BMP2对H9c2心肌细胞组蛋白乙酰化修饰的调控作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     构建BMP2过表达的心肌细胞模型,检测BMP2对心脏核心转录因子GATA4、MEF2C和Tbx5表达的影响,并研究BMP2对H9c2心肌细胞总组蛋白H3、基因启动子区组蛋白H3乙酰化修饰及组蛋白乙酰化酶(HATs)亚型p300和GCN5的调控作用,以证实我们的科学假设:BMP2是心肌细胞组蛋白乙酰化修饰的上游信号通路之一。
     方法
     (1)过表达BMP2的腺病毒(AdBMP2)及对照空腺病毒(AdGFP)在HEK293细胞中扩增后,分别以不同滴度转染大鼠H9c2心肌细胞,24h后荧光倒置显微镜下观察AdBMP2/AdGFP腺病毒转染细胞绿色荧光蛋白的表达情况,流式细胞术检测AdBMP2/AdGFP腺病毒转染效率。
     (2)AdBMP2/AdGFP腺病毒转染H9c2心肌细胞24h、48h和72h后收集细胞,提取mRNA,Real-Time qRT-PCR检测各处理组细胞BMP2、MEF2C、GATA4和Tbx5及HATs亚型p300和GCN5的mRNA表达水平,筛选最佳干预时间。
     (3)AdBMP2/AdGFP腺病毒转染H9c2心肌细胞48h后收集细胞,比色法检测各处理组H9c2心肌细胞核蛋白HATs活性,Western-blotting检测各处理组细胞总组蛋白H3的乙酰化水平,ChIP-Real-Time qPCR检测各处理组细胞MEF2C、GATA4和Tbx5启动子区组蛋白H3乙酰化水平。
     结果
     (1)AdBMP2转染H9c2心肌细胞24h后,荧光倒置显微镜下可见细胞中出现大量绿色荧光,流式细胞术检测结果显示AdBMP2转染效率可达90%以上。
     (2)AdBMP2转染H9c2心肌细胞24h、48h、72h后,BMP2及心脏核心转录因子MEF2C和GATA4的mRNA表达水平较对照组明显升高(P<0.05),并于转染后48h达到高峰,而Tbx5的表达没有明显变化。
     (3)AdBMP2转染H9c2心肌细胞48h后,HATs亚型p300的mRNA表达水平较对照组升高(P<0.05),而GCN5的表达水平与对照组相比没有明显的变化。
     (4)AdBMP2转染H9c2心肌细胞48h后,细胞核蛋白HATs活性较对照组明显升高(P<0.05),总组蛋白H3乙酰化水平也较对照组明显上调(P<0.05),MEF2C、GATA4启动子区组蛋白H3乙酰化水平亦相应升高(P<0.05),但Tbx5启动子区组蛋白H3乙酰化水平与对照组相比未见明显变化。
     结论
     (1)BMP2可上调H9c2心肌细胞中心脏核心转录因子MEF2C和GATA4的表达,而对Tbx5的表达没有影响。
     (2)BMP2可引起H9c2心肌细胞组蛋白H3高乙酰化,可能是H9c2心肌细胞组蛋白乙酰化修饰的上游信号通路之一。
     (3)BMP2引起的H9c2心肌细胞组蛋白H3高乙酰化可能与HATs亚型p300有关。
     (4)BMP2对MEF2C和GATA4启动子区组蛋白H3乙酰化的促进作用可能是BMP2引起MEF2C和GATA4表达上调的机制之一,而Tbx5启动子区组蛋白H3乙酰化未受BMP2的影响可能是Tbx5的表达不受BMP2调控的原因之一。
     目的
     使用HATs亚型p300的抑制剂姜黄素(Curcumin)来研究p300在BMP2致H9c2心肌细胞心脏核心转录因子GATA4和MEF2C高表达及组蛋白高乙酰化中的作用,以证实我们的科学假设:p300参与BMP2对H9c2心肌细胞心脏核心转录因子表达及组蛋白乙酰化修饰的调控作用。
     方法
     (1)AdBMP2转染H9c2心肌细胞后,用不同浓度的p300HAT活性抑制剂姜黄素(10μM,20μM,30μM,40μM)处理细胞(6h,12h,24h,48h),比色法检测各处理组细胞HATs活性,筛选姜黄素最佳处理浓度及时间。
     (2)AdBMP2和/或姜黄素处理H9c2心肌细胞后,Real-Time qRT-PCR检测各处理组细胞心脏核心转录因子GATA4、MEF2C和Tbx5及HATs亚型p300和GCN5的表达水平,Western-blotting检测各处理组细胞总组蛋白H3的乙酰化水平,ChIP-Real-Time qPCR检测各处理组细胞GATA4、MEF2C和Tbx5启动子区组蛋白H3乙酰化水平。
     结果
     (1)不同浓度(10μM,20μM,30μM,40μM)的姜黄素处理细胞24h后,H9c2心肌细胞的HATs活性明显下降(P<0.05),并于40μM达到最低点。40μM姜黄素分别处理细胞6h,12h,24h,48h后,HATs活性于处理后12h达到最低点。
     (2)AdBMP2和姜黄素共同处理H9c2心肌细胞后,心脏核心转录因子GATA4和MEF2C及HATs亚型p300的mRNA表达水平较单独AdBMP2处理组明显下降(P<0.05),而Tbx5及GCN5的mRNA表达水平在各处理组之间没有明显的变化。
     (3)AdBMP2与姜黄素共同处理H9c2心肌细胞后,细胞中总组蛋白H3乙酰化水平及GATA4和MEF2C启动子区组蛋白H3乙酰化水平较单独AdBMP2处理组明显下降(P<0.05),而Tbx5启动子区组蛋白H3乙酰化在各处理组之间没有明显的变化。
     结论
     (1)姜黄素可抑制HATs亚型p300的表达,而对GCN5的表达没有影响。
     (2)在H9c2心肌细胞中,p300HAT活性抑制剂姜黄素可拮抗BMP2引起的组蛋白H3高乙酰化及GATA4和MEF2C的高表达,说明p300参与BMP2对H9c2心肌细胞GATA4和MEF2C表达及组蛋白乙酰化的调控。
     (3)在H9c2心肌细胞中,Tbx5启动子区组蛋白H3乙酰化及其表达可能不受p300的调控。
     目的
     使用BMPs信号通路抑制剂dorsomorphin(DM)来研究BMPs在氧化应激反应所致H9c2心肌细胞组蛋白高乙酰化中的作用,以证实我们的科学假设:BMPs参与介导氧化应激反应所致H9c2心肌细胞组蛋白高乙酰化。
     方法
     (1)不同浓度H2O2(50μM、100μM、150μM、200μM、250μM、300μM、350μM、400μM)处理H9c2心肌细胞,24h后采用MTT法检测各处理组细胞的存活率。
     (2)5μM的BMPs信号通路抑制剂DM和/或适宜浓度的H2O2处理细胞,Real-Time qRT-PCR检测各处理组细胞BMP2及心脏核心转录因子GATA4,MEF2C和Tbx5的表达水平,Western-blotting检测各处理组细胞总组蛋白H3的乙酰化水平。
     结果
