肝素化bFGF支架在心肌损伤修复中的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:冠状动脉粥样硬化性心脏病(Coronary artery disease, CAD)严重威胁着人类的健康,冠状动脉搭桥术和经皮冠脉介入治疗挽救了大量冠心病患者的生命。但是,约12%的患者因弥漫性冠脉血管病变、搭桥远端靶血管直径偏小以及二次手术缺乏桥血管等原因不适合上述治疗。最近,我们发明了一种新的心肌再血管化的方法:心肌钻孔结合肝素化碱性成纤维细胞生长因子(Basic fibroblast growth factor, bFGF)缓释支架植入。前期的实验已经证实了这种新方法的可行性,本文旨在揭示其在抗心肌缺血性损伤中的作用。
     方法:利用小型猪急性心梗模型,设立对照组和治疗组。对照组不接受任何治疗,治疗组于梗死区内钻两个直径为3.5mm的穿心肌孔道并植入两枚支架。
     (1)采用MRI扫描及生理记录仪评价心肌重构、心功能相关参数变化;
     (2)采用RT-PCR、免疫组化方法观察心肌纤维化,细胞凋亡及心肌干细胞增殖、分化情况,以揭示该方法的作用机制;
     (3)于细胞水平测量每个孔道的有效治疗半径,为确定孔道间距提供指导性意见。
     结果:(1)术后6周,治疗组左室舒张末容积(Left ventricular end-diastolic volume, LVEDV)、左室收缩末容积(Left ventricular end-systolic volume, LVESV)明显低于对照组(P<0.05);缺血区室壁厚度明显厚于对照组(P<0.001);左室射血分数(Left ventricular ejection fraction, LVEF)明显高于对照组(P<0.001),左室内压最大上升速率(The maximum velocity of LV contraction, dP/dtmax)和左室内压最大下降速率(Themaximum velocity of LV diastole, dP/dtmin)亦明显优于对照组(P<0.001)。
     (2)术后6周,治疗组血管内皮细胞生长因子(Vascular endothelial growth factor, VEGF)、血管性血友病因子(Von Willebrand Factor, vWF)、转化生长因子β3(Transforming growth factor-β3, TGF-β3)、白介素1β(Interleukin-1β, IL-1β)、基质细胞衍生因子-1(stromal cell-derived factor-1, SDF-1)和CXC族细胞因子受体4(CXC chemokine receptor4,CXCR4) mRNA表达较对照组上调(P<0.05)。vWF染色发现治疗组新生血管密度较对照组显著增加(P<0.001)。TUNEL染色结果显示治疗组细胞凋亡明显少于对照组(P<0.001)。5-溴脱氧尿嘧啶核苷(5-bromo-2-deoxyuridine, BrdU)染色定量分析显示治疗组新生心肌明显多于对照组(P<0.001)。c-kit染色有相似的结果(P<0.001)。同时,Masson三色法染色证实治疗组存活心肌面积明显高于对照组(P<0.001)。
     (3)心肌打孔结合支架植入治疗的效果与距孔道中心距离呈明显的负相关。促血管再生的有效范围为距孔道中心10 mm,增加心肌存活的有效范围为5-7.5 mm,凋亡则在7.5-10mm之间。
     结论:(1)心肌钻孔结合肝素化bFGF缓释支架植入可以明显抑制心室重构,改善心功能。
     (2)该方法通过减轻心梗后纤维化,抑制心肌细胞凋亡,促进心肌干细胞增殖、向心肌细胞分化,发挥心肌缺血性损伤修复作用。
     (3)每个孔道的有效治疗半径为5-7.5mm。因此建议孔道间距为10mm。
Objective:Coronary artery disease remains the leading cause of morbidity and mortality in the world. Approximately 12% of patients with coronary artery disease, because of unfavorable characteristics such as diffuse coronary atherosclerosis, small distal vessels or lack of suitable bridge vessels, are not amenable to coronary artery bypass grafting or percutaneous coronary intervention. Recently, we have developed a novel method:transmyocardial drilling revascularization combined with heparinized basic fibroblast growth factor (bFGF)-incorporating stent implantation. In previous studies, the feasibility of this method has been confirmed. The objective of this study is to investigate the effects of the method against ischemic myocardial injury.
     Methods:The miniswine model of acute myocardial ischemia was used in present study. The animals were divided into control group (without any treatment) and treatment group. In treatment group, two channels with 3.5 mm in diameter were established in ischemic region, followed by implantation of two stents.
     (1) Myocardial remodeling and left ventricular function related parameters were determined by MRI scan and physiological recorder.
     (2) Myocardial fibrosis, cell apoptosis, proliferation and differentiation of cardiac stem cell were evaluated by RT-PCR and immunohistochemical analysis to explore the underlying mechanisms.
     (3) The effective radius of every channel was determined at cell level, to provide a guide for selection of pitch of channels
     Results:
     (1) Six weeks after operation, left ventricular end-diastolic volume (LVEDV) and LV end-systolic volume (LVESV) were significantly decreased (P<0.05), the wall thick of ischemic region increased significantly (P<0.001), LV ejection fraction (LVEF) was significantly promoted (P<0.001), and the maximum velocity of LV contraction (dP/dtmax) and the maximum velocity of LV diastole (dP/dtmin) were significantly improved (P<0.001) in treatment group, compared with control group.
     (2) Six weeks after therapy, there was up-regulative expressions of vascular endothelial growth factor (VEGF), von Willebrand Factor (vWF), transforming growth factor-β3 (TGF-β3), Interleukin-1β(IL-1β), stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) mRNA in treatment group (P<0.05), compared with control group. vWF staining analysis showed an enhanced angiogenesis in treatment group relative to control group (P<0.001). It was demonstrated by TUNEL that cell opoptosis was significantly inhibited in treatment group compared with control group (P<0.001). Quantitative analysis of 5-bromo-2-deoxyuridine (BrdU) stained positive region revealed more neonatal myocytes in treatment group than the control (P<0.001). There were similar results in c-kit staining analysis (P<0.001). Masson trichrome staining analysis demonstrated that myocardial viability was significantly improved in treatment group compared with control group (P<0.001).
     (3) There was a significant negative correlationship between the effects of transmyocardial drilling revascularization combined with stent implantation and the distance away from the center of channels. Although the effective radius of angiogenesis was more than 10 mm, the result of myocardial viability analysis was 5 mm, and cell apoptosis analysis yielded an effective radius of 7.5 mm.
     Conclusions:
     (1) Transmyocardial drilling revascularization combined with heparinized bFGF-incorporating stent implantation may reverse ventricular remodeling, and promote left ventricular function.
     (2) This method may attenuate myocardial fibrosis, inhibit cell apoptosis, and promote proliferation of cardiac stem cells and differentiation to myocytes, consequently provide protective effects against ischemic injury.
     (3) The effective radius of every channel was 5-7.5 mm, it is therefore suggested that the pitch between two channels should be 10 mm.
引文
[1]Brenner DJ. Medical imaging in the 21st century-getting the best bang for the rad [J]. N Engl J Med,2010,362(10):943-5.
    [2]Sen PK, Udwadia Te, Kinare SG, et al. Transmyocardial acupuncture, a new approach to myocardial revascularization [J]. J Thorac Cardiaovasc Surg,1965,50(2): 181-9.
