role of HMGB1 in cardiovascular diseases [J]. Curr Opin Pharmacol,2006,6(2):130-5.
    [23]Liu Y Y, Cai W F, Yang H Z, et al. Bacillus Calmette-Guerin and TLR4 agonist prevent cardiovascular hypertrophy and fibrosis by regulating immune microenvironment [J]. J Immunol,2008,180(11):7349-57.
    [24]Niu J, Kolattukudy P E. Role of MCP-1 in cardiovascular disease:molecular mechanisms and clinical implications [J]. Clin Sci (Lond),2009,117(3):95-109.
    [25]Ulloa L, Messmer D. High-mobility group box 1 (HMGB1) protein:friend and foe [J]. Cytokine Growth Factor Rev,2006,17(3):189-201.
    [26]Van Beijnum J R, Buurman W A, Griffioen a W. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1) [J]. Angiogenesis,2008,11(1):91-9.
    [27]Mollica L, De Marchis F, Spitaleri A, et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities [J]. Chem Biol,2007, 14(4):431-41.
    [28]Magnani J W, Dec G W. Myocarditis:current trends in diagnosis and treatment [J]. circulation,2006,113(6):876-90.
    [29]Christiansen S, Autschbach R. Doxorubicin in experimental and clinical heart failure [J]. Eur J Cardiothorac Surg,2006,30(4):611-6.
    [30]Hori M, Nishida K. Oxidative stress and left ventricular remodelling after myocardial infarction [J]. Cardiovasc Res,2009,81(3):457-64.
    [31]Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling [J]. Nature,2004,430(6996):257-63.
    [32]Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity [J]. Nat Immunol,2004,5(10):971-4.
    [33]Yang H Z, Cui B, Liu H Z, et al. Targeting TLR2 attenuates pulmonary inflammation and fibrosis by reversion of suppressive immune microenvironment [J]. J Immunol,2009,182(1):692-702.
    [34]Yang H Z, Cui B, Liu H Z, et al. Blocking TLR2 activity attenuates pulmonary metastases of tumor [J]. PLoS One,2009,4(8):e6520.
    [35]Xie W, Wang Y, Huang Y, et al. Toll-like receptor 2 mediates invasion via activating NF-kappaB in MDA-MB-231 breast cancer cells [J]. Biochem Biophys Res Commun,2009,379(4):1027-32.
    [36]Schoneveld a H, Oude Nijhuis M M, Van Middelaar B, et al. Toll-like receptor 2 stimulation induces intimal hyperplasia and atherosclerotic lesion development [J]. Cardiovasc Res,2005,66(1):162-9.
    [37]Monaco C, Gregan S M, Navin T J, et al. Toll-like receptor-2 mediates inflammation and matrix degradation in human atherosclerosis [J]. circulation, 2009,120(24):2462-9.
    [38]Sakata Y, Dong J W, Vallejo J G, et al. Toll-like receptor 2 modulates left ventricular function following ischemia-reperfusion injury [J]. Am J Physiol Heart Circ Physiol,2007,292(1):H503-9.
    [39]Arslan F, Smeets M B, O'neill L A, et al. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody [J]. circulation,2010, 121(1):80-90.
    [40]Favre J, Musette P, Douin-Echinard V, et al. Toll-like receptors 2-deficient mice are protected against postischemic coronary endothelial dysfunction [J]. Arterioscler Thromb Vasc Biol,2007,27(5):1064-71.
    [41]Reifenberg K, Lehr H A, Torzewski M, et al. Interferon-gamma induces chronic active myocarditis and cardiomyopathy in transgenic mice [J]. Am J Pathol,2007, 171(2):463-72.
    [42]Buzas K, Megyeri K, Hogye M, et al. Comparative study of the roles of cytokines and apoptosis in dilated and hypertrophic cardiomyopathies [J]. Eur Cytokine Netw,2004,15(1):53-9.
    [43]Schuett H, Luchtefeld M, Grothusen C, et al. How much is too much? Interleukin-6 and its signalling in atherosclerosis [J]. Thromb Haemost,2009, 102(2):215-22.
    [44]Nishimura Y, Inoue T, Nitto T, et al. Increased interleukin-13 levels in patients with chronic heart failure [J]. Int J Cardiol,2009,131(3):421-3.