     (1)50、100和150μM浓度的H2O2对H9c2心肌细胞的存活率没有明显的影响,200、250、300、350、400和450μM浓度的H2O2处理H9c2心肌细胞后,细胞的存活率分别降低10.5%、16.9%、21.9%、32.4%、47.0%和58.6%。
     (2)400μM H2O2处理H9c2心肌细胞后,BMP2、GATA4、MEF2C和Tbx5的mRNA表达水平较空白对照组明显升高(P<0.05),细胞组蛋白H3的乙酰化水平亦相应升高(P<0.05)。
     (3)400μM H2O2和DM共同处理H9c2心肌细胞后,H9c2心肌细胞中总组蛋白H3乙酰化水平较单独400μM H2O2处理组有所下降(P<0.05),GATA4和Tbx5的mRNA表达水平也较单独400μMH2O2处理组有所降低(P<0.05),而MEF2C的mRNA表达水平较单独400μM H2O2处理组有所升高(P<0.05)。
     结论
     (1)利用H2O2成功构建H9c2心肌细胞氧化损伤模型。
     (2)400μM H2O2引起的氧化应激可上调H9c2心肌细胞BMP2、GATA4、MEF2C和Tbx5的表达并引起细胞组蛋白H3高乙酰化。
     (3)BMPs信号通路抑制剂DM对400μM H2O2引起的氧化应激所致H9c2心肌细胞组蛋白H3高乙酰化及GATA4和Tbx5表达上调具有一定的拮抗作用,说明BMPs(BMP2及其它BMPs亚型)参与介导氧化应激引起的心肌细胞组蛋白高乙酰化及GATA4和Tbx5的高表达,提示在氧化应激的病理状态下,BMPs可能也是心肌细胞组蛋白乙酰化修饰上游信号通路的组成部分,也提示氧化应激可能激活了上调Tbx5表达的BMPs亚型。
     (4)BMPs信号通路抑制剂DM可引起H9c2心肌细胞MEF2C的表达升高,提示在H9c2心肌细胞中,BMPs各亚型的综合效应可能是对MEF2C的表达起抑制作用,也提示氧化应激可能通过其它信号通路调控MEF2C的表达。
Objective
     Building the myocardial cell model that overexpressing BMP2to studythe effects of BMP2on the expression of cardiac core transcription factorsGATA4, MEF2C and Tbx5, the histone acetylation level both in the wholechromatin and in the promoter regions of GATA4, MEF2C and Tbx5, andthe expression of histone deacetylase (HAT) p300and GCN5. In the presentstudy, we will test the hypothesis that BMP2acts as one of the upstreamregulators of histone acetylation in cardiomyocytes.
     Methods
     (1)Rat H9c2myocardial cells(H9c2cells) were transfected withAdBMP2or AdGFP adenovirus that amplified in HEK293cells, theexpression of green fluorescent protein(GFP) were detected under aninverted fluorescence microscope, and the transfection efficiency weredetected by flow cytometry24h after transfection.
     (2)24h,48h and72h after transfected with AdBMP2, H9c2cells werecollected to extract mRNA, Real-Time qRT-PCR were used to detectthe mRNA expression levels of BMP2, MEF2C, GATA4, Tbx5, p300and GCN5.
     (3)48h after transfected with AdBMP2, H9c2cells were collected,colorimetric assay were used to detect HAT activity, Western-blottingwere used to detect the histone H3acetylation levels in the wholechromatin. ChIP-Real-Time qPCR were used to detect the histone H3acetylation level in the promoter regions of GATA4, MEF2C andTbx5.
     Results
     (1)24h after AdBMP2transfection, high expression level of GFP werevisible in the cells under the inverted fluorescence microscope. Theresults of flow cytometry showed that the transfection efficiency wasup to90%.
     (2)24h,48h,72h after AdBMP2transfection, the mRNA expression levelof BMP2and the cardiac core transcription factor MEF2C andGATA4were significantly increased compared with the controlcells(P<0.05) and reached the peak at48h after transfection inH9c2cells. However the expression of Tbx5was not affected in thesame cells after AdBMP2transfection.
     (3)48h after AdBMP2transfection, the mRNA expression level of HAT p300was upregulated compared with the control cells(P<0.05), whilethe expression of another HAT GCN5was not changed.