    [3]Atluri P, Panlilio CM, Liao GP, et al. Transmyocardial revascularization to enhance myocardial vasculogenesis and hemodynamic function [J]. J Thorac Cardiovasc Surg,2008,135(2):283-91
    [4]Hughes GC, Biswas SS, Yin B, et al. A comparison of mechanical and laser transmyocardial revascularization for induction of angiogenesis and arteriogenesis in chronically ischemic myocardium [J]. J Am Coll Cardiol,2002,39(7):1220-8.
    [5]Allen KB, Dowling RD, Fudge TL, et al. Comparison of transmyocardial revascularization with medical therapy in patients with refractory angina [J]. N Engl J Med,1999,341:1029-36.
    [6]Gassler. N, Wintzer HO, Stubbe HM, et al. Transmyocardial laser revascularization histological features in human nonresponder myocardium [J]. Circulation,1997,95(2):371-5.
    [7]Chu VF, Giaid A, Kuang JQ, et al. Angiogenesis in transmyocardial revascularization:comparison of laser versus mechanical punctures [J]. Ann Thorac Surg,1999,68(2):301-7.
    [8]Liu XC, Zhao J, Wang Y, et al. Heparin- and basic fibroblast growth factor-incorporated stent:A new promising method for myocardial revascularization [J]. J Surg Res (In Press)
    [9]Chang PY, Lu SC, Lee CM, et al. Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation [J]. Circ Res,2008,102 (8):933-41
    [10]Whalen GF, Shing Y, Folkman J. The fate of intravenously administered bFGF and the effect of heparin [J]. Growth Factors,1989,1 (2):157-64.
    [11]Wang Y, Liu XC, Zhang GW, et al. A new transmyocardial degradable stent combined with growth Factor, heparin, and stem cells in acute myocardial infarction [J]. Cardiovasc Res,2009,84(3):461-9.
    [12]Choi SC, Kim SJ, Choi JH, et al. Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways [J]. Stem Cells Dev,2008,17:725-36.
    [13]Langer HF, Stellos K, Steingen C, et al. Platelet derived bFGF mediates vascular integrative mechanisms of mesenchymal stem cells in vitro [J]. J Mol Cell Cardiol, 2009,47:315-25.
    [14]Chang PY, Lu SC, Lee CM, et al. Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation [J]. Circ Res,2008,102:933-41
    [15]Virag JA, Rolle ML, Reece J, et al. Fibroblast growth factor-2 regulates myocardial infarct repair:effects on cell proliferation, scar contraction, and ventricular function [J]. Am J Pathol,2007,171:1431-40.
    [16]Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans [J]. Science,2009,324(5923):98-102.
    [17]Kiihn B, del Monte F, Hajjar RJ, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair [J]. Nat Med,2007, 13(8):962-9.
    [18]Linke A, Muller P, Nurzynska D, et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function [J]. Proc Natl Acad Sci USA,2005,102(25):8966-71.
    [19]Lutter G, Martin J, Dern P, et al. Evaluation of the indirect revascularization method after 3 months of chronic myocardial ischemia [J]. Eur J Cardiothorac Surg, 2000,18:38-45.
    [20]Maurer MS, Burkhoff D, Fried LP, et al. Ventricular structure and function in hypertensive participants with heart failure and a normal ejection fraction:the Cardiovascular Health study [J]. J Am Coll Cardiol,2007,49:972-81.
    [21]Massie BM, Carson PE, McMurray JJ, et al. Irbesartan in patients with heart failure and preserved ejection fraction [J]. N Engl J Med,2008,359:2456-67.
    [22]Westermann D, Kasner M, Steendijk P, et al. Role of left ventricular stiffness in heart failure with normal ejection fraction [J]. Circulation,2008,117:2051-60.
    [23]Nahrendorf M, Hiller KH, Theisen D, et al. Effect of transmyocardial laser revascularization on myocardial perfusion and left ventricular remodeling after myocardial infarction in rats [J]. Radiology,2002,225:487-93.
    [24]Eckstein FS, Scheule AM, Vogel U, et al. Transmyocardial laser revascularization in the acute ischaemic heart:no improvement of acute myocardial perfusion or prevention of myocardial infarction [J]. Eur J Cardiothorac Surg,1999, 15:702-8.
    [25]Malekan R, Kelley ST, Suzuki Y, et al. Transmyocardial laser revascularization fails to prevent left ventricular functional deterioration and aneurysm formation after acute myocardial infarction in sheep [J]. J Thorac Cardiovasc Surg,1998,116: 752-62.
    [26]Gee E, Milkiewicz M, Haas TL. p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress-induced angiogenesis [J]. J Cell Physiol,2010,222 (1):120-6.
    [27]Przybylski M. A review of the current research on the role of bFGF and VEGF in angiogenesis [J]. J Wound Care,2009,18(12):516-9.
    [28]Alavi A, Hood JD, Frausto R, et al. Role of raf in vascular protection from distinct apoptotic stimuli [J]. Science,2003,301:94-6.
    [29]Jiang ZS, Padua RR, Ju H, et al. Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C [J]. Am J Physiol Heart Circ Physiol,2002,282:1071-80.
    [30]Karsan A, Yee E, Poirier GG, et al. Fibroblast growth factor-2 inhibits endothelial cell apoptosis by Bcl-2-dependent and independent mechanisms [J]. Am J Pathol, 1997,151:1775-84.
    [31]Zittermann SI, Issekutz AC. Endothelial growth factors VEGF and bFGF differentially enhance monocyte and neutrophil recruitment to inflammation [J]. J Leukoc Biol,2006,80(2):247-57.
    [32]Anghelina M, Krishnan P, Moldovan L, et al. Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair:conversion of cell columns into fibrovascular bundles [J]. Am J Pathol,2006,168(2):529-41.
    [33]Rosenblatt-Velin N, Lepore MG, Cartoni C, et al. FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes [J]. J Clin Invest,2005,115:1724-33.
    [34]Tallini YN, Greene KS, Craven M, et al. c-kit expression identifies cardiovascular precursors in the neonatal heart [J]. Proc Natl Acad Sci USA,2009, 106(6):1808-13.
    [35]Smith RR, Barile L, Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens [J]. Circulation,2007,115:896-908.
    [36]Urbanek K, Rota M, Cascapera S, et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival [J]. Circ Res,2005,97: 663-73.
    [37]Takehara N, Tsutsumi Y, Tateishi K, et al. Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction [J]. J Am Coll Cardiol,2008,52(23): 1858-65.
    [38]Arai Y, Fujita M, Marui A, et al. Combined treatment with sustained-release basic fibroblast growth factor and heparin enhances neovascularization in hypercholesterolemic mouse hindlimb ischemia [J]. Circ J,2007,71:412-7
    [39]Reis RC, Schuppan D, Barreto AC, et al. Endostatin competes with bFGF for binding to heparin-like glycosaminoglycans [J]. Biochem Biophys Res Commun, 2005,333(3):976-83.
    [40]Lindner V, Lappi DA, Baird A, et al. Role of basic fibroblast growth factor in vascular lesion formation [J]. Circ Res,1991,68(1):106-13.
    [41]Hughes SE, Crossman D, Hall PA. Expression of basic and acidic fibroblast growth factors and their receptor in normal and atherosclerotic human arteries [J]. Cardiovasc Res,1993,27(7):1214-9.