    [45]Ohtsuka T, Inoue K, Hara Y, et al. Serum markers of angiogenesis and myocardial ultrasonic tissue characterization in patients with dilated cardiomyopathy [J]. Eur J Heart Fail,2005,7(4):689-95.
    [46]Rosenkranz S. TGF-betal and angiotensin networking in cardiac remodeling [J]. Cardiovasc Res,2004,63(3):423-32.
    [47]Gaffen S L. Structure and signalling in the IL-17 receptor family [J]. Nat Rev Immunol,2009,9(8):556-67.
    [48]Rangachari M, Mauermann N, Marty R R, et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17 [J]. J Exp Med,2006,203(8):2009-19.
    [49]Baldeviano G C, Barin J G, Talor M V, et al. Interleukin-17A Is Dispensable for Myocarditis but Essential for the Progression to Dilated Cardiomyopathy [J]. Circ Res,2010,
    [50]Wang Y, Kelly C G, Karttunen J T, et al. CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines [J]. Immunity, 2001,15(6):971-83.
    [51]Treutiger C J, Mullins G E, Johansson a S, et al. High mobility group 1 B-box mediates activation of human endothelium [J]. J Intern Med,2003,254(4): 375-85.
    [52]Panjwani N N, Popova L, Srivastava P K. Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs [J]. J Immunol,2002,168(6): 2997-3003.
    [53]Zanin-Zhorov A, Bruck R, Tal G, et al. Heat shock protein 60 inhibits Thl-mediated hepatitis model via innate regulation of Thl/Th2 transcription factors and cytokines [J]. J Immunol,2005,174(6):3227-36.
    [54]Klune J R, Dhupar R, Cardinal J, et al. HMGB1:endogenous danger signaling [J]. Mol Med,2008,14(7-8):476-84.
    [55]Gibot S, Massin F, Cravoisy A, et al. High-mobility group box 1 protein plasma concentrations during septic shock [J]. Intensive Care Med,2007,33(8):1347-53.
    [56]Yang H, Ochani M, Li J, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1 [J]. Proc Natl Acad Sci U S A,2004, 101(1):296-301.
    [57]Sitia G, Iannacone M, Muller S, et al. Treatment with HMGB1 inhibitors diminishes CTL-induced liver disease in HBV transgenic mice [J]. J Leukoc Biol, 2007,81(1):100-7.
    [58]Goldstein R S, Gallowitsch-Puerta M, Yang L, et al. Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia [J]. Shock,2006, 25(6):571-4.
    [59]Tzeng H P, Fan J, Vallejo J G, et al. Negative inotropic effects of high-mobility group box 1 protein in isolated contracting cardiac myocytes [J]. Am J Physiol Heart Circ Physiol,2008,294(3):H1490-6.
    [60]Curtin J F, Liu N, Candolfi M, et al. HMGB1 mediates endogenous TLR2 activation and brain tumor regression [J]. PLoS Med,2009,6(1):e10.
    [1]Suematsu N, Tsutsui H, Wen J, et al. Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes [J]. circulation,2003,107(10):1418-23.
    [2]Peng J, Gurantz D, Tran V, et al. Tumor necrosis factor-alpha-induced ATI receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis [J]. Circ Res,2002,91(12):1119-26.
    [3]Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction [J]. circulation,1997,95(2):320-3.
    [4]Sam F, Sawyer D B, Chang D L, et al. Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart [J]. Am J Physiol Heart Circ Physiol,2000,279(1):H422-8.
    [5]Wencker D, Chandra M, Nguyen K, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure [J]. J Clin Invest,2003,111(10):1497-504.
    [6]Hirota H, Chen J, Betz U A, et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress [J]. Cell,1999,97(2):189-98.
    [7]Yaoita H, Ogawa K, Maehara K, et al. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor [J]. circulation,1998,97(3):276-81.
    [8]Matsui T, Tao J, Del Monte F, et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo [J]. circulation,2001, 104(3):330-5.
    [9]Chao W, Matsui T, Novikov M S, et al. Strategic advantages of insulin-like growth factor-I expression for cardioprotection [J]. J Gene Med,2003,5(4): 277-86.