     (4)48h after AdBMP2transfection, HAT activity and the histone H3acetylation level in the whole chromatin were significantly increasedcompared with the control H9c2cells(P<0.05). In addition, thehistone H3acetylation level in the promoter regions of GATA4andMEF2C were also increased compared with the control cells(P<0.05).However the histone H3acetylation level in the promoter region ofTbx5was not changed.
     Conclusions(1)BMP2upregulates the expression of cardiac core transcription factors
     MEF2C and GATA4, but not Tbx5.
     (2)BMP2-induced histone H3hyperacetylation in H9c2cells revealedthat BMP2acts as one of the upstream regulators of histoneacetylation in cardiomyocytes.
     (3)BMP2-induced histone H3hyperacetylation in H9c2cells maybeassociated with the HAT p300.
     (4)Histone H3acetylation may be one of the molecular mechanisms bywhich BMP2upregulates the expression of GATA4and MEF2C.However, the unaffected expression of Tbx5maybe associated withthe unchanged histone H3acetylation in the promoter region of Tbx5in H9c2cells overexpressing BMP2.
     Objective
     HAT p300inhibitor curcumin was used to research the effect of p300on the BMP2-induced histone hyperacetylation and the BMP2-inducedupregulation of cardiac core transcription factors GATA4and MEF2C, totest the hypothesis that p300is involved in the regulation of cardiac coretranscription factors and the histone H3acetylation by BMP2in H9c2cells.
     Methods
     (1)The AdBMP2transfected H9c2cells were treated with differentconcentrations(10μM,20μM,30μM,40μM) of the HAT p300inhibitorcurcumin for various treatment times (6h,12h,24h,48h), colorimetricassay were used to detect HAT activity and to find an optimumconcentration and time duration.
     (2)After AdBMP2and/or curcumin treatment, H9c2cells were collected.Real-Time qRT-PCR were used to detect the expression levels of cardiac core transcription factor GATA4, MEF2C and Tbx5,Western-blotting were used to detect histone H3acetylation level inthe whole chromatin, and ChIP-Real-Time qPCR were used to detectthe histone H3acetylation levels in the promoter regions of GATA4,MEF2C and Tbx5.
     Results
     (1)24h after treated with different concentrations (10μM,20μM,30μM,40μM) of curcumin, HAT activity was decreased(P<0.05) and reachedits lowest point at40μM in AdBMP2transfected H9c2cells. Aftertreated with40μM curcumin for various treatment times (6h,12h,24h,48h), HAT activity was decreased(P<0.05) and reached its lowestpoint at12h after treatment in AdBMP2transfected H9c2cells.
     (2)The mRNA expression levels of cardiac core transcription factorsGATA4and MEF2C and HAT p300were decreased(P<0.05) inAdBMP2transfected and curcumin treated cells compared with theAdBMP2transfection group, while the mRNA expression levels ofTbx5and GCN5were not changed.
     (3)The histone H3acetylation level in the whole chromatin and in thepromoter regions of GATA4and MEF2C were also decreased(P<0.05)in AdBMP2transfected and curcumin treated cells compared with theAdBMP2transfection group, while the histone H3acetylation level inthe promoter region of Tbx5was not changed. Conclusions
     (1)HAT p300inhibitor curcumin is able to inhibit the expression of p300but not GCN5.
     (2)BMP2-induced histone hyperacetylation and the upregulation ofcardiac core transcription factors GATA4and MEF2C are antagonizedby curcumin, suggesting that p300is involved in the regulation ofcardiac core transcription factors and the histone H3acetylation byBMP2.
     (3)The expression and the histone H3acetylation in the promoter regionof Tbx5maybe not regulated by p300in H9c2cells.
     Objective
     BMPs signal inhibitor dorsomorphin (DM) was used to research theeffect of BMPs signal on the oxidative stress-induced histonehyperacetylation, to test the hypothesis that BMPs are involved in theoxidative stress-induced histone hyperacetylation in H9c2cells
     Methods
     (1)H9c2cells were treated with different concentrations of H2O2(50μM,100μM,150μM,200μM,250μM,300μM,350μM,400μM) for24h,MTT assay were used to detect cell survival rate, and to select theappropriate concentration of H2O2to build the oxidative injury modelof H9c2cells.
     (2)H9c2cell were treated with5μM BMPs signal inhibitor dorsomorphin(DM) and/or the appropriate concentration of H2O2. Real-TimeqRT-PCR were used to detect the mRNA expression levels of BMP2and cardiac core transcription factors GATA4, MEF2C and Tbx5.Western-blotting assay were used to detect histone H3acetylationlevel in the whole chromatin.
     Results
     (1)The H9c2cell survival rates were not changed after50,100and150μM H2O2treatment, and after treatment with200,250,300,350,400and450μM H2O2, the cell survival rate were reduced by10.5%,16.9%,21.9%,32.4%,47.0%and58.6%respectively.
     (2)In400μM H2O2treated H9c2cells, The histone H3acetylation levelin the whole chromatin and the mRNA expression levels of BMP2,GATA4, MEF2C and Tbx5were significantly increased(P<0.05)compared with blank control cells.
     (3) The histone H3acetylation level in the whole chromatin and themRNA expression levels of GATA4and Tbx5were decreased(P<0.05) in400μM H2O2and DM treated H9c2cells compared with400μMH2O2treated group. However, the mRNA expression level of MEF2Cwere increased(P<0.05) in DM and400μM H2O2treated H9c2cellscompared with400μM H2O2treated group.
     Conclusions
     (1)The oxidative injury model of H9c2cells were successfullyconstructed with H2O2.
     (2)The expression of BMP2, GATA4, MEF2C and Tbx5are upregulatedby400μM H2O2-induced oxidative stress.