    [42]Unger EF, Banai S, Shou M, et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model [J]. Am J Physiol,1994,266 (4): 1588-95.
    [43]Wempe F, Lindner V, Augustin HG. Basic fibroblast growth factor (bFGF) regulates the expression of the CC chemokine monocyte chemoattractant protein-1 (MCP-1) in autocrine-activated endothelial cells [J]. Arterioscler Thromb Vasc Biol, 1997,17(11):2471-8.
    [44]Nakao S, Maruyama K, Zandi S, et al. Lymphangiogenesis and angiogenesis: concurrence and/or dependence? Studies in inbred mouse strains [J]. FASEB J,2010, 24(2):504-13.
    [45]Schgoer W, Theurl M, Jeschke J, et al. Gene therapy with the angiogenic cytokine secretoneurin induces therapeutic angiogenesis by a nitric oxide-dependent mechanism [J]. Circ Res,2009,105(10):994-1002.
    [46]Jia J, Cai Y, Wang R, et al. Overexpression of allograft inflammatory factor-1 promotes the proliferation and migration of human endothelial cells (HUV-EC-C) probably by up-regulation of basic fibroblast growth factor [J]. Pediatr Res,2010, 67(1):29-34.
    [47]Mannell H, Hammitzsch A, Mettler R, et al. Suppression of DNA-PKcs enhances FGF-2 dependent human endothelial cell proliferation via negative regulation of Akt [J]. Cell Signal,2010,22(1):88-96.
    [48]Liu FL, Lin LH, Sytwu HK, et al. GDF-5 is suppressed by IL-lbeta and enhances TGF-beta3-mediated chondrogenic differentiation in human rheumatoid fibroblast-like synoviocytes [J]. Exp Mol Pathol,2010,88(1):163-70.
    [49]Shyy YJ, Hsieh HJ, Usami S, et al. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium [J]. Proc Natl Acad Sci USA,1994,91(11):4678-82.
    [50]Klagsbrun M. The fibroblast growth factor family:structural and biological properties [J]. Prog Growth Factor Res,1989,1(4):207-35.
    [51]Ware JA, Simons M. Angiogenesis in ischemic heart disease [J]. Nat Med,1997, 3(2):158-64.
    [52]Cuevas P, Carceller F, Reimers D, et al. Fibroblast growth factor-1 inhibits medial smooth muscle cells apoptosis afterballoon injury [J]. Neurol Res,2000,22(2): 185-8.
    [53]Tamatani M, Ogawa S, Nunez G, et al. Growth factors prevent changes in Bcl-2 and Bax expression and neuronal apoptosis induced by nitric oxide [J]. Cell Death Differ,1998,5(10):911-9.
    [54]Kazama H, Yonehara S. Oncogenic. K-Ras and basic fibroblast growth factor prevent Fas-mediated apoptosis in fibroblasts through activation of mitogen-activated protein kinase [J]. J Cell Biol,2000,148(3):557-66.
    [55]Bridges RS, Kass D, Loh K, et al. Gene expression profiling of pulmonary fibrosis identifies Twist1 as an antiapoptotic molecular "rectifier" of growth factor signaling [J]. Am J Pathol,2009,175(6):2351-61.
    [56]Toutain CE, Brouchet L, Raymond-Letron I, et al. Prevention of skin flap necrosis by estradiol involves reperfusion of a protected vascular network [J]. Circ Res,2009,104(2):245-54.
    [57]Chang PY, Lu SC, Lee CM, et al. Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation [J]. Circ Res,2008,102(8):933-41.
    [58]Tallini YN, Greene KS, Craven M, et al. c-kit expression identifies cardiovascular precursors in the neonatal heart [J]. Proc Natl Acad Sci USA,2009, 106(6):1808-13.
    [59]Wu SM, Fujiwara Y, Cibulsky SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart [J]. Cell 2006, 127(6):1137-50.
    [60]Urbanek K, Cesselli D, Rota M, et al. Stem cell niches in the adult mouse heart [J]. Proc Natl Acad Sci USA,2006,103(24):9226-31.
    [61]Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts [J]. Nat Med, 2003,9(9):1195-201.
    [62]Vandervelde S, van Luyn MJ, Tio RA, et al. Signaling factors in stem cell-mediated repair of infarcted myocardium [J]. J Mol Cell Cardiol,2005,39: 363-76.
    [63]Ceradini DJ, Kulkarni AR, Callaghan MJ et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1 [J]. Nat Med,2004, 10:858-64.
    [64]Ratajczak MZ, Reca R, Wysoczynski M, et al. Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)-implications for trafficking of CXCR4+ stem cells [J]. Exp Hematol,2006,34:986-95.
    [65]Askari AT, Unzek S, Popovic ZB et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy [J]. Lancet, 2003,362:697-703.
    [66]Czarnowska E, Gajerska-Dzieciatkowska M, Kusmierski K, et al. Expression of SDF-1-CXCR4 axis and an anti-remodelling effectiveness of foetal-liver stem cell transplantation in the infarcted rat heart [J]. J Physiol Pharmacol,2007,58(4): 729-44.
    [67]Penn MS. Importance of the SDF-1:CXCR4 axis in myocardial repair [J]. Circ Res,2009,104(10):1133-5.
    [68]Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1 alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury [J]. Circulation,2004,110: 3300-5.
    [69]Likosky DS, Dacey LJ, Baribeau YR, et al. Long-term survival of the very elderly undergoing coronary artery bypass grafting [J]. Ann Thorac Surg,2008,85(4): 1233-7.
    [70]Dacey LJ, Likosky DS, Ryan TJ Jr, et al. Long-term survival after surgery versus percutaneous intervention in octogenarians with multivessel coronary disease [J]. Ann Thorac Surg,2007,84(6):1904-11;
    [71]From AM, Rihal CS, Lennon RJ, et al. Temporal trends and improved outcomes of percutaneous coronary revascularization in nonagenarians [J]. JACC Cardiovasc Interv,2008,1(6):692-8.
    [72]Gimelli A, Rossi G, Landi P, et al. Stress/Rest Myocardial Perfusion Abnormalities by Gated SPECT:Still the Best Predictor of Cardiac Events in Stable Ischemic Heart Disease [J]. J Nucl Med,2009,50(4):546-53.
    [73]Horvath KA. Transmyocardial laser revascularization [J]. J Card Surg,2008, 23(3):266-76.
    [74]Serruys PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease [J]. N Engl J Med,2009,360(10):961-72.
    [1]Jeon O, Hwang KC, Yoo KJ, et al. Combined sustained delivery of basic fibroblast growth factor and administ ration of granulocyte colony stimulating factor: synergistic effect on angiogenesis in mouse ischemic limbs [J]. J Endovasc Ther, 2006,13:175-81.
    [2]Esain V, Postlethwait JH, Charnay P, et al. FGF-receptor signalling controls neural cell diversity in the zebrafish hindbrain by regulating olig2 and sox9 [J]. Development,2010,137(1):33-42.
    [3]Casanovas O, Hicklin D, Bergers G, et al. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors [J]. Cancer Cell,2005,8:299-309.
    [4]Cohen MV, Vernon J, Yaghdjian V, et al. Longitudinal changes in myocardial basic fibroblast growth factor (FGF-2) activity following coronary artery ligation in the dog [J]. J Mol Cell Cardiol,1994,26(5):683-90.