    [10]Hardie D G. Minireview:the AMP-activated protein kinase cascade:the key sensor of cellular energy status [J]. Endocrinology,2003,144(12):5179-83.
    [11]Gundewar S, Calvert J W, Jha S, et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure [J]. Circ Res,2009,104(3):403-11.
    [12]Van Den Borne S W, Diez J, Blankesteijn W M, et al. Myocardial remodeling after infarction:the role of myofibroblasts [J]. Nat Rev Cardiol,2010,7(1):30-7.
    [13]Jugdutt B I. Ventricular remodeling after infarction and the extracellular collagen matrix:when is enough enough? [J]. circulation,2003,108(11):1395-403.
    [14]Ceconi C, Curello S, Bachetti T, et al. Tumor necrosis factor in congestive heart failure:a mechanism of disease for the new millennium? [J]. Prog Cardiovasc Dis, 1998,41(1 Suppl 1):25-30.
    [15]Bryant D, Becker L, Richardson J, et al. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha [J]. circulation,1998, 97(14):1375-81.
    [16]Bozkurt B, Kribbs S B, Clubb F J, Jr., et al. Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats [J]. circulation,1998,97(14):1382-91.
    [17]Frantz S, Bauersachs J, Ertl G. Post-infarct remodelling:contribution of wound healing and inflammation [J]. Cardiovasc Res,2009,81(3):474-81.
    [18]Grieve D J, Shah a M. Oxidative stress in heart failure. More than just damage [J]. Eur Heart J,2003,24(24):2161-3.
    [19]Young I S, Woodside J V. Antioxidants in health and disease [J]. J Clin Pathol, 2001,54(3):176-86.
    [20]Shiomi T, Tsutsui H, Matsusaka H, et al. Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice [J]. circulation,2004,109(4):544-9.
    [21]Li J, Ichikawa T, Villacorta L, et al. Nrf2 protects against maladaptive cardiac responses to hemodynamic stress [J]. Arterioscler Thromb Vasc Biol,2009, 29(11):1843-50.
    [22]Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity [J]. Cell,2006,124(4):783-801.
    [23]Ha T, Lu C, Liu L, et al. TLR2 ligands attenuate cardiac dysfunction in polymicrobial sepsis via a phosphoinositide 3-kinase-dependent mechanism [J]. Am J Physiol Heart Circ Physiol,2010,298(3):H984-91.
    [24]Zhu X, Bagchi A, Zhao H, et al. Toll-like receptor 2 activation by bacterial peptidoglycan-associated lipoprotein activates cardiomyocyte inflammation and contractile dysfunction [J]. Crit Care Med,2007,35(3):886-92.
    [25]Shishido T, Nozaki N, Yamaguchi S, et al. Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction [J]. circulation,2003,108(23): 2905-10.
    [26]Sakata Y, Dong J W, Vallejo J G, et al. Toll-like receptor 2 modulates left ventricular function following ischemia-reperfusion injury [J]. Am J Physiol Heart Circ Physiol,2007,292(1):H503-9.
    [27]Arslan F, Smeets M B, O'neill L A, et al. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody [J]. circulation,2010, 121(1):80-90.
    [28]Timmers L, Sluijter J P, Van Keulen J K, et al. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction [J]. Circ Res,2008,102(2):257-64.
    [29]Katso R, Okkenhaug K, Ahmadi K, et al. Cellular function of phosphoinositide 3-kinases:implications for development, homeostasis, and cancer [J]. Annu Rev Cell Dev Biol,2001,17(615-75.
    [30]Bhuiyan M S, Shioda N, Fukunaga K. Targeting protein kinase B/Akt signaling with vanadium compounds for cardioprotection [J]. Expert Opin Ther Targets, 2008,12(10):1217-27.
    [31]Kewalramani G, Puthanveetil P, Wang F, et al. AMP-activated protein kinase confers protection against TNF-{alpha}-induced cardiac cell death [J]. Cardiovasc Res,2009,84(1):42-53.
    [32]Chan a Y, Soltys C L, Young M E, et al. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte [J]. J Biol Chem,2004,279(31):32771-9.
    [33]Hori M, Nishida K. Oxidative stress and left ventricular remodelling after myocardial infarction [J]. Cardiovasc Res,2009,81(3):457-64.