     (3)400μM H2O2-induced histone H3acetylation and the expression ofGATA4and Tbx5is partially antagonized by BMPs signal inhibitorDM in H9c2cells, suggesting that BMPs(BMP2and other BMPssubtypes) is involved in oxidative stress-induced histone acetylationand the expression of GATA4and Tbx5, indicating that in thepathological state(oxidative stress), BMPs may also act as theupstream signal pathways of histone acetylation in cardiomyocytes,and also indicating that certain BMPs subtypes that upregulate theexpression of Tbx5maybe induced under oxidative stress.
     (4)The expression of MEF2C is enhanced by BMPs signal inhibitor DMin H9c2cells, suggesting that the expression of MEF2C maybeinhibited by the combined effects of BMPs subtypes, and alsoindicating that other signals maybe in involved in oxidative stress-induced expression of MEF2C.
引文
1. van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, TakkenbergJJ, Roos-Hesselink JW.Birth prevalence of congenital heart disease worldwide: asystematic review and meta-analysis[J]. J Am Coll Cardiol.2011;58(21):2241-2247.
    2. Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, Elixson M,Warnes CA, Webb CL.Noninherited risk factors and congenital cardiovasculardefects[J]. Circulation.2007;115(23):2995-3014.
    3. Ornoy A.Embryonic oxidative stress as a mechanism of teratogenesis with specialemphasis on diabetic embryopathy[J]. Reprod Toxicol.2007;24(1):31-41.
    4.陈国珍,田杰,朱静等.小鼠心脏发育中组蛋白乙酰化酶GCN5和PCAF的时空表达特征[J].中国组织化学与细胞化学杂志,2009,18(3):273-278.
    5. Olson EN. Gene regulatory networks in the evolution and development of the heart.Science[J].2006;313(5795):1922-1927.
    6. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD,Srivastava D.In vivo reprogramming of murine cardiac fibroblasts into inducedcardiomyocytes[J]. Nature.2012;485(7400):593-598.
    7. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, SrivastavaD. Direct reprogramming of fibroblasts into functional cardiomyocytes by definedfactors[J]. Cell.2010Aug6;142(3):375-386.
    8. Huang JB, Liu YL, Sun PW, Lv XD, Du M, Fan XM.Molecular mechanisms ofcongenital heart disease[J]. Cardiovasc Pathol.2010;19(5):e183-e193.
    9.钟小林,李昌琪,李芳等.表观遗传学修饰对BDNF基因表达的影响[J].神经解剖学杂志,2012,28(2):191-195.
    10. Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation[J]. Circ Res.2006;98(1):15-24.
    11. Ma L, Lu MF, Schwartz RJ, Martin JF.Bmp2is essential for cardiac cushionepithelial-mesenchymal transition and myocardial patterning[J]. Development.2005;132(24):5601-5611.
    12. Sugi Y, Yamamura H, Okagawa H, Markwald RR.Bone morphogenetic protein-2canmediate myocardial regulation of atrioventricular cushion mesenchymal cellformation in mice[J]. Dev Biol.2004;269(2):505-18.
    13. Somi S, Buffing AA, Moorman AF, Van Den Hoff MJ. Dynamic patterns ofexpression of BMP isoforms2,4,5,6, and7during chicken heart development[J].Anat Rec A Discov Mol Cell Evol Biol.2004;279(1):636-651
    14. Somi S, Buffing AA, Moorman AF, Van Den Hoff MJ.Expression of bonemorphogenetic protein-10mRNA during chicken heart development[J]. Anat Rec ADiscov Mol Cell Evol Biol.2004;279(1):579-582.
    15. Zhang H, Bradley A. Mice deficient for BMP2are nonviable and have defects inamnion/chorion and cardiac development[J]. Development.1996;122:2977-2986.
    16. Lalani SR, Thakuria JV, Cox GF, Wang X, Bi W, Bray MS, Shaw C, Cheung SW,Chinault AC, Boggs BA, Ou Z, Brundage EK, Lupski JR, Gentile J, Waisbren S,Pursley A, Ma L, Khajavi M, Zapata G, Friedman R, Kim JJ, Towbin JA,Stankiewicz P, Schnittger S, Hansmann I, Ai T, Sood S, Wehrens XH, Martin JF,Belmont JW, Potocki L.20p12.3microdeletion predisposes toWolff-Parkinson-White syndrome with variable neurocognitive deficits[J]. J MedGenet.2009;46:168-175.
    17. van Wijk B, Moorman AF, van den Hoff MJ.Role of bone morphogenetic proteins incardiac differentiation[J]. Cardiovasc Res.2007;74(2):244-255.
    18.陈长曦,杨德业.骨形态形成蛋白-2及其受体与先天性心脏病的关系[J].国际儿科学杂志,2006,33(2):108-110.
    19. Schultheiss TM, Burch JB, Lassar AB.A role for bone morphogenetic proteins in theinduction of cardiac myogenesis[J]. Genes Dev.1997;11(4):451-462.
    20. Yamada M, Revelli JP, Eichele G, Barron M, Schwartz RJ.Expression of chick Tbx-2,Tbx-3, and Tbx-5genes during early heart development:evidence for BMP2induction of Tbx2[J]. Dev Biol.2000;228(1):95-105.
    21. Schlange T, Andrée B, Arnold HH, Brand T.BMP2is required for early heartdevelopment during a distinct time period[J]. Mech Dev.2000;91(1-2):259-270.
    22. Yuan H, Reddy MA, Sun G, Lanting L, Wang M, Kato M, Natarajan R. Involvementof p300/CBP and epigenetic histone acetylation in TGF-β1-mediated genetranscription in mesangial cells[J]. Am J Physiol Renal Physiol.2013r;304(5):F601-F613.
    23. Fujii M, Nakanishi H, Toyoda T, Tanaka I, Kondo Y, Osada H, Sekido Y. Convergentsignaling in the regulation of connective tissue growth factor inmalignantmesothelioma: TGFβ signaling and defects in the Hippo signaling[J]. Cell Cycle.2012;11(18):3373-3379.