    [5]Song Y, Nestor KE, McFarland DC, et al. Effect of glypican-1 covalently attached chains on turkey myogenic satellite cell proliferation, differentiation, and fibroblast growth factor 2 responsiveness [J]. Poult Sci,2010,89(1):123-34.
    [6]Levin EG, Sikora L, Ding L, et al. Suppression of tumor growth and angiogenesis in vivo by a truncated form of 24-kd fibroblast growth factor (FGF)-2 [J]. Am J Pathol,2004,164:1183-90.
    [7]Kikukawa M, Umahara T, Kikawada M, et al. Peripheral T-cell lymphoma presenting as myelofibrosis with the expression of basic fibroblast growth factor [J]. Geriatr Gerontol Int,2009,9(4):395-8.
    [8]Chua CC, Rahimi N, Forsten-williams K, et al. Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2 [J]. Circ Res,2004,94:316-23.
    [9]Maffucci T, Raimondi C, Abu-Hayyeh S, et al. A phosphoinositide 3-kinase/phospholipase Cgammal pathway regulates fibroblast growth factor-induced capillary tube formation [J]. PLoS One,2009,4(12):e8285.
    [10]Alavi A, Hood JD, Frausto R, et al. Role of raf in vascular protection from distinct apoptotic stimuli [J]. Science,2003,301:94-6.
    [11]Qiu W, Leibowitz B, Zhang L, et al. Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA through the PI3K/AKT/p53 axis [J]. Oncogene,2010,29(11):1622-32.
    [12]Boosani CS, Nalabothula N, Sheibani N, et al. Inhibitory effects of arresten on bFGF-induced proliferation, migration, and matrix metalloproteinase-2 activation in mouse retinal endothelial cells [J]. Curr Eye Res,2010,35(1):45-55.
    [13]Chang PY, Lu SC, Lee CM, et al. Homocysteine Inhibits Arterial Endothelial Cell Growth Through Transcriptional Downregulation of Fibroblast Growth Factor-2 Involving G Protein and DNA Methylation [J]. Circ Res,2008,102(8):933-41.
    [14]Ko SH, Behr B, Longaker MT. Discussion. TGF-betal RNA interference in mouse primary dura cell culture:downstream effects on TGF receptors, FGF-2, and FGF-R1 mRNA levels [J]. Plast Reconstr Surg,2009,124(5):1474-6.
    [15]Kalghatgi S, Friedman G, Fridman A, et al. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release [J]. Ann Biomed Eng,2010,38(3):748-57.
    [16]Wang S, Zhang Z, Lin X, et al. A polysaccharide, MDG-1, induces S1P1 and bFGF expression and augments survival and angiogenesis in the ischemic heart [J]. Glycobiology,2010,20(4):473-84.
    [17]Marui A, Tabata Y, Kojima S, et al. A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel:an initial report of the phase Ⅰ-Ⅱa study [J]. Circ J,2007,71:1181-6.
    [18]Yang X, Guo M, Wan YJ. Deregulation of growth factor, circadian clock, and cell cycle signaling in regenerating hepatocyte RXRalpha-deficient mouse livers [J]. Am J Pathol,2010,176(2):733-43.
    [19]Kundumani-Sridharan V, Niu J, Wang D, et al.15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis requires Src-mediated Egr-1-dependent rapid induction of FGF-2 expression [J]. Blood,2010,115(10):2105-16.
    [20]Virag JA, Rolle ML, Reece J, et al. Fibroblast growth factor-2 regulates myocardial infarct repair:effects on cell proliferation, scar contraction, and ventricular function [J]. Am J Pathol,2007,171(5):1431-40.
    [21]Jiang X, Zou S, Ye B, et al. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits [J]. Bone,2010,46(4): 1156-61.
    [22]Ahn HJ, Lee WJ, Kwack K, et al. FGF2 stimulates the proliferation of human mesenchymal stem cells through the transient activation of JNK signaling [J]. FEBS Lett,2009,583(17):2922-6.
    [23]Hirooka T, Fujiwara Y, Inoue S, et al. Suppression of fibroblast growth factor-2 expression:possible mechanism underlying methylmercury-induced inhibition of the repair of wounded monolayers of cultured human brain microvascular endothelial cells [J]. J Toxicol Sci,2009,34(4):433-9.
    [24]Bruns AF, van Bergeijk J, Lorbeer C, et al. Fibroblast growth factor-2 regulates the stability of nuclear bodies [J]. Proc Natl Acad Sci USA,2009,106(31):12747-52.
    [25]Lee EY, Xia Y, Kim WS, et al. Hypoxia-enhanced wound-healing function of adipose-derived stem cells:increase in stem cell proliferation and up-regulation of VEGF and bFGF [J]. Wound Repair Regen,2009,17(4):540-7.
    [26]Iwakura A, Fujita M, Kataoka K, et al. Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and vent ricular function in a rat infarct model [J]. Heart Vessels,2003,18(4):93-9.
    [27]Nakajima H, Sakakibara Y, Tambara K, et al. Therapeutic angiogenesis by the cont rolled release of basic fibroblast growth factor for ischemic limb and heart injury:toward safety and minimal invasiveness [J]. J Artif Organs,2004,7:58-61.
    [28]Shao ZQ, Takaji K, Katayama Y, et al. Effects of intramyocardial administ ration of slow-release basic fibroblast growth factor on angiogenesis and vent ricular remodeling in a rat infarct model [J]. Circ J,2006,70:471-77.
    [29]Udelson JE, Dilsizian V, Laham RJ, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 improves stress and rest myocardial perfusion abnormalities in patients with severe symptomatic chronic coronary artery disease. Circulation,2000,102:1605-10.
    [30]Laham RJ, Chronos NA, Pike M, et al. Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease:results of a phase I open-label dose escalation study [J]. J Am Coll Cardiol,2000,36(7):2132-9.
    [31]van Wijk B, van den Berg G, Abu-Issa R, et al. Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein- and fibroblast growth factor-signaling pathways [J]. Circ Res,2009,105(5): 431-41.
    [32]Lederman RJ, Mendelsohn FO, Anderson RD, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study):a randomised trial [J]. Lancet,2002,359:2053-2058.
    [33]Leali D, Alessi P, Coltrini D, et al. Fibroblast growth factor-2 antagonist and antiangiogenic activity of long-pentraxin 3-derived synthetic peptides [J]. Curr Pharm Des,2009,15(30):3577-89.
    [34]Wenk E, Murphy AR, Kaplan DL, et al. The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration [J]. Biomaterials,2010,31(6):1403-13.
    [35]Cucchiarini M, Schetting S, Terwilliger EF, et al. rAAV-mediated overexpression of FGF-2 promotes cell proliferation, survival, and alpha-SMA expression in human meniscal lesions [J]. Gene Ther,2009,16(11):1363-72.
    [36]Hirobe T, Shinpo T, Higuchi K, et al. Life cycle of human melanocytes is regulated by endothelin-1 and stem cell factor in synergy with cyclic AMP and basic fibroblast growth factor [J]. J Dermatol Sci,2010,57(2):123-31.
    [37]Neira JA, Tainturier D, Pena MA, et al. Effect of the association of IGF-I, IGF-II, bFGF, TGF-betal, GM-CSF, and LIF on the development of bovine embryos produced in vitro [J]. Theriogenology,2010,73(5):595-604.