    [34]Frangogiannis N G. The immune system and cardiac repair [J]. Pharmacol Res, 2008,58(2):88-111.
    [35]Taqueti V R, Mitchell R N, Lichtman a H. Protecting the pump:controlling myocardial inflammatory responses [J]. Annu Rev Physiol,2006,68(67-95.
    [36]Dewald O, Zymek P, Winkelmann K, et al. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts [J]. Circ Res,2005,96(8):881-9.
    [37]Xia Y, Frangogiannis N G. MCP-1/CCL2 as a therapeutic target in myocardial infarction and ischemic cardiomyopathy [J]. Inflamm Allergy Drug Targets,2007, 6(2):101-7.
    [38]Kurrelmeyer K M, Michael L H, Baumgarten G, et al. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction [J]. Proc Natl Acad Sci U S A,2000, 97(10):5456-61.
    [39]Bujak M, Frangogiannis N G. The role of IL-1 in the pathogenesis of heart disease [J]. Arch Immunol Ther Exp (Warsz),2009,57(3):165-76.
    [40]Abeywardena M Y, Leifert W R, Warnes K E, et al. Cardiovascular biology of interleukin-6 [J]. Curr Pharm Des,2009,15(15):1809-21.
    [41]Danesh J, Kaptoge S, Mann a G, et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease:two new prospective studies and a systematic review [J]. PLoS Med,2008,5(4):e78.
    [42]Schuett H, Luchtefeld M, Grothusen C, et al. How much is too much? Interleukin-6 and its signalling in atherosclerosis [J]. Thromb Haemost,2009, 102(2):215-22.
    [43]Krishnamurthy P, Lambers E, Verma S, et al. Myocardial knockdown of mRNA-stabilizing protein HuR attenuates post-MI inflammatory response and left ventricular dysfunction in IL-10-null mice [J]. FASEB J,2010,
    [44]Waypa G B, Marks J D, Mack M M, et al. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes [J]. Circ Res,2002,91(8):719-26.
    [45]Frantz S, Kelly R A, Bourcier T. Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes [J]. J Biol Chem,2001,276(7): 5197-203.
    [46]Mukherjee S B, Das M, Sudhandiran G, et al. Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes [J]. J Biol Chem,2002,277(27):24717-27.
    [47]Novitskiy G, Potter J J, Wang L, et al. Influences of reactive oxygen species and nitric oxide on hepatic fibrogenesis [J]. Liver Int,2006,26(10):1248-57.
    [48]Wang P, Chen H, Qin H, et al. Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury [J]. Proc Natl Acad Sci U S A, 1998,95(8):4556-60.
    [49]Nishida K, Otsu K. The role of apoptosis signal-regulating kinase 1 in cardiomyocyte apoptosis [J]. Antioxid Redox Signal,2006,8(9-10):1729-36.
    [50]Matsuzawa A, Ichijo H. Redox control of cell fate by MAP kinase:physiological roles of ASK1-MAP kinase pathway in stress signaling [J]. Biochim Biophys Acta,2008,1780(11):1325-36.
    [51]Hirotani S, Otsu K, Nishida K, et al. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy [J]. circulation,2002,105(4): 509-15.
    [52]Yamaguchi O, Higuchi Y, Hirotani S, et al. Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling [J]. Proc Natl Acad Sci U S A,2003,100(26):15883-8.
    [53]Boyd J H, Mathur S, Wang Y, et al. Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response [J]. Cardiovasc Res,2006,72(3):384-93.
    [54]Knuefermann P, Schwederski M, Velten M, et al. Bacterial DNA induces myocardial inflammation and reduces cardiomyocyte contractility:role of toll-like receptor 9 [J]. Cardiovasc Res,2008,78(1):26-35.
    [55]Knuefermann P, Sakata Y, Baker J S, et al. Toll-like receptor 2 mediates Staphylococcus aureus-induced myocardial dysfunction and cytokine production in the heart [J]. circulation,2004,110(24):3693-8.
    [56]Aliprantis a O, Yang R B, Mark M R, et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2 [J]. Science,1999,285(5428): 736-9.
    [57]Aliprantis a O, Yang R B, Weiss D S, et al. The apoptotic signaling pathway activated by Toll-like receptor-2 [J]. EMBO J,2000,19(13):3325-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700