    24. Lim JY, Oh MA, Kim WH, Sohn HY, Park SI.AMP-activated protein kinase inhibitsTGF-β-induced fibrogenic responses of hepatic stellate cells by targetingtranscriptional coactivator p300[J]. J Cell Physiol.2012227(3):1081-1089.
    25. Ghosh AK, Bhattacharyya S, Wei J, Kim S, Barak Y, Mori Y, Varga J.Peroxisomeproliferator-activated receptor-gamma abrogates Smad-dependentcollagenstimulation by targeting the p300transcriptional coactivator[J]. FASEB J.2009;23(9):2968-2677.
    26. Simonsson M, Kanduri M, Gr nroos E, Heldin CH, Ericsson J.The DNA bindingactivities of Smad2and Smad3are regulated bycoactivator-mediated acetylation[J]. JBiol Chem.2006;281(52):39870-80.
    27. Liberati NT, Moniwa M, Borton AJ, Davie JR, Wang XF.An essential role for Madhomology domain1in the association of Smad3withhistone deacetylase activity[J].J Biol Chem.2001;276(25):22595-603.
    28. Itoh S, Ericsson J, Nishikawa J, Heldin CH, ten Dijke P.The transcriptionalco-activator P/CAF potentiates TGF-beta/Smad signaling[J]. Nucleic Acids Res.2000;28(21):4291-4298.
    29. Yamashita H, Murayama C, Takasugi R, Miyamoto A, Shimizu T. BMP-4suppressesprogesterone production by inhibiting histone H3acetylation of StAR in bovinegranulosa cells in vitro[J]. Mol Cell Biochem.2011;348:183-190.
    30. Pan Q, Wu Y, Lin T, Yao H, Yang Z, Gao G, Song E, Shen H. Bone morphogeneticprotein-2induces chromatin remodeling and modification at the proximal promoterof Sox9gene[J]. Biochem Biophys Res Commun.2009;379:356-361.
    31. Chen G, Zhu J, Lv T, Wu G, Sun H, Huang X, Tian J. Spatiotemporal expression ofhistone acetyltransferases, p300and CBP, in developing embryonic hearts[J]. Journalof Biomedical Science.2009;16:24.
    32.陈国珍,朱静,田杰,吴晓云,张晓萍,吴刚,孙慧超.组蛋白乙酰化酶p300和CREB结合蛋白在小鼠胚胎心发育中的时序表达[J].解剖学杂志,2008,31(4):480-482.
    33. Li L, Zhu J, Tian J, Liu X, Feng CA role for Gcn5in cardiomyocyte differentiation ofrat mesenchymal stem cells[J]. Mol Cell Biochem.2010;345(1-2):309-316.
    34. Jun JH, Yoon WJ, Seo SB, Woo KM, Kim GS, Ryoo HM, Baek JH.BMP2-activatedErk/MAP kinase stabilizes Runx2by increasing p300levels and histoneacetyltransferase activity[J]. J Biol Chem.2010;285(47):36410-36419.
    1. Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation[J]. Circ Res.2006;98(1):15-24.
    2. Shikama N, Lutz W, Kretzschmar R, Sauter N, Roth JF, Marino S, Wittwer J,Scheidweiler A, Eckner R. Essential function of p300acetyltransferase activity inheart,lung and small intestine formation [J]. EMBO J,2003,22(19):5175-5185.
    3. Chen G, Zhu J, Lv T, Wu G, Sun H, Huang X, Tian J. Spatiotemporal expression ofhistone acetyltransferases, p300and CBP, in developing embryonic hearts[J].Journal of Biomedical Science.2009;16:24.
    4.陈国珍,田杰,朱静,吕铁伟,孙慧超,组蛋白乙酰化转移酶亚型类固醇受体共激活因子1在发育心脏的时空表达[J].第二军医大学学报,2010,3(17):744-747.
    5.陈国珍,田杰,朱静,吕铁伟,孙慧超,组蛋白乙酰化转移酶亚型类固醇受体共激活因子1在发育心脏的时空表达[J].第二军医大学学报,2010,3(17):744-747.
    6.杨雪芳,田杰,陈国珍,孙慧超,钟立霖,吴晓云,朱静,小鼠胚胎心脏发育过程中组蛋白乙酰化酶亚型p300调控心脏特异转录因子的动态表达[J].重庆医科大学学报,2010,35(7):961-965.
    7. Dai, Y.S. and Markham, B.E.(2001). p300functions as a coactivator of transcriptionfactor gata-4[J]. J. Biol. Chem.276:37178–37185.
    8. Kakita, T., Hasegawa, K., Morimoto, T., Kaburagi, S., Wada, H. and Sasayama, S.p300protein as a coactivator of GATA-5in the transcription of cardiac-restrictedatrial natriuretic factor gene[J]. J. Biol. Chem.1999;274:34096–34102.
    9. Murakami, M., Nakagawa, M., Olson, E.N. and Nakagawa, O.(2005). A WWdomain protein TAZ is a critical coactivator for TBX5, a transcription factorimplicated in Holt-Oram syndrome[J]. Proc. Natl. Acad. Sci. U. S. A.102:18034–18039.
    10. Dai YS, Cserjesi P, Markham BE, Molkentin JD.The transcription factors GATA4and dHAND physically interact to synergistically activate cardiac gene expressionthrough a p300-dependent mechanism[J]. J Biol Chem.2002Jul5;277(27):24390-24398.
    11. Marcu, M.G., Jung, Y.J., Lee, S., Chung, E.J., Lee, M.J., Trepel, J. and Neckers, L..Curcumin is an inhibitor of p300histone acetyltransferase[J]. Med Chem.2006;2:169-174.