    [38]Thomopoulos S, Das R, Sakiyama-Elbert S, et al. bFGF and PDGF-BB for tendon repair:controlled release and biologic activity by tendon fibroblasts in vitro [J]. Ann Biomed Eng,2010,38(2):225-34.
    [39]Suwinska A, Tarkowski AK, Ciemerych MA. Pluripotency of bank vole embryonic cells depends on FGF2 and activin A signaling pathways [J]. Int J Dev Biol,2010,54(1):113-24.
    [40]Reis RC, Schuppan D, Barreto AC, et al. Endostatin competes with bFGF for binding to heparin-like glycosaminoglycans [J]._Biochem Biophys Res Commun, 2005,333(3):976-83.
    [41]Lu H, Xu X, Zhang M, et al. Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs [J]. Proc Natl Acad Sci USA,2007,104(29):12140-5.
    [42]Kawasuji M, Nagamine H, Ikeda M, et al. Therapeutic angiogenesis with intramyocardial administ ration of basic fibroblast growth factor [J]. Ann Thorac Surg, 2000,69(4):1155-61.
    [43]Han H, Ao Q, Chen G, et al. A novel basic fibroblast growth factor delivery system fabricated with heparin-incorporated fibrin-fibronectin matrices for repairing rat sciatic nerve disruptions [J]. Biotechnol Lett,2010,32(4):585-91.
    [44]Ho YC, Wu SJ, Mi FL, et al. Thiol-modified chitosan sulfate nanoparticles for protection and release of basic fibroblast growth factor [J]. Bioconjug Chem,2010, 21(1):28-38.
    [45]Kamo K, Miyakoshi N, Kasukawa Y, et al. Effects of single and cyclical local injections of basic fibroblast growth factor on cancellous bone defects in rabbits [J]. J Orthop Sci,2009,14(6):811-9.
    [46]Babkina IV, Osipov DA, Solovyov YN, et al. Endostatin, placental growth factor, and fibroblast growth factors-1 and -2 in the sera of patients with primary osteosarcomas [J]. Bull Exp Biol Med,2009,148(2):246-9.
    [47]Yoshida T, Sakamoto A, Tsukamoto N, et al. Establishment of an animal model of a pasteurized bone graft, with a preliminary analysis of muscle coverage or FGF-2 administration to the graft [J]. J Orthop Surg Res,2009,4(2):31.
    [48]Chaiyasate K, Schaffner A, Jackson IT, et al. Comparing FK-506 with basic fibroblast growth factor (b-FGF) on the repair of a peripheral nerve defect using an autogenous vein bridge model [J]. J Invest Surg,2009,22(6):401-5.
    [49]Hughes GC, Biswas SS, Yin B, et al. Therapeutic angiogenesis in chronically ischemic porcine myocardium:comparative effects of bFGF and VEGF. Ann Thorac Surg,2004,77(3):812-8.
    [50]Biswas SS, Hughes GC, Scarborough JE, et al. Intramyocardial and intracoronary basic fibroblast growth factor in porcine hibernating myocardium:a comparative study [J]. J Thorac Cardiovasc Surg,2004,127(1):34-43.
    [51]Liu Y, Sun LJ, Huan Y, et al. The effect of basic fibroblast growth factor on angiogenesis and on the expression of basic fibroblast growth factor and vascular endothelial growth factor in acute infarcted myocardium [J]. Zhonghua Yi Xue Za Zhi,2004,84(1):54-7.
    [52]Sakakibara Y, Tambara K, Sakaguchi G, et al. Toward surgical angiogenesis using slow-released basic fibroblast growth factor [J]. Eur J Cardiothorac Surg,2003, 24(1):105-11
    [53]Liu Y, Sun L, Huan Y, et al. Effects of basic fibroblast growth factor microspheres on angiogenesis in ischemic myocardium and cardiac function:analysis with dobutamine cardiovascular magnetic resonance tagging [J]. Eur J Cardiothorac Surg,2006,30(1):103-7.
    [1]Kajstura J, Leri A, Finato N, et al. Myocyte proliferation in end-stage cardiac failure in humans [J]. Proc Natl Acad Sci USA,1998,95(15):8801-5.
    [2]Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart [J]. N Engl J Med,2002,346(1):5-15.
    [3]Matsuura K, Nagai T, Nishigaki N, et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes [J]. J Biol Chem,2004,279(12):11384-91.
    [4]Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration [J]. Cell,2003,114(6):763-76.
    [5]Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart [J]. Circ Res,2004,95(9):911-21.
    [6]Linke A, Muller P, Nurzynska D, et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function [J]. Proc Natl Acad Sci USA,2005,102(25):8966-71.
    [7]Tallini YN, Greene KS, Craven M, et al. c-kit expression identifies cardiovascular precursors in the neonatal heart [J]. Proc Natl Acad Sci USA,2009,106(6):1808-13.
    [8]Wu SM, Fujiwara Y, Cibulsky SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart [J]. Cell,2006, 127(6):1137-50.
    [9]Urbanek K, Cesselli D, Rota M, et al. Stem cell niches in the adult mouse heart [J]. Proc Natl Acad Sci USA,2006,103(24):9226-31.
    [10]Kuang D, Zhao X, Xiao G, et al. Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK [J]. Basic Res Cardiol,2008,103(3): 265-73.
    [11]Li M, Naqvi N, Yahiro E, et al. c-kit is required for cardiomyocyte terminal differentiation [J]. Circ Res,2008,102(6):677-85.
    [12]Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium:homing, differentiation, and fusion after infarction [J]. Proc Natl Acad Sci USA,2003,100(21):12313-8.
    [13]Yamahara K, Fukushima S, Coppen SR, et al. Heterogeneic nature of adult cardiac side population cells [J]. Biochem Biophys Res Commun,2008,371(4): 615-20.
    [14]Laugwitz KL, Moretti A, Lam J, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages [J]. Nature,2005,433(7026):647-53.
    [15]Rosenblatt-Velin N, Lepore MG, Cartoni C, et al. FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes [J]. J Clin Invest,2005,115(7):1724-33.
    [16]Thiele J, Varus E, Wickenhauser C, et al. Mixed chimerism of cardiomyocytes and vessels after allogeneic bone marrow and stem-cell transplantation in comparison with cardiac allografts [J]. Transplantation,2004,77(12):1902-5.
    [17]Mouquet F, Pfister O, Jain M, et al. Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells [J]. Circ Res,2005,97(11):1090-2.
    [18]Koninckx R, Hensen K, Rummens JL, et al. Cardiac stem cells in the real world [J]. J Thorac Cardiovasc Surg,2008,136(3):797-8;
    [19]Ventura C, Zinelu E, Maninchedda E, et al. Protein kinase C signaling transduces endorphin-primed cardiogenesis in GTR I embryonic stem cells [J]. Circ Res,2003, 92(6):617-22.
    [20]Huang W, Zhang D, Millard RW, et al. Gene manipulated peritoneal cell patch repairs infarcted myocardium [J]. J Mol Cell Cardiol,2010,48(4):702-12.
    [21]Roura S, Farre J, Hove-Madsen L, et al. Exposure to cardiomyogenic stimuli fails to transdifferentiate human umbilical cord blood-derived mesenchymal stem cells [J]. Basic Res Cardiol,2010,105(3):419-30.