    12. Li HL, Liu C, de Couto G, Ouzounian M, Sun M, Wang AB, Huang Y, He CW, ShiY, Chen X, Nghiem MP, Liu Y, Chen M, Dawood F, Fukuoka M, Maekawa Y,Zhang L, Leask A, Ghosh AK, Kirshenbaum LA, Liu PP. Curcumin prevents andreverses murine cardiac hypertrophy[J]. J Clin Invest.2008;118(3):879-893.
    13. Sun H, Yang X, Zhu J, Lv T, Chen Y, Chen G, Zhong L, Li Y, Huang X, Huang G,Tian J. Inhibition of p300-HAT results in a reduced histone acetylation anddown-regulation of gene expression in cardiac myocytes[J]. LifeSci.2010;87:707-714.
    14. Balasubramanyam, K., Varier, R.A., Altaf, M., Swaminathan, V., Nagadenahalli, B.,Ranga, S.U. and Kundu, T.K. Curcumin, a novel p300/CREB-bindingprotein-specific inhibitor of acetyltransferase, represses the acetylation ofhistone/nonhistone proteins and histone acetyltransferase-dependent chromatintranscription[J]. J Biol Chem.2004;.279:51163-51171.
    15. Kang, J., Chen, J., Shi, Y., Jia, J. and Zhang, Y.. Curcumin induced histonehypoacetylation: the role of reactive oxygen species[J]. Biochem Pharmacol.2005;69:1205-1213.
    16. Wang L, Sun H, Pan B, Zhu J, Huang G, Huang X, Tian J. Inhibition of histoneacetylation by curcumin reduces alcohol-induced expression of heartdevelopment-related transcription factors in cardiac progenitor cells. BiochemBiophys Res Commun.2012;424(3):593-596
    17.王琳轶,田杰,钟立霖等.姜黄素干预乙醇对心肌祖细胞H3K9的高乙酰化失衡及心脏发育相关基因表达异常[J].临床心血管病杂志,2011,27(4):303-306.
    18. Zhong L, Zhu J, Lv T, Chen G, Sun H, Yang X, Huang X, Tian J. Ethanol and itsmetabolites induce Histone lysine9acetylation and an alteration of the expression ofheart development-related genes in cardiac progenitor cells[J]. Cardiovasc Toxicol.2010;10:268-274
    19.钟立霖,朱静,吴晓云,陈国珍,孙慧超,杨雪芳,田杰,乙醇及其代谢产物对心肌祖细胞的毒性及H3K9表突变作用[J].第三军医大学学报,2010,32(14):1491-1494.
    20.孙慧超,程欣然,朱静,田杰,姜黄素对小鼠胚胎心脏发育中Tbx5表达的影响[J].实用儿科临床杂志,2011,26(13):995-996.
    1.张斌,夏作理,赵晓民,张和平.氧化应激模型的建立及其评价[J].中国临床康复,2006,10(44):112-114.
    2.白玉婷.氧化应激与心血管疾病关系的研究进展[J].医学综述,2012,18(2):192-194.
    3.吴蕊,凃玲.氧化应激与心血管疾病[J].心血管病学进展,2007,28(1):110-113.
    4. Ornoy A.Embryonic oxidative stress as a mechanism of teratogenesis with specialemphasis on diabetic embryopathy[J]. Reprod Toxicol.2007;24(1):31-41.
    5.陈娟,冉丕鑫.氧化应激与染色质重构[J].国际呼吸杂志,2006,26(7):535-538.
    6. Berthiaume M, Boufaied N, Moisan A, Gaudreau L.High levels of oxidative stressglobally inhibit gene transcription and histone acetylation[J]. DNA Cell Biol.2006;25(2):124-134.
    7. Tomita K, Barnes PJ, Adcock IM. The effect of oxidative stress on histoneacetylation and IL-8release[J]. Biochem Biophys Res Commun.2003;301(2):572-577.
    8. Ito K, Hanazawa T, Tomita K, Barnes PJ, Adcock IM. Oxidative stress reduceshistone deacetylase2activity and enhances IL-8gene expression: role of tyrosinenitration[J]. Biochem Biophys Res Commun.2004;315(1):240-245.
    9. Gilmour PS, Rahman I, Donaldson K, MacNee W. Histone acetylation regulatesepithelial IL-8release mediated by oxidative stress from environmental particles[J].Am J Physiol Lung Cell Mol Physiol.2003;284(3):L533-L540.
    10. Csiszar A, Ahmad M, Smith KE, Labinskyy N, Gao Q, Kaley G, Edwards JG, WolinMS, Ungvari Z.Bone morphogenetic protein-2induces proinflammatory endothelialphenotype[J]. Am J Pathol.2006;168(2):629-638.
    11. Shao JS, Cai J, Towler DA Molecular mechanisms of vascular calcification: lessonslearned from the aorta[J]. Arterioscler Thromb Vasc Biol.2006;26(7):1423-1430.
    12. Dalfino G, Simone S, Porreca S, Cosola C, Balestra C, Manno C, SchenaFP,Grandaliano G, Pertosa G.Bone morphogenetic protein-2may represent themolecular link between oxidative stres s and vascular stiffness in chronic kidneydisease[J]. Atherosclerosis.2010;211(2):418-423.
    13. Yamada M, Revelli JP, Eichele G, Barron M, Schwartz RJ.Expression of chickTbx-2, Tbx-3, and Tbx-5genes during early heart development:evidence for BMP2induction of Tbx2[J]. Dev Biol.2000;228(1):95-105.
    14. Behesti H, Holt JK, Sowden JC.The level of BMP4signaling is critical for theregulation of distinct T-box gene expression domains and growth along thedorso-ventral axis of the optic cup[J]. BMC Dev Biol.2006;6:62.