    [22]Wang M, Tan J, Wang Y, et al. IL-18 binding protein-expressing mesenchymal stem cells improve myocardial protection after ischemia or infarction [J]. Proc Natl Acad Sci USA,2009,106(41):17499-504.
    [23]Grajales L, Garcia J, Banach K, et al. Delayed enrichment of mesenchymal cells promotes cardiac lineage and calcium transient development [J]. J Mol Cell Cardiol, 2010,48(4):735-45.
    [24]Johnston PV, Sasano T, Mills K, et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy [J]. Circulation,2009,120(12):1075-83.
    [25]Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity [J]. Proc Natl Acad Sci USA,2009,106(33):14022-7.
    [26]Furlani D, Li W, Pittermann E, et al. A transformed cell population derived from cultured mesenchymal stem cells has no functional effect after transplantation into the injured heart [J]. Cell Transplant,2009,18(3):319-31.
    [27]Gnecchi M, He H, Melo LG, et al. Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction [J]. Stem Cells,2009,27(4):971-9.
    [28]Delorme B, Ringe J, Pontikoglou C, et al. Specific lineage-priming of bone' marrow mesenchymal stem cells provides the molecular framework for their plasticity [J]. Stem Cells,2009,27(5):1142-51.
    [29]Grundmann F, Scheid C, Braun D, et al. Differential increase of CD34, KDR/CD34, CD133/CD34 and CD117/CD34 positive cells in peripheral blood of patients with acute myocardial infarction [J]. Clin Res Cardiol,2007,96(9):621-7.
    [30]Riley P. The "natural selection" of muscle for cardiac repair [J]. Circ Res,2010, 106(1):4-6.
    [31]Bearzi C, Leri A, Lo Monaco F, et al. Identification of a coronary vascular progenitor cell in the human heart [J]. Proc Natl Acad Sci USA,2009,106(37): 15885-90.
    [32]Povsic TJ, Zavodni KL, Vainorius E, et al. Common endothelial progenitor cell assays identify discrete endothelial progenitor cell populations [J]. Am Heart J,2009, 157(2):335-44.
    [33]Xiao Q, Zeng L, Zhang Z, et al. Stem cell-derived Sca-1+ progenitors differentiate into smooth muscle cells, which is mediated by collagen Ⅳ-integrin alpha1/beta1/alphav and PDGF receptor pathways [J]. Am J Physiol Cell Physiol, 2007,292(1):C342-52.
    [34]Zelarayan LC, Noack C, Sekkali B, et al. Beta-Catenin downregulation attenuates ischemic cardiac remodeling through enhanced resident precursor cell differentiation [J]. Proc Natl Acad Sci USA,2008,105(50):19762-7.
    [35]Arminan A, Gandia C, Bartual M, et al. Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells [J]. Stem Cells Dev,2009,18(6):907-18.
    [36]Yang MC, Chi NH, Chou NK, et al. The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin-Hyaluronic acid cardiac patches [J]. Biomaterials, 2010,31(5):854-62.
    [37]Sasaki Y, Matsuoka Y, Hase M, et al. Marginal expression of CXCR4 on c-kit(+)Sca-1 (+)Lineage (-) hematopoietic stem/progenitor cells [J]. Int J Hematol, 2009,90(5):553-60.
    [38]Lu G, Haider HK, Jiang S, et al. Sca-1+ stem cell survival and engraftment in the infarcted heart:dual role for preconditioning-induced connexin-43 [J]. Ashraf M. Circulation,2009,119(19):2587-96.
    [39]Kuzmenkin A, Liang H, Xu G, et al. Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro [J]. FASEB J,2009,23(12):4168-80.
    [40]Leung N, Dispenzieri A, Lacy MQ, et al. Severity of baseline proteinuria predicts renal response in immunoglobulin light chain-associated amyloidosis after autologous stem cell transplantation [J]. Clin J Am Soc Nephrol,2007,2(3):440-4.
    [41]Gojo S, Gojo N, Takeda Y, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells [J]. Exp Cell Res,2003,288(1):51-9.
    [42]Qu-Petersen Z, Deasy B, Jankowski R, et al. Identification of a novel population of muscle stem cells in mice:potential for muscle regeneration [J]. Cell Biol,2002, 157(5):851-64.
    [43]Liu Y, Asakura M, Inoue H, et al. Sox 17 is essential for the specification of cardiac mesoderm in embryonic stem cells [J]. Proc Natl Acad Sci USA,2007, 104(10):3859-64.
    [44]Dai YS, Cserjesi P, Markham BE, et al. The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism [J]. J Biol Ghem,2002,277 (27):24390-8.
    [45]Altarche-Xifro W, Curato C, Kaschina E, et al. Cardiac c-kit+ AT2+ cell population is increased in response to ischemic injury and supports cardiomyocyte performance [J]. Stem Cells,2009,27(10):2488-97.
    [46]Behfar A, Zingman LV, Hodgson DM, et al. Stem cell differentiation requires a paracrine pathway in the heart [J]. FASEB J,2002,16(12):1558-66.
    [47]Imitola J, Raddassi K, Parkk I, et al. Directed migration of neural stem cells to sites of CNS injury by the stormal cell-derived factor 1/CXC chemokine receptor 4 pathway [J]. Proc Natl Acad Sci USA,2004,1(52):18117-22.
    [48]Kucla M, Dawn B, Hunt G, et al. Cells exp ressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction [J]. Circ Res,2004,95(5):1191-205.
    [49]Khan F, Tare RS, Kanczler JM, et al. Strategies for cell manipulation and skeletal tissue engineering using high-throughput polymer blend formulation and microarray techniques [J]. Biomaterials,2010,31(8):2216-28.
    [50]Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth stimulating factor [J]. Proc Natl Acad Sci USA,1994,91(6): 2305-9.
    [51]Laflammem A, Murry CE. Regenerating the heart [J]. Nat Biotechnol,2005, 23(7):845-56.
    [52]Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction:eighteen months follow-up data from the randomized, controlled BOOST (Bone marrow transfer to enhance ST2elevation infarct regeneration) trial [J]. Circulation,2006,113(10):1287-94.
    [53]Zong ZW, Cheng TM, Su YP, et al. Crucial role of SDF-1/CXCR4 interaction in the recruitment of transplanted dermal multipotent cells to sublethally irradiated bone marrow [J]. J Radiat Res (Tokyo),2006,47(3-4):287-93.
    [54]Zong ZW, Xiang Q, Cheng TM, et al. CXCR4 gene transfer enhances the distribution of dermal multipotent stem cells to bone marrow in sublethally irradiated rats [J]. J Radiat Res (Tokyo),2009,50(3):193-201.
    [55]Klopsch C, Furlani D, Gabel R, et al. Intracardiac injection of erythropoietin induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model [J]. J Cell Mol Med,2009,13(4):664-79.
    [56]Tang J, Wang J, Yang J, et al. Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats [J]. Eur J Cardiothorac Surg,2009,36(4):644-50.
    [57]Cheng Z, Ou L, Zhou X, et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance [J]. Mol Ther,2008,16(3):571-9.
    [58]Wragg A, Mellad JA, Beltran LE, et al. VEGFR1/CXCR4-positive progenitor cells modulate local inflammation and augment tissue perfusion by a SDF-1-dependent mechanism [J]. J Mol Med,2008,86(11):1221-32.