    15. Reid MV, Murray KA, Marsh ED, Golden JA, Simmons RA, Grinspan JB.Delayedmyelination in an intrauterine growth retardation model is mediated byoxidativestress upregulating bone morphogenetic protein4[J]. J Neuropathol Exp Neurol.2012;71(7):640-653.
    16. Caron MM, Emans PJ, Cremers A, Surtel DA, Coolsen MM, van Rhijn LW, Welting
    TJ.Hypertrophic differentiation during chondrogenic differentiation of progenitor
    cells is stimulated by BMP-2but suppressed by BMP-7[J]. Osteoarthritis Cartilage.
    2013;21(4):604-613.
    1.陈长曦,杨德业.骨形态形成蛋白-2及其受体与先天性心脏病的关系[J].国际儿科学杂志,2006,33(2):108-110.
    2. Tabas JA, Hahn GV, Cohen RB, Seaunez HN, Modi WS, Wozney JM, Zasloff M,Kaplan FS.Chromosomal assignment of the human gene for bone morphogeneticprotein4[J]. Clin Orthop Relat Res.1993;293:310-316.
    3.王弘毅,张伟滨.骨形态发生蛋白信号传导和功能调节的结构基础[J].国际骨科学杂志,2008,29(6):381-383.
    4.李林,罗进勇.骨形成蛋白的信号通路及其与骨形成的关系[J].临床和实验医学杂志,2010,117:1341-1343.
    5. Keller S, Nickel J, Zhang JL, Sebald W, Mueller TD.Molecular recognition ofBMP-2and BMP receptor IA[J]. Nat Struct Mol Biol.2004;11(5):481-488.
    6. Miyazono K, Kamiya Y, Morikawa M.Bone morphogenetic protein receptors andsignal transduction[J]. J Biochem.2010;147(1):35-51.
    7. Kirsch T, Nickel J, Sebald W. BMP-2antagonists emerge from alterations in thelow-affinity binding epitope for receptor BMPR-II[J]. EMBO J.2000;19(13):3314-3324.
    8. van Wijk B, Moorman AF, van den Hoff MJ.Role of bone morphogenetic proteins incardiac differentiation[J]. Cardiovasc Res.2007;74(2):244-255.
    9.王新艳,谭玉珍.骨形态发生蛋白-2诱导心肌干细胞定向分化的信号转导机制[J].医学分子生物学杂志,2005,2(2):111-114.
    10. Nohe A, Hassel S, Ehrlich M, Neubauer F, Sebald W, Henis YI, Knaus P.The modeof bone morphogenetic protein (BMP) receptor oligomerization determines differentBMP-2signaling pathways[J]. J Biol Chem.2002;277(7):5330-5338.
    11.赵芳,孙莹璞.MAPK信号转导通路及其在脂肪分化中的作用[J].国际生殖健康/计划生育杂志,2009,28(5):301-304.
    12.赵爽.MEKK3蛋白激酶的研究进展[J].复旦学报(医学版),2010,37(6):742-746
    13. Clark JE, Sarafraz N, Marber MS.Potential of p38-MAPK inhibitors in the treatmentof ischaemic heart disease[J]. Pharmacol Ther.2007;116(2):192-206.
    14. Eriksson M, Lepp S.Mitogen-activated protein kinases and activator protein1arerequired for proliferation and cardiomyocyte differentiation of P19embryonalcarcinoma cells[J]. Biol Chem.2002;277(18):15992-6001.
    15. Ma L, Lu MF, Schwartz RJ, Martin JF.Bmp2is essential for cardiac cushionepithelial-mesenchymal transition and myocardial patterning[J]. Development.2005;132(24):5601-5611.
    16. Sugi Y, Yamamura H, Okagawa H, Markwald RR.Bone morphogenetic protein-2canmediate myocardial regulation of atrioventricular cushion mesenchymal cellformation in mice[J]. Dev Biol.2004;269(2):505-518.
    17. Somi S, Buffing AA, Moorman AF, Van Den Hoff MJ. Dynamic patterns ofexpression of BMP isoforms2,4,5,6, and7during chicken heart development[J].Anat Rec A Discov Mol Cell Evol Biol.2004;279(1):636-651
    18. Zhang H, Bradley A.Mice deficient for BMP2are nonviable and have defects inamnion/chorion and cardiac development[J]. Development.1996;122(10):2977-2986.
    19. Schultheiss TM, Burch JB, Lassar AB.A role for bone morphogenetic proteins in theinduction of cardiac myogenesis[J]. Genes Dev.1997;11(4):451-462.
    20. Rivera-Feliciano J, Tabin CJ.Bmp2instructs cardiac progenitors to form theheart-valve-inducing field[J]. Dev Biol.2006;295(2):580-588.
    21. Walters MJ, Wayman GA, Christian JL.Bone morphogenetic protein function isrequired for terminal differentiation of the heart but not for early expression ofcardiac marker genes[J]. Mech Dev.2001;100(2):263-273.
    22. Lough J, Barron M, Brogley M, Sugi Y, Bolender DL, Zhu X.Combined BMP-2andFGF-4, but neither factor alone, induces cardiogenesis in non-precardiac embryonicmesoderm[J]. Dev Biol.1996;178(1):198-202.
    23. Kruithof BP, van Wijk B, Somi S, Kruithof-de Julio M, Pérez Pomares JM, WeesieF,Wessels A, Moorman AF, van den Hoff MJ.BMP and FGF regulate thedifferentiation of multipotential pericardial mesoderm into the myocardial orepicardial lineage[J]. Dev Biol.2006;295(2):507-522.
    24. Alsan BH, Schultheiss TM.Regulation of avian cardiogenesis by Fgf8signaling[J].Development.2002;129(8):1935-1943.
    25. Nakajima Y, Yamagishi T, Hokari S, Nakamura H.Mechanisms involved invalvuloseptal endocardial cushion formation in earlycardiogenesis: roles oftransforming growth factor (TGF)-beta and bonemorphogenetic protein (BMP)[J].Anat Rec.2000;258(2):119-127.
    26. Luna-Zurita L, Prados B, Grego-Bessa J, Luxán G, del Monte G, Benguría A,AdamsRH, Pérez-Pomares JM, de la Pompa JL.Integration of a Notch-dependentmesenchymal gene program and Bmp2-driven cell invasiveness regulates murinecardiac valve formation[J]. J Clin Invest.2010;120(10):3493-507.
    27. Dyer LA, Makadia FA, Scott A, Pegram K, Hutson MR, Kirby ML.BMP signalingmodulates hedgehog-i nduced secondary heart field proliferation[J]. Dev Biol.2010;348(2):167-176.
    28. Zhang Z, Li H, Ma Z, Feng J, Gao P, Dong H, Zhang Z.Efficient cardiomyogenicdifferentiation of bone marrow mesenchymal stromal cells by combination of Wnt11and bone morphogenetic protein2[J]. Exp Biol Med (Maywood).2012;237(7):768-776.
    29. Ladd AN, Yatskievych TA, Antin PB.Regulation of avian cardiac myogenesis byactivin/TGFbeta and bone morphogenetic proteins[J]. Dev Biol.1998;204(2):407-19.
    30. Harada K, Ogai A, Takahashi T, Kitakaze M, Matsubara H, Oh H.Crossveinless-2controls bone morphogenetic protein signaling during earlycardiomyocytedifferentiation in P19cells[J]. J Biol Chem.2008;283(39):26705-26713.
    31. Kami D, Shiojima I, Makino H, Matsumoto K, Takahashi Y, Ishii R, Naito AT,ToyodaM, Saito H, Watanabe M, Komuro I, Umezawa A.Gremlin enhances thedetermined path to cardiomyogenesis[J]. PLoS One.2008;3(6):e2407.
    32. Prall OW, Menon MK, Solloway MJ, Watanabe Y, Zaffran S, Bajolle F, BibenC,McBride JJ, Robertson BR, Chaulet H, Stennard FA, Wise N, Schaft D, WolsteinO,Furtado MB, Shiratori H, Chien KR, Hamada H, Black BL, Saga Y, RobertsonEJ,Buckingham ME, Harvey RP.An Nkx2-5/Bmp2/Smad1negative feedback loopcontrols heart progenitor specification and proliferation[J]. Cell.2007;128(5):947-959.
    33. Sparrow DB, Kotecha S, Towers N, Mohun TJ.Xenopus eHAND: a marker for thedeveloping cardiovascular system of the embryo that is regulated by bonemorphogenetic proteins[J]. Mech Dev.1998;71(1-2):151-163.
    34. Nakajima Y, Yamagishi T, Ando K, Nakamura H.Significance of bone morphogeneticprotein-4function in the initial myofibrillogenesis of chick cardiogenesis[J]. DevBiol.2002;245(2):291-303.
    35. Bin Z, Sheng LG, Gang ZC, Hong J, Jun C, Bo Y, Hui S.Efficient cardiomyocytedifferentiation of embryonic stem cells by bone morphogenetic protein-2combinedwith visceral endoderm-like cells[J]. Cell Biol Int.2006;30(10):769-776.
    36. Yamada M, Revelli JP, Eichele G, Barron M, Schwartz RJ.Expression of chick Tbx-2,Tbx-3, and Tbx-5genes during early heart development:evidence for BMP2induction of Tbx2[J]. Dev Biol.2000;228(1):95-105.
    37. Schlange T, Andrée B, Arnold HH, Brand T.BMP2is required for early heartdevelopment during a distinct time period[J]. Mech Dev.2000;91(1-2):259-270.
    38. Chen WC, Zhang Y, Ma D, Ma XJ, Shou WN, Huang GY.Bmp2regulates theinteraction between EPDCs and myocytes in cardiac OFT[J]. Med Hypotheses.2012;79(2):174-177.
    39. Cai X, Nomura-Kitabayashi A, Cai W, Yan J, Christoffels VM, Cai CL.MyocardialTbx20regulates early atrioventricular canal formation and endocardialepithelial-mesenchymal transition via Bmp2[J]. Dev Biol.2011;360(2):3813-90.
    40. Meng H, Vera I, Che N, Wang X, Wang SS, Ingram-Drake L, Schadt EE, DrakeTA,Lusis AJ.I dentification of Abcc6as the major causal gene for dystrophiccardiaccalcification in mice through integrative genomics[J]. Proc Natl Acad Sci U SA.2007;104(11):4530-4535.
    41. Masaki M, Izumi M, Oshima Y, Nakaoka Y, Kuroda T, Kimura R, Sugiyama S, TeraiK, Kitakaze M, Yamauchi-Takihara K, Kawase I, Hirota H.Smad1protectscardiomyocytes from ischemia-reperfusion injury[J]. Circulation.2005;111(21):2752-2759.
    42. Wang YX, Qian LX, Liu D, Yao LL, Jiang Q, Yu Z, Gui YH, Zhong TP, SongHY.Bone morphogenetic protein-2acts upstream of myocyte-specific enhancerfactor2a to control embryonic cardiac contractility[J]. Cardiovasc Res.2007;74(2):290-303.
    43. Luna-Zurita L, Prados B, Grego-Bessa J, Luxán G, del Monte G, Benguría A,AdamsRH, Pérez-Pomares JM, de la Pompa JL.Integration of a Notch-dependentmesenchymal gene program and Bmp2-driven cell invasiveness regulates murinecardiac valve formation[J]. J Clin Invest.2010;120(10):3493-507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700