    [59]Kaminski A, Ma N, Donndorf P, et al. Endothelial NOS is required for SDF-1 alpha/CXCR4-mediated peripheral endothelial adhesion of c-kit+ bone marrow stem cells [J]. Lab Invest,2008,88(1):58-69.
    [60]Majka M, Janowska-Wieczorek A, Ratajczak J, et al. Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis [J]. Blood, 2000,96(13):4142-51.
    [61]Carretero-Ortega J, Walsh CT, Hernandez-Garcia R, et al. Phosphatidylinositol 3,4,5-triphosphate-dependent Rac exchanger 1 (P-Rex-1), a guanine nucleotide exchange factor for Rac, mediates angiogenic responses to stromal cell-derived factor-1/chemokine stromal cell derived factor-1 (SDF-1/CXCL-12) linked to Rac activation, endothelial cell migration, and in vitro angiogenesis [J]. Mol Pharmacol, 2010,77(3):435-42.
    [62]Pillarisetti K, Gupta SK. Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1):SDF21 alpha mRNA is selectively induced in rat model of myocardial infarction [J]. Inflammation,2001,25(5):293-300.
    [63]Damas JK, Eiken HG, Oie E, et al. Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure [J]. Cardiovasc Res,2000,47(4):778-87.
    [64]Luan B, Han Y, Zhang X, et al. Association of the SDF1-3'A polymorphism with susceptibility to myocardial infarction in Chinese Han population [J]. Mol Biol Rep. 2010,37(1):399-403.
    [65]Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1 alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury [J]. Circulation,2004,110(21): 3300-5.
    [66]Ma N, Stamm C, Kaminski A, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice [J]. Cardiovasc Res,2005,66(1): 45-54.
    [67]Ayach BB, Yoshimitsu M, Dawood F, et al. Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction [J]. Proc Natl Acad Sci USA,2006,103(7):2304-9.
    [68]Jalili A, Shirvaikar N, Marquez-Curtis L, et al. Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis:Further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells [J]. Exp Hematol,2010,38(4):321-32.
    [69]Balsam LB, Wagers AJ, Christensen JL, et al. Hematopoietic stem cells adopt mature hematopoietic fates in ischemic myocardium [J]. Nature,2004,428(6983): 668-73.
    [70]Nygren J, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic generate cardiomyocyte at a low frequency through cell fusion, but not transdiferentiation [J]. Nat Med,2004,10(5):494-501.
    [71]Molina EJ, Palma J, Gupta D, et al. Reverse remodeling is associated with changes in extracellular matrix proteases and tissue inhibitors after mesenchymal stem cell (MSC) treatment of pressure overload hypertrophy [J]. J Tissue Eng Regen Med,2009,3(2):85-91.
    [72]Dimmeler S, Zeiher AM, Schneiderm D. Unchain my heart:the scientific foundations of cardiac repair [J]. J Clin Invest,2005,115(3):572-83.
    [73]Potapova IA, Doronin SV, Kelly DJ, et al. Enhanced recovery of mechanical function in the canine heart by seeding an extracellular matrix patch with mesenchymal stem cells committed to a cardiac lineage [J]. Am J Physiol Heart Circ Physiol,2008,295(6):H2257-63.
    [74]Gyongyosi M, Blanco J, Marian T, et al. Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression [J]. Circ Cardiovasc Imaging,2008,1(2):94-103.
    [75]Haider HKh, Jiang S, Idris NM, et al. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-lalpha/CXCR4 signaling to promote myocardial repair [J]. Circ Res,2008, 103(11):1300-8.
    [76]Tang XL, Rokosh DG, Guo Y, et al. Cardiac progenitor cells and bone marrow-derived very small embryonic-like stem cells for cardiac repair after myocardial infarction [J]. Circ J,2010,74(3):390-404.
    [77]Itzhaki-Alfia A, Leor J, Raanani E, et al. Patient characteristics and cell source determine the number of isolated human cardiac progenitor cells [J]. Circulation, 2009,120(25):2559-66.
    [78]De Angelis A, Piegari E, Cappetta D, et al. Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function [J]. Circulation,2010,121(2):276-92.
    [79]Rossini A, Zacheo A, Mocini D, et al. HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells [J]. J Mol Cell Cardiol,2008,44(4):683-93.
    [80]Pasquet S, Sovalat H, Henon P, et al. Long-term benefit of intracardiac delivery of autologous granulocyte-colony-stimulating factor-mobilized blood CD34+ cells containing cardiac progenitors on regional heart structure and function after myocardial infarct [J]. Cytotherapy,2009,11(8):1002-15.
    [81]Song H, Yoon C, Kattman SJ, et al. Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue [J]. Proc Natl Acad Sci USA,2010,107(8):3329-34.
    [82]Fischer KM, Cottage CT, Wu W, et al. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase [J]. Circulation,2009,120(21):2077-87.
    [83]Winter EM, van Oorschot AA, Hogers B, et al. A new direction for cardiac regeneration therapy:application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells [J]. Circ Heart Fail,2009,2(6):643-53.
    [84]Matsuura K, Honda A, Nagai T, et al. Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice [J]. J Clin Invest, 2009,119(8):2204-17.
    [1]Allen KB, Dowling RD, Fudge TL, et al. Comparison of transmyocardial revascularization with medical therapy in patients with refractory angina [J]. N Engl J Med,1999,341(14):1029-36.
    [2]Allen KB, Dowling RD, Angell WW, et al. Transmyocardial revascularization: 5-year follow-up of a prospective,randomized multicenter trial [J]. Ann Thorac Surg, 2004,77(4):1228-34.
    [3]Qu Z, Zheng JB, Zhang ZG. Single-center report of 5-year follow-up on 94 patients underwent transmyocardial laser revascularization [J]. Chin Med J (Engl), 2007,120(22):1982-5.
    [4]Banerjee DD, Quinn MS, Mohanty LB, et al. Failure of chronic transmyocardial laser revascularization to alter cardiac nociceptive reflexes:implications for the treatment of angina pectoris [J]. Lasers Med Sci,2008,23(2):155-61.
    [5]Wiemer M, Wielepp JP, Lindner O, et al. Assessment of myocardial perfusion by positron emission tomography in patients with end-stage coronary artery disease treated with percutaneous myocardial revascularization [J]. Chin Med J (Engl),2009, 122(23):2807-13.
    [6]Ak K, Isbir S, Giirsu O, et al. The effect of transmyocardial laser revascularization on anginal symptoms and clinical results in patients with incomplete surgical revascularization [J]. Turk Kardiyol Dern Ars,2009,37(4):246-52.
    [7]March RJ. Perioperative management of patients undergoing transmyocardial laser revascularization [J]. Semin Thorac Cardiovasc Surg,2006,18(1):58-67.
    [8]Lutter G, Schwarzkopf J, Lutz C, et al. Histologic findings of transmyocardial laser channels after two hours [J]. Ann Thorac Surg,1998,65(5):1437-9.
    [9]Cooley DA, Frazier OH, Kadipasaoglu KA, et al. Transmyocardial laser revacularization:anatomic evidence of long-term channel patency [J].Texas Heart Inst,1994,21(3):220-4.
    [10]Domkowski PW, Biswas SS, Steenbergen C, et al. Histological evidence of angiogenesis 9 months after transmyocardial laser revascularization [J], Circulation, 2001,103(3):469-71.
    [11]Mack CA. Channel patency and neovascularization after transmyocardial revascularization using an excimer laser, results and comparisons to nonlased channels [J]. Circulation,1997,96(9 Suppl):Ⅱ 65-9.
    [12]Heidt MC, Sedding D, Stracke SK, et al. Measurement of myocardial oxygen tension:a valid and sensitive method in the investigation of transmyocardial laser revascularization in an acute ischemia model [J]. Thorac Cardiovasc Surg,2009, 57(2):79-84.
    [13]Babin-Ebell J, Sievers HH, Charitos El, et al. Transmyocardial laser revascularization combined with intramyocardial endothelial progenitor cell transplantation in patients with intractable ischemic heart disease ineligible for conventional revascularization:preliminary results in a highly selected small patient cohort [J]. Thorac Cardiovasc Surg,2010,58(1):11-6.
    [14]Kohmoto T, Fisher PE, Gu A, et al. Does blood flow through holmium:YAG transmyocardial laser channels [J]. Ann Thorac Surg,1996,61(3):861-8.
    [15]Patel AN, Spadaccio C, Kuzman M, et al. Improved cell survival in infarcted myocardium using a novel combination transmyocardial laser and cell delivery system [J]. Cell Transplant; 2007; 16(9):899-905.
    [16]Tasse J, Arora R. Transmyocardial revascularization:peril and potential [J]. J Cardiovasc Pharmacol Ther,2007,12(1):44-53.
    [17]Akay MH, Cheong BY, Frazier OH. Use of magnetic resonance imaging to assess myocardial perfusion after transmyocardial laser revascularization [J]. Heart Surg Forum,2009,12(4):E199-201.
    [18]Dallan LA, Gowdak LH, Lisboa LA, et al. Cell therapy plus transmyocardial laser revascularization:a proposed alternative procedure for refractory angina [J]. Rev Bras Cir Cardiovasc,2008,23(1):46-52.
    [19]Gassler N, Wintzer HO, Stubbe HM, et al. Transmyocardial laser revascularization histological features in human nonresponder myocardium [J]. Circulation,1997,95(2):371-5.
    [20]Fischer PE, Khomoto T, Derosa CM, et al. Histologic analysis of transmyocardial channels:comparison of CO2 and Holmium:YAG lasers [J]. Ann Thorac Surg,1997,64(2):466-72.
    [21]Horvath KA. Transmyocardial laser revascularization [J]. J Card Surg,2008, 23(3):266-76.
    [22]Malekan R. Angiogenesis in transmyocardial laser revascularization. A nonspecific response to injury [J]. Circulation,1998,98(19 Suppl):Ⅱ 62-6.
    [23]Chu VF, Giaid A, Kuang JQ, et al. Angiogenesis in transmyocardial revascularization:comparison of laser versus mechanical punctures [J]. Ann Thorac Surg,1999,68(2):301-7.
    [24]Bahcivan M, Keceligil HT, Kolbakir F. Transmyocardial laser revascularization [J]. Anadolu Kardiyol Derg,2008,8(1):58-64.
    [25]Horvath KA. Percutaneous laser revascularization does not equal transmyocardial laser revascularization [J]. J Am Coll Cardiol,2006,48(11):2354.
    [26]Canestri F. Computerized thermal characterization tool (CT)2 for complete thermodynamic coefficients mapping at the wavelength of 10.6 microm:a PMMA case report [J]. Photomed Laser Surg,2009,27(4):539-45.
    [27]Walter PJ. Are the channels too small in transmyocardial laser revascularization [J]. Tex Heart Inst,2002,29(2):154.
    [28]Li W, Chiba Y, Kimura T, et al. Transmyocardial laser revascularization induced angiogenesis correlated with the expression of matrix metalloproteinases and platelet-derived endothelial cell growth factor [J]. Eur J Cardiothorac Surg,2001, 19(2):156-63.
    [29]Arakelian KA, Antonenko DV. Experience with epidural anesthesia during myocardial revascularization operations [J]. Anesteziol Reanimatol,2006,6(3):27-30.
    [30]Hamman BL, White CH, Cheung EH, et al. Transmyocardial laser revascularization causes sustained VEGF secretion [J]. Semin Thorac Cardiovasc Surg,2006,18(1):43-45.
    [31]Allen KB, Kelly J, Borkon AM, et al. Transmyocardial laser revascularization: from randomized trials to clinical practice. A review of techniques, evidence-based outcomes, and future directions [J]. Anesthesiol Clin,2008,26(3):501-19.
    [32]Kalghatgi S, Friedman G, Fridman A, et al. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release [J]. Ann Biomed Eng,2010,38(3):748-57.
    [33]Li W, Tanaka K, Chiba Y, et al. Role of MMPs and plasminogen activators in angiogenesis after transmyocardial laser revascularization in dogs [J]. Am J Physiol Heart Circ Physiol,2003,284(1):23-30.
    [34]Kamo K, Miyakoshi N, Kasukawa Y, et al. Effects of single and cyclical local injections of basic fibroblast growth factor on cancellous bone defects in rabbits [J]. J Orthop Sci,2009,14(6):811-9.
    [35]Ay I, Sugimori H, Finklestein SP. Intravenous basic fibroblast growth factor(bFGF) decreases DNA fragmentation and prevents downregulation of Bcl-2 expression in the ischemic brain following middle cerebral artery occlusion in rats [J]. Brain Res Mol Brain Res,2001,87(1):71-80.
    [36]Boosani CS, Nalabothula N, Sheibani N, et al. Inhibitory effects of arresten on bFGF-induced proliferation, migration, and matrix metalloproteinase-2 activation in mouse retinal endothelial cells [J]. Curr Eye Res,2010,35(1):45-55.
    [37]Sahoo S, Ang LT, Cho-Hong Goh J, et al. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications [J]. Differentiation,2010,79(2):102-10.
    [38]Jiang ZS, Padua RR, Ju H, et al. Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C [J]. Am J Physiol Heart Circ Physiol,2002,282(3):1071-80.
    [39]Donnini S, Terzuoli E, Ziche M, et al. Sulfhydryl angiotensin-converting enzyme inhibitor promotes endothelial cell survival through nitric-oxide synthase, fibroblast growth factor-2, and telomerase cross-talk [J]. J Pharmacol Exp Ther,2010,332(3): 776-84.
    [40]Horvath KA, Aranki SF, Cohn LH, et al. Sustained angina relief 5 years after transmyocardial laser revascularization with a CO2 laser [J]. Circulation,2001, 104(12 Suppl 1):181-4.
    [41]Galinanes M, Loubani M, Sensky PR, et al. Efficacy of transmyocardial laser revascularization and thoracic sympathectomy for the treatment of refractory angina [J]. Ann Thorac Surg,2004,78(1):122-8.
    [42]Hughes GC, Baklanov DV, Biswas SS, et al. Regional cardiac sympathetic innervation early and late after transmyocardial laser revascularization [J]. J Card Surg,2004,19(1):21-7.
    [43]Asai T, Yamamoto S, Ishino K, et al. Time-dependent regional myocardial denervation as a nonspecific response to transmyocardial laser revascularization [J]. Ann Thorac Surg,2005,80(4):1362-9.
    [44]Atluri P, Panlilio CM, Liao GP, et al. Transmyocardial revascularization to enhance myocardial vasculogenesis and hemodynamic function [J]. J Thorac Cardiovasc Surg.2008,135(2):283-